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X-ray diffraction Analysis (XRD): 

 

 
 

Figure S1.  XRD results for PEO/PMMA blends in different PEO wt% concentrations and 

with various PEO topologies (a) 4-arms, (b) HB6G. 

 

Calculation of the crystallization (%) in the PEO/PMMA blends 

To estimate the degree of neat PEO crystallinity for different polymer structures along with 

the effect of number of arms and arm molecular weight on the crystallization, we used the 

following equation 𝑋𝑐 = (
∆𝐻𝑚

∆𝐻𝑐∗𝑓𝑃𝐸𝑂
) ∗ 100, where 𝑓𝑃𝐸𝑂  is the weight fraction of PEO in the 

polymer blend, ∆𝐻𝑚 is the melting enthalpy of the sample, and ∆𝐻𝑐  is the melting enthalpy 

of completely crystalline PEO, which is 196.4 J/g.1 

 

 

 

 



S3 
 

 

Table S1. Melting enthalpies and degree of crystallizations of various PEO architectures 

over different weight fraction of PEO in blends with PMMA. 

Sample 
wt% of 

PEO 

Melting 

enthalpy 
Crystallinity 

∆Hm, J/g Xc, % 

L20 

100.00 143.74 73.19 

75.00 88.00 44.91 

50.00 55.48 28.25 

40.00 17.67 9.00 

35.00 4.45 2.26 

4F20 

100.00 125.00 63.65 

75.00 46.26 23.55 

50.00 10.90 5.55 

8F20 

100.00 120.00 61.10 

75.00 76.00 38.10 

50.00 40.00 20.24 

40.00 0.96 0.49 

HB6G 

100.00 61.13 31.12 

75.00 37.04 18.86 

50.00 14.73 7.50 

40.00 7.11 3.62 

35.00 2.02 1.03 
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Modulated differential scanning calorimetry (MDSC)  

Table S2. Glass transition temperatures with entire peak widths at half-maximum height 

(∆𝑇𝑔)  for neat PEO with various architectures in the blends with PMMA. 

Sample 

Neat PEO 
 

Tg,eff, 
K 

∆Tg, 
K 

 

L20 221.76 10.62  

4F20 220.49 9.49  

8F20 222.69 10.56  

HB6G 232.84 13.41  

BB 215.68 9.99  

 

Lodge-McLeish Self-concentration Model 

 

Tg for each component in the blend could be also estimated via the effective volume fraction 

of each component, 𝜙𝑒𝑓𝑓 , determined by the Eq. 1,2 

 𝜙𝑒𝑓𝑓 = 𝜙𝑠 + (1 + 𝜙𝑠 )𝜙   (S1) 

where 𝜙𝑠  is the self-concentration (volume fraction) of the polymer due to chain connectivity 

effects and 𝜙 is the bulk blend composition. Self-concentration, 𝜙𝑠 , is also based on the 

appropriate volume surrounding the polymer segment under consideration. Even though it is 

usually to be on the order of the Kuhn length cubed (𝑙𝑘
3), it can be changed by a multiplicative 

constant of order unity, as the choice of 𝑉 = 𝑙𝑘
3 is arbitrary.3 Then the self-concentration, 𝜙𝑠 , 

is estimated using the Eq. 2,2 

 𝜙𝑠 =
𝐶∞𝑀0

𝑘𝜌𝑁𝑎𝑣 𝑉
     (S2) 
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where 𝐶∞ is the characteristic ratio, 𝑀0 is the repeat unit molar mass, 𝑁𝑎𝑣  is the Avogadro 

number, 𝜌 is the density of the polymer and 𝑘 is the number of backbone bonds per repeat 

unit. The model associates the average local concentration of each component with a local 

glass temperature given by the Eq. 3,2 

 𝑇𝑔,𝑒𝑓𝑓 = 𝑇𝑔(𝜙)|𝜙=𝜙𝑒𝑓𝑓
   (S3) 

In other words, the effective glass temperature, 𝑇𝑔,𝑒𝑓𝑓 , is calculated from the macroscopic 

𝑇𝑔(𝜙), however, evaluated at 𝜙𝑒𝑓𝑓 . For the macroscopic composition dependence of the 

glass transition temperature, the well-known Fox equation was used but with the effective 

concentration, 𝜙𝑒𝑓𝑓 , for each component. 

 

Figure S2.  The dependence of the reversible heat flow (a) and its derivative with respect to 

temperature (b) for PEO/PMMA/LiTFSI based polymer electrolytes with regards to various 

PEO topologies including linear, 4-arms, 8-arms, hyperbranched and bottle brush. 

Electrochemical Impedance Spectroscopy (EIS): 

The ionic conductivity (σ) of the PEO/PMMA blend electrolytes was calculated using the 
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equation S44: 

 σ =
𝑙

𝑅𝑏 𝐴
                (S4) 

where l is the polymer electrolyte thickness, A accounts for the area of the SPE and 𝑅𝑏  is 

the bulk resistance. The bulk resistance was obtained from the complex impedance plot  

shown by Figure S3 below. 

  

Figure S3.  Example of Nyquist plots at 60oC used in the ionic conductivity calculations for 

the PEO blend electrolytes containing %50 4F20 (a) and HB6G PEO (b) 
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Broadband Dielectric Spectroscopy (BDS): 

 

Figure S4. The frequency dependence of the dielectric loss (ε") data at 353 K for 20wt% 

linear PEO/PMMA blend with (open) and without (filled) salt. 
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