Supporting Information

Tuning effect of the zeolite Brønsted acidity on the FeZn bimetallic

hydrodesulfurization catalyst

Wenkai Wei,[†] Xinyue Zhang,[†] Xuandong Liu,[†] Rong Guo,[†] Bo Meng[†], Guosheng Li[†], Shenyong

Ren[†], Qiaoxia Guo, § Baojian Shen^{*,†}

[†]State Key Laboratory of Heavy Oil Processing; the Key Laboratory of Catalysis of CNPC;

College of Chemical Engineering and Environment, China University of Petroleum, No. 18

Fuxue Road, Changping, Beijing 102249, China

[§]College of Sciences, China University of Petroleum, No. 18 Fuxue Road, Changping, Beijing

102249, China

*Corresponding Author: Baojian Shen

TEL: +(8610)89733369

FAX: +(8610)89733369

EMAIL: baojian@cup.edu.cn

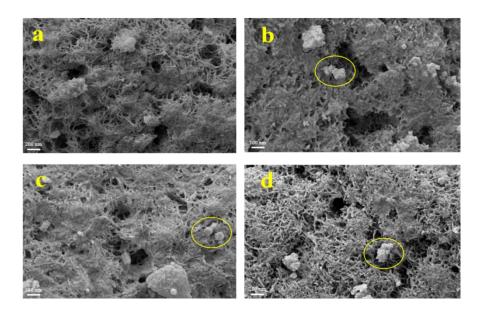


Figure S1. SEM images of (a) PA, (b) PSA10, (c) PSA18 and (d) PSA24 supports.

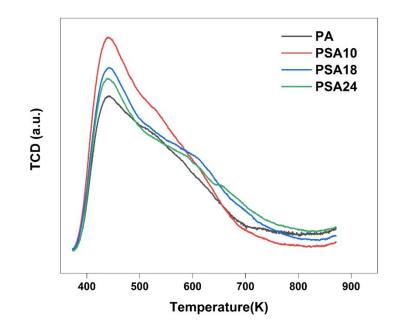


Figure S2. NH₃-TPD profiles of supports.

Figure S3. SEM images of (a) FZ-PA, (b) FZ-PSA10, (c) FZ-PSA18 and (d) FZ-PSA24 oxide

catalysts.

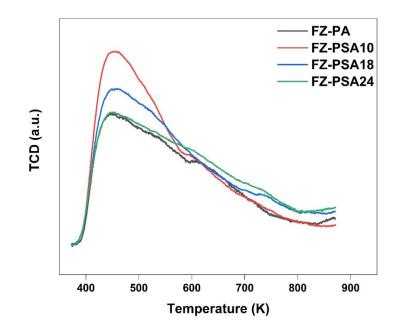


Figure S4. NH₃-TPD profiles of catalysts in oxide form.

Table S1. Detailed texture properties of supported FeZn catalysts before H₂-reduction

Course auto	S _{BET}	S _{Micro}	S _{EXT}	V _P	V _{micro}	V _{meso}	D _{aver}
Supports	$/(m^2 \cdot g^{-1})$	$/(m^2 \cdot g^{-1})$	$/(m^2 \cdot g^{-1})$	$/(cm^{3} \cdot g^{-1})$	$/(cm^{3} \cdot g^{-1})$	$/(cm^{3} \cdot g^{-1})$	/nm
FZ-PA	251	26	225	0.785	0.011	0.774	12.52
FZ-PSA10	313	136	177	0.649	0.066	0.583	8.31
FZ-PSA18	301	133	168	0.630	0.064	0.566	8.38

FZ-PSA24 30	02 126	176	0.617	0.060	0.557	8.17
-------------	--------	-----	-------	-------	-------	------

Table S2. Com	position of a	supported Fe	eZn catalysts	before H ₂ -reduction

Catalysts	Composition of the catalysts(wt%, XRF)			Composition of the catalysts(wt%, ICP)		
_	Fe ₂ O ₃ ZnO S		Support	Fe ₂ O ₃	ZnO	Support
FZ-PA	9.0	12.7	78.3	9.4	13.0	77.6
FZ-PSA10	9.1	13.1	77.8	9.6	13.5	76.9
FZ-PSA18	9.1	12.8	78.1	9.3	13.3	77.4
FZ-PSA24	9.0	13.0	78.0	9.5	13.4	77.1

The Py-IR characterization of the fresh and spend catalyst was performed and the spectra were presented in **Figure S5**. It is apparent that the characteristic peak around 1543 cm⁻¹ belongs to the Brønsted acid sites and the peak at 1453 cm⁻¹ is attributed to the Lewis acid sites. It is obvious that the peak intensity of the spend catalyst FZ-PSA18 is weaker than that of the fresh catalyst FZ-

PSA18. The densities of Brønsted and Lewis acid sites in catalyst can be calculated in **Table S3**. After reaction, the total amount of B acid and L acid dropped from 20 to 8 µmol/g, 149 to 74 µmol/g, respectively. This is due to the formation of coke on the catalyst. The SEM-EDS spectra of fresh catalyst FZ-PSA18 and spend catalyst FZ-PSA18 catalysts were presented in **Figure S6**. Compared with fresh catalyst FZ-PSA18, the carbon content in the spend catalyst FZ-PSA18 catalyst increased significantly from 5.4 to 31.8 wt%, which is consistent with the Py-IR result. These results indicate that under the experimental conditions of this article, the introduction of Y-type zeolite will cause the obvious coke deposition of the catalyst.

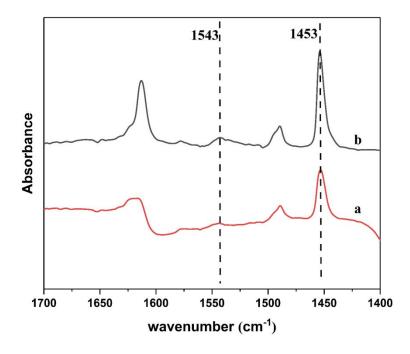


Figure S5. Py-IR spectra of (a) spend catalyst FZ-PSA18, (b) fresh catalyst FZ-PSA18

Table S3. B acid, L acid and Total acid of fresh catalyst FZ-PSA18 and spend catalyst FZ-

	Total acid sites (µmol/g)			Medium and strong acid sites (μ mol/g)		
Catalysts	В	L	Total	В	L	Total
fresh catalyst FZ- PSA18	20	149	169	14	72	86
spend catalyst FZ- PSA18	8	74	82	4	49	53

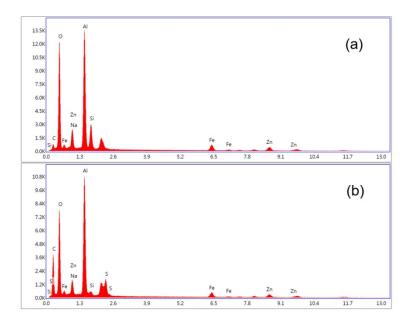


Figure S6. SEM-EDS spectra of catalysts. (a) fresh catalyst FZ-PSA18, (b) spend catalyst FZ-

PSA18