Supporting Information

3D Urchin-like Hierarchical Black TiO₂ Hollow Nanospheres: A Highly Active and Stable Electrocatalyst for Water Oxidation in Alkaline and Neutral Medium

Raji Vadakkekara, * †, ‡ Sandesh R Jadkar * †, ‡

† School of Energy Studies, Savitribai Phule Pune University, Pune - 4 11007, Maharashtra,

India

‡ Department of Physics, Savitribai Phule Pune University, Pune - 411007, Maharashtra, India

*Corresponding authors: rajisvnit@gmail.com; sandesh@physics.unipune.ac.in

Turnover frequency (TOF) calculation:

The TOF value was calculated using the equation 1.¹

$$TOF = \frac{J \times A}{4 \times F \times m} \tag{1}$$

J = current density at fixed overpotential

 $A = \text{area of the glassy carbon electrode } (0.0706 \text{ cm}^{-2})$

F = faraday constant (96485 C mol⁻¹)

m = number of moles of the catalyst deposited onto glassy carbon electrode

The ECSA was calculated according to the equation $2.^2$

$$ECSA = \frac{C_{dl}}{C_s}$$
(2)

 C_{dl} = double layer capacitance

 C_s = specific capacitance

The faradaic efficiency (ϵ) of the OER system is proportional to the ratio of the ring current to the disk current and was calculated by using the equation 3.²

Faradaic efficiency =
$$\frac{2 \times I_r}{I_d \times N}$$
 (3)

where, $I_r = ring current$

 $I_d = disk current$

N = collection efficiency (0.37)

Mass activity was calculated according to the equation 4.²

Mass activity = $\frac{current \ density \ at \ a \ fixed \ potential}{catalytic \ loading}$ (4)

Calibration of Hg/HgO

LSV was obtained for converting the electrode potentials into the reversible hydrogen electrode (RHE) scale. LSV (Figure S1) has been recorded in H₂-saturated 1 M KOH solution at a scan rate of 1 mVs⁻¹ with Pt as the working electrode, graphite rod as the counter electrode and Hg/HgO as the reference electrode.² The correction factor obtained was 0.912, where the current

crosses the zero line.

So,
$$E(RHE) = E(Hg/HgO) + 0.912$$
 (5)

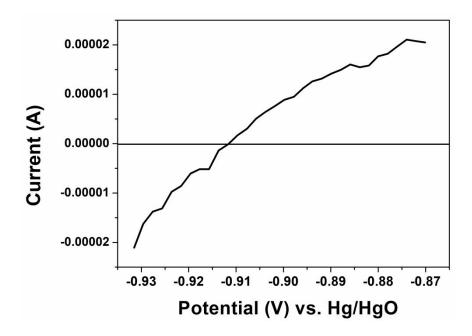


Figure S1. LSV for Hg/HgO to RHE calibration in H2-saturated 1 M KOH solution recorded at a

scan rate of 1 mVs⁻¹.

In alkaline medium, OER process follows four step reaction mechanisms.

$$M + OH^{-} \longrightarrow M - OH^{*} + e^{-}$$
(6)

$$M-OH^* + OH^- \longrightarrow M-O^* + H_2O + e^-$$
(7)

$$M-O^*+OH^- \longrightarrow M-OOH^*+e^-$$
(8)

$$M-OOH^*+OH^- \longrightarrow M+O_2+H_2O+e^-$$
(9)

REFERENCES

- Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.;, Bao, J.; Yu, Y.;
 Chen, S.; Ren, Z. Non-Noble Metal-Nitride Based Electrocatalysts for High-Performance Alkaline Seawater Electrolysis. *Nat. Comm.* 2019, *10*, 5106.
- (2) Vadakkekara, R.; Illathvalappil, R.; Kurungot, S. Layered TiO₂ Nanosheet-Supported NiCo₂O₄ Nanoparticles as an Efficient Bi-Functional Electrocatalyst for Overall Water Splitting. *ChemElectroChem* **2018**, *5(24)*, 4000-4007.