Supporting Information

Confining MoSe₂ Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage

Fulan Zhong^{a,c}, Anding Xu^b, Qi Zeng^d, Yijun Wang^{a,c}, Guilan Li^b, Zhiguang Xu^{d*}, Yurong Yan^b, Songping Wu^{a,c*}

^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China

^b School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

° Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China

^d Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China

Normal University, Guangzhou 510006, China

*E-mail: chwsp@scut.edu.cn

*E-mail: chzgxu@scnu.edu.cn

Synthesis of control samples

Preparation of MoSe₂@N-HCS-no-PDA: The control sample MoSe₂ nanosheets confined into N-doped porous hollow carbon microspheres without PDA coating (MoSe₂@N-HCS-no-PDA) was yielded by replacing Mo₂N@C@C_{PDA} with Mo₂N@C through the same process.

Preparation of MoSe₂@HCS and N-HCS: 6.0 g H₂₄Mo₇N₆O₂₄·4H₂O was annealed at 300 \Box for 10 h under Ar atmosphere with a heating rate of 3 \Box ·min⁻¹ to obtain MO₃. Then, MO₃ and C₆H₈O₇·H₂O were used to replace H₂₄Mo₇N₆O₂₄·4H₂O and C₆H₁₇N₃O₇, respectively, and the subsequent preparation process was the same as MoSe₂@N-HCS. Finally, MoSe₂ and carbon composite without N-doping was obtained (MoSe₂@HCS). Compared with the preparation of MoSe₂@N-HCS, carbon material (N-HCS) was synthesized without adding H₂₄Mo₇N₆O₂₄·4H₂O and omitting the selenization step.

Figure S1. SEM images of microspheres (a-b) after spray drying and (c-d) after carbonizing without removing KCl. (e) XRD pattern and (f) SEM image of Mo₂N@C.

Figure S2. (a) Survey XPS spectrum of MoSe₂@N-HCS. (b) SEM image and (c) XRD pattern of N-HCS. (d) Se 3d and (e) C 1s spectrum of MoSe₂@N-HCS.

Three peaks corresponding to C-C, C-O and C-N bonds could be found in the C1s spectrum, which indicated that there was a chemical bond between nitrogen and carbon.^{1, 2}

Figure S3. EDS elemental analysis results of (a) MoSe₂@N-HCS, (b) MoSe₂@N-HCS-no-PDA and (c) N-HCS.

Figure S4. (a) Raman spectrum, (b) TG curve and (c) nitrogen adsorption-desorption isothermal curves of MoSe₂@N-HCS.

The peaks located at 1346.6 and 1594.4 cm⁻¹ were indexed to the D-band and G-band of carbon material, with a high intensity ratio of 0.90 (I_D/I_G), revealing the amorphous structure (**Figure S4a**). According to the TG curve (**Figure S4b**), the slight mass increased at 350 \Box was due to the oxidation of MoSe₂ to MoO₃ and SeO₂, and the subsequent decrease was attributed to the oxidation of C and the sublimation of SeO₂. Finally, the content of MoSe₂ and N-HCS were calculated as 57.5 wt% and 42.5% for MoSe₂@N-HCS, respectively.

Figure S5. (a) HAADF image and (b-d) element mapping images of Mo₂N@C@C_{PDA}.

The HAADF and corresponding element mappings images of $Mo_2N@C@C_{PDA}$ displayed that C, Mo and N elements were uniformly distributed throughout the sphere, which was consistent with the XRD pattern of Mo_2N (**Figure S5**), further corroborating the presence of the intermediate of $Mo_2N@C@C_{PDA}$.

Figure S6. XRD patterns of (a) MoSe₂@N-HCS-no-PDA, (b) MoSe₂@HCS and (c) commercial MoSe₂. SEM images of (d) MoSe₂@N-HCS-no-PDA, (e) MoSe₂@HCS and (f) commercial MoSe₂.

Figure S7. (a) The voltage response during a single current pulse and (b) thickness of $MoSe_2@N-HCS$ coated on copper foil for calculation of K⁺ diffusion coefficient.

$$D = \frac{4}{\pi \tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2 \quad \left(\tau \ll \frac{L^2}{D}\right) \text{ (Equation 1)}$$

For the convenience of calculation, the part of Equation 1, i.e., $\left(\frac{m_B V_m}{M_B S}\right)$, could be equivalent to the thickness of anode materials (Figure S7b).³

Figure S8. Pseudocapacitive contribution (pink shadow area) to total capacity at a scan rate of (a) 1.0 mV s^{-1} , (b) 0.5 mV s^{-1} , (c) 0.3 mV s^{-1} and (d) 0.1 mV s^{-1} .

Figure S9. (a) Galvanostatic charge/discharge curves and (b) cycling performance at 100 mA g^{-1} of Prussian blue analogues $K_{1.92}Fe[Fe(CN)_6]_{0.94} \cdot 0.5H_2O$. (c) Galvanostatic charge/discharge curves of full cell at 200 mA g^{-1} .

Figure S10. HRTEM images of Mo₂Se@N-HCS anode at (a) fully-discharged state (0.01 V) and (b) fully-charged state (3.0 V) in the first cycle.

Figure S11. (a-b) SEM images, (c)TEM image, (d) HRTEM image, (e) HAADF image and (f-j) element mapping images of MoSe₂@N-HCS anode after 500 cycles at 1 A g⁻¹.

In order to explore the reasons for the excellent rate and cycling performance, the structure and composition changes of $MoSe_2@N-HCS$ after 500 cycles at 1 A g⁻¹ were

measured (Figure S11). SEM images and TEM image after cycling indicated that $MoSe_2@N-HCS$ maintained a relatively complete structure (Figure S11a-c). The visible lattice fringes with the interlayer spacing of 0.67 nm and the element mappings of Mo, Se, C, N that were similar to the initial $MoSe_2@N-HCS$ strongly confirmed that the $MoSe_2@N-HCS$ had good cycle stability and reversibility (Figure S11d-i). It should be noted that the lattice fringes with the interlayer spacing of 0.28 nm corresponded to the incomplete reaction product Mo_xSe_y (y/x<2) (Figure S11d),⁴ while the existence of K and F elements was attributed to the stable SEI film formed on the electrode surface (Figure S11j-k).

Electrochemical reactions:

The electrochemical reactions could be expressed as follows:

Potassiation:

 $MoSe_2 + xK^+ + xe^- \rightarrow K_xMoSe_2 \quad (0.85 \text{ V}, 0.64\text{V}) \qquad (Equation S1)$ $K_xMoSe_2 + xK^+ + xe^- \rightarrow 2K_xSe + Mo \ (x = 1.7, 2) \quad (<0.43 \text{ V}) \quad (Equation S2)$ Depotassiation:

$$K_xSe + yMo \rightarrow Mo_ySe + xK^+ + xe^- \quad (y = 0.5, 0.79)$$
 (Equation S3)

Figure S12. The K migration paths, final state structures and transition state energy barriers (ΔE_{Ts}) of (a) MoSe₂ and (b) N-HCS.

Materials	Electrolyte	Binder	Cyclability	Rate performance		Ref.	
			[mAh g ⁻¹]	Capacity	Current		
				[mAh g ⁻¹]	[A g ⁻¹]		
MoSe ₂ /NP-	1 M KFSI in	PVDF	131 at 1 $A \cdot g^{-1}$ 288, 225, 0		0.1, 0.2,	5	
C- 2	EC:DEC		after 250	168, 124 and 0.5, 2 and			
			cycles	91 5			
$MoSe_2/N\square C$	1M KFSI in	CMC	258.02 at 100	300, 244,	0.1, 0.2, 4		
	EMC		mA g ⁻¹ after	211, 195 and	0.5, 1 and		
			300 cycles	178	2		
MoSe₂⊂PNC-	1 M KFSI	PVDF	113 at 1 A g ⁻¹	¹ 260, 231, 0.1, 0.2,		6	
HNTs	in EMC		after 500	210, 202,	0.4, 0.6,		
			cycles	190, 176,	0.8, 1.0,		
				138, 104 and	2.0, 3.0		
				79.1	and 5.0		
MoSe ₂ /C-700	0.8 M KPF ₆	CMC	316 at 100	320, 266,	0.1, 0.2,	7	
	in EC:DEC		mA g ⁻¹ over	227, 197, 158	0.5, 1, 2		
			100 cycles	and 133	and 3		
N-MoSe ₂ @C	0.8 M KPF ₆	PVDF	227 at 1 A g ⁻¹	g ⁻¹ 368, 324, 0.2, 0.5,		8	
	in EC:DEC		after 5000	267, 224 and	2 and 5		
			cycles	169			
PMC	0.8 M KPF ₆	PVDF	226 at 1 A g ⁻¹	382, 342,	0.2, 0.4,	9	
	in EC:DEC		after 1000	304, 277, 254	0.6, 0.8,		
			cycles	and 224	1.0 and		
					2.0		
MoSe ₂ @NCT	0.85 M	PVDF	74 at 1 A g ⁻¹	~240, 110	0.1, 1 and	2	
	KPF ₆ in		after 400	and 65	2		
	EC:DEC		cycles				
MoSe ₂ -on-NC	07 M KPF ₆	PVDF	247 at 1 A g ⁻¹	393, 328, 0.2, 0.5,		10	
	in EC:DEC		after 4800	291, 252, 215	1.0, 2.0,		
			cycles	and 171	3.0 and		
					5.0		
MoSe ₂ /BC/CN	1 M KFSI	CMC-	415.5 at 0.1 A	367.6, 339.4,	0.1, 0.2,	11	
Ts	in EMC	Na	g ⁻¹ after 250	301.0, 273.0	0.5, 1 and		

Table S1. The comparison of potassium storage performance of molybdenum selenide inrecently reported literatures.

			cycles	and 247.8	2	
HM-MoSe ₂ /N-	1 M KFSI in	PVDF	7 172.5 at 0.5 A 219.4, 172.2		0.1, 0.5,	12
С	EC:DEC		g ⁻¹ after 400	153.3, 121.5,	1.0, 2.0,	
			cycles	103.7 and	5.0 and 10	
				94.2		
MoSe ₂ /N-C	0.8 M KPF ₆	PVDF	319 at 200	375, 363,	0.1, 0.2,	13
	in EC:DEC	in EC:DEC mA g ⁻¹		323, 292, 266	0.5, 1, 2	
			300 cycles	and 211	and 5	
MoSe ₂ @10%r	1 M KPF ₆	PVDF	314 at 100	279.2, 220.4,	0.2, 0.5, 1	14
GO	in	mA g ⁻¹ after		155.2 and	and 2	
	PC:EC:DE		50 cycles	77.8		
	С					
MoSe ₂ @N-HC	1 M KFSI in	PVDF	158.3 at 2 A	290.5, 258.6,	0.2, 0.5 1,	This
S	EC:DEC		g ⁻¹ after	231.3, 203.9,	2, 4, 8 and	work
			16700 cycles	168.3, 130.1	10	
				and 113.7		

Electrode	$R_{e}(\Omega)$	$\mathbf{R}_{\mathrm{SEI}}\left(\Omega ight)$	R _{ct} (Ω)
MoSe ₂ @N-HCS	3.501	20.17	624.1
MoSe2@N-HCS-no-PDA	4.457	10.51	1621
MoSe2@HCS	2.711	45.29	935.9
Commercial MoSe2	2.661	8.076	1662
N-HCS	2.535	3.203	1286

Table S2. The fitted impedance results of MoSe2@N-HCS, MoSe2@N-HCS-no-PDA,MoSe2@HCS, commercial MoSe2 and N-HCS.

Average D _{GITT} (×10 ⁻⁹ cm ² s ⁻¹)	MoSe2@N- HCS	MoSe ₂ @N-HCS -no-PDA	MoSe ₂ @ HCS	Commercial MoSe ₂	N-HCS
Discharged-state	3.781484	2.165466	2.68036	1.072173	2.488965
Charged-state	6.626458	4.880653	4.58726	1.672009	3.580949

Table S3. The average ion diffusion coefficients of MoSe2@N-HCS,MoSe2@N-HCS-no-PDA, MoSe2@HCS, commercial MoSe2 and N-HCS.

Reference

1. Yang, B.; Chen, J.; Liu, L.; Ma, P.; Liu, B.; Lang, J.; Tang, Y.; Yan, X. 3D Nitrogen-Doped Framework Carbon for High-Performance Potassium Ion Hybrid Capacitor. *Energy Stor. Mater.* **2019**, *23*, 522-529.

2. Li, N.; Sun, L.; Wang, K.; Zhang, J.; Liu, X. Anchoring MoSe₂ Nanosheets on N-Doped Carbon Nanotubes as High Performance Anodes for Potassium-Ion Batteries. *Electrochim. Acta* **2020**, *360*, 136983.

Xu, A.; Huang, C.; Li, G.; Zou, K.; Sun, H.; Fu, L.; Ju, J.; Song, Y.; Wu, S.; Xu, Z.; Yan,
 Y. Sb₂O₃@Sb Nanoparticles Impregnated in N-Doped Carbon Microcages for Ultralong Life and High-Rate Sodium Ion Batteries. *J. Mater. Chem. A* 2021, *9* (20), 12169-12178.

4. Ge, J.; Fan, L.; Wang, J.; Zhang, Q.; Liu, Z.; Zhang, E.; Liu, Q.; Yu, X.; Lu, B. MoSe₂/N-Doped Carbon as Anodes for Potassium-Ion Batteries. *Adv. Energy Mater.* **2018**, *8* (29), 1801477.

5. Zeng, L.; Kang, B.; Luo, F.; Fang, Y.; Zheng, C.; Liu, J.; Liu, R.; Li, X.; Chen, Q.; Wei, M.; Qian, Q. Facile Synthesis of Ultra-Small Few-Layer Nanostructured MoSe₂ Embedded on N, P Co-Doped Bio-Carbon for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries. *Chem. Eur. J.* **2019**, *25* (58), 13411-13421.

6. Li, B.; Liu, Y.; Li, Y.; Jiao, S.; Zeng, S.; Shi, L.; Zhang, G. Dual-Functional Template-Directed Synthesis of MoSe₂/Carbon Hybrid Nanotubes with Highly Disordered Layer Structures as Efficient Alkali-Ion Storage Anodes beyond Lithium. *ACS Appl. Mater. Interfaces* **2020**, *12* (2), 2390-2399.

7. Shen, Q.; Jiang, P.; He, H.; Chen, C.; Liu, Y.; Zhang, M. Encapsulation of MoSe₂ in Carbon Fibers as Anodes for Potassium Ion Batteries and Nonaqueous Battery–Supercapacitor Hybrid Devices. *Nanoscale* **2019**, *11* (28), 13511-13520.

8. Zhao, Z.; Hu, Z.; Liang, H.; Li, S.; Wang, H.; Gao, F.; Sang, X.; Li, H. Nanosized MoSe₂@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions. *ACS Appl. Mater. Interfaces* **2019**, *11* (47), 44333-44341.

9. Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J.; Zhou, J.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. Pistachio-Shuck-Like MoSe₂/C Core/Shell Nanostructures for High-Performance

Potassium-Ion Storage. Adv. Mater. 2018, 30 (30), e1801812.

10. Ma, M.; Zhang, S.; Yao, Y.; Wang, H.; Huang, H.; Xu, R.; Wang, J.; Zhou, X.; Yang, W.; Peng, Z.; Wu, X.; Hou, Y.; Yu, Y. Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogen-Doped Carbon: Superior Potassium-Ion Storage and Insight into Potassium Storage Mechanism. *Adv. Mater.* **2020**, *32* (22), e2000958.

11. Su, C.; Ru, Q.; Gao, Y.; Shi, Z.; Zheng, M.; Chen, F.; Chi-Chung Ling, F.; Wei, L. Biowaste-Sustained MoSe₂ Composite as an Efficient Anode for Sodium/Potassium Storage Applications. *J. Alloys Compd.* **2021**, *850*, 156770.

Liu, Y.; Zhai, Y.; Wang, N.; Zhang, Y.; Lu, Z.; Xue, P.; Bai, L.; Guo, M.; Huang, D.; Bai,
 Ultrathin MoSe₂ Nanosheets Confined in N - doped Macroporous Carbon Frame for
 Enhanced Potassium Ion Storage. *ChemistrySelect* 2020, 5 (8), 2412-2418.

13. Zhang, X.; Xiong, Y.; Zhang, L.; Hou, Z.; Qian, Y. Hierarchical Interlayer-Expanded MoSe₂/N–C Nanorods for High-Rate and Long-Life Sodium and Potassium-Ion Batteries. *Inorg. Chem. Front.* **2021**, *8* (5), 1271-1278.

14. Chong, S.; Wei, X.; Wu, Y.; Sun, L.; Shu, C.; Lu, Q.; Hu, Y.; Cao, G.; Huang, W. Expanded MoSe₂ Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage. *ACS Appl. Mater. Interfaces* **2021**, *13* (11), 13158-13169.