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Synthesis of control samples

Preparation of MoSex@wN-HCS-no-PDA: The control sample MoSe, nanosheets confined
into N-doped porous hollow carbon microspheres without PDA  coating
(MoSex@N-HCS-no-PDA) was yielded by replacing Mo:N@C@Cppa with MooN@C
through the same process.

Preparation of MoSexwHCS and N-HCS: 6.0 g H24sMo07NsO24-4H>O was annealed at 300 [
for 10 h under Ar atmosphere with a heating rate of 3 [-min™' to obtain MOs. Then, MO3 and
CsHsO7-H,0O were used to replace H24aMo7NgO24-4H>0 and CsHi17N307, respectively, and the
subsequent preparation process was the same as MoSe2@N-HCS. Finally, MoSe; and carbon
composite without N-doping was obtained (MoSe>@HCS). Compared with the preparation of
MoSe>@N-HCS, carbon material (N-HCS) was synthesized without adding

H24Mo07Ns0O24-4H>0 and omitting the selenization step.
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Figure S1. SEM images of microspheres (a-b) after spray drying and (c-d) after carbonizing
without removing KCl. (e) XRD pattern and (f) SEM image of MoN@C.
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Figure S2. (a) Survey XPS spectrum of MoSex@N-HCS. (b) SEM image and (c) XRD

pattern of N-HCS. (d) Se 3d and (e) C Is spectrum of MoSe>@N-HCS.

Three peaks corresponding to C-C, C-O and C-N bonds could be found in the Cls

spectrum, which indicated that there was a chemical bond between nitrogen and carbon. 2
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Figure S3. EDS elemental analysis results of (a) MoSex@N-HCS,

MoSex@N-HCS-no-PDA and (¢) N-HCS.

(b)



a b ¢)400 -
( ) . (103 MoSe,@N-HCS ( _) —=—Adsorption
—_ D ¢ I— ‘a0 —s— Desorption
3 I,/1,=0.90 - e 300+
< £ 30 o, se0, z
‘E o} Weight loss E .
2 § o
= £
- 401 26% | 21007
>
20+ . . . . . . ok
500 1000 1500 100 200 300 400 500 600 700 00 02 04 06 08 10
Raman Shift (cm™) Temperature (°C) Relative Pressure (P/Po)

Figure S4. (a) Raman spectrum, (b) TG curve and (c) nitrogen adsorption-desorption

isothermal curves of MoSe>@N-HCS.

The peaks located at 1346.6 and 1594.4 cm™ were indexed to the D-band and G-band of
carbon material, with a high intensity ratio of 0.90 (Ip/lg), revealing the amorphous structure
(Figure S4a). According to the TG curve (Figure S4b), the slight mass increased at 350 [
was due to the oxidation of MoSe, to MoO3 and SeO», and the subsequent decrease was
attributed to the oxidation of C and the sublimation of SeO». Finally, the content of MoSe> and

N-HCS were calculated as 57.5 wt% and 42.5% for MoSe2@N-HCS, respectively.

Figure S5. (a) HAADF image and (b-d) element mapping images of MoaN@C@Cppa.

The HAADF and corresponding element mappings images of MoN@C@Cppa
displayed that C, Mo and N elements were uniformly distributed throughout the sphere, which
was consistent with the XRD pattern of Mo2N (Figure S5), further corroborating the presence
of the intermediate of Mo:N@C@Cprpa.
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Figure S6. XRD patterns of (a) MoSe:@N-HCS-no-PDA, (b) MoSe:@HCS and (c)
commercial MoSe>. SEM images of (d) MoSe,@N-HCS-no-PDA, (e) MoSex@HCS and (f)

commercial MoSe;.



(a) 1.4

1.34
1.2
{
1.0 '
0.9
0.8 1 T Relaxation period

0.7

1 18.2)im
i

Voltage (V vs. K'/K)

90 92 94 96 98 100 102
Time (min)

Figure S7. (a) The voltage response during a single current pulse and (b) thickness of

MoSe>@N-HCS coated on copper foil for calculation of K™ diffusion coefficient.

= % (%)2 (2%)2 (’l’ & %2) (Equation 1)

For the convenience of calculation, the part of Equation 1, ie., (mBVm

< ), could be

B

equivalent to the thickness of anode materials (Figure S7b).?
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Figure S8. Pseudocapacitive contribution (pink shadow area) to total capacity at a scan rate of

(a) .O0mV s, (b) 0.5mVs?, (¢) 0.3mVs!and (d) 0.1 mV s,
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Figure S9. (a) Galvanostatic charge/discharge curves and (b) cycling performance at 100 mA

g! of Prussian blue analogues KioFe[Fe(CN)sloos-0.5H,0. (c) Galvanostatic

charge/discharge curves of full cell at 200 mA g™



Figure S10. HRTEM images of Mo,Se@N-HCS anode at (a) fully-discharged state (0.01 V)
and (b) fully-charged state (3.0 V) in the first cycle.

% 0.28 nm

Mo, Se, . i

Figure S11. (a-b) SEM images, (c)TEM image, (d) HRTEM image, (¢) HAADF image and

(f-j) element mapping images of MoSe@N-HCS anode after 500 cycles at 1 A g™'.

In order to explore the reasons for the excellent rate and cycling performance, the

structure and composition changes of MoSe,@N-HCS after 500 cycles at 1 A g were
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measured (Figure S11). SEM images and TEM image after cycling indicated that
MoSe>@N-HCS maintained a relatively complete structure (Figure S1la-c). The visible
lattice fringes with the interlayer spacing of 0.67 nm and the element mappings of Mo, Se, C,
N that were similar to the initial MoSe2@N-HCS strongly confirmed that the MoSe>@N-HCS
had good cycle stability and reversibility (Figure S11d-i). It should be noted that the lattice
fringes with the interlayer spacing of 0.28 nm corresponded to the incomplete reaction
product Mo,Se, (y/x<2) (Figure S11d),* while the existence of K and F elements was

attributed to the stable SEI film formed on the electrode surface (Figure S11j-Kk).

Electrochemical reactions:
The electrochemical reactions could be expressed as follows:
Potassiation:
MoSe; +xK" +xe° — K.MoSez (0.85V,0.64V) (Equation S1)
K:MoSe; + xK" +xe” = 2K.Se + Mo (x=1.7,2) (<0.43V) (Equation S2)
Depotassiation:

K.Se + yMo — Mo,Se+xK" +xe” (y=0.5, 0.79) (Equation S3)

11
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Figure S12. The K migration paths, final state structures and transition state energy barriers

(AETs) of (a) MoSe; and (b) N-HCS.
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Table S1. The comparison of potassium storage performance of molybdenum selenide in

recently reported literatures.

Materials Electrolyte Binder  Cyclability Rate performance Ref.
[mAh g™ Capacity Current
[mAh g”] [Ag]
MoSe,/NP- 1MKFSIin PVDF 131latl1A-gt 288, 225, 0.1,0.2, 5
C-2 EC:DEC after 250 168, 124and  0.5,2 and
cycles 91 5
MoSe/NIIC ~ IMKFSIin  CMC  258.02 at 100 300, 244, 0.1,0.2, 4
EMC mA gt after 211,195and 0.5,1and
300 cycles 178 2
MoSe;cPNC- 1M KFSI PVDF 113at1Ag? 260, 231, 0.1,0.2, 6
HNTs in EMC after 500 210, 202, 0.4, 0.6,
cycles 190, 176, 0.8, 1.0,
138, 104 and 2.0,3.0
79.1 and 5.0
MoSe,/C-700 0.8 MKPFs CMC 316 at 100 320, 266, 0.1,0.2, 7
in EC:.DEC mAglover 227,197,158 0.5,1,2
100 cycles and 133 and 3
N-MoSe.@C 0.8MKPFs PVDF 227at1Ag! 368, 324, 02,051, g
in EC:.DEC after 5000 267, 224 and 2 and 5
cycles 169
PMC 0.8MKPFs PVDF 226at1Ag! 382,342, 0.2,04, 9
in EC:DEC after 1000 304,277,254  0.6,0.8,
cycles and 224 1.0 and
2.0
MoSe:@NCT 0.85M PVDF 74atl1Ag? ~240, 110 0.1, 1 and 2
KPFs in after 400 and 65 2
EC:DEC cycles
MoSe,-on-NC 07 MKPFs PVDF 247at1Ag? 393, 328, 0.2,0.5, 10
in EC:DEC after 4800 291, 252, 215 1.0, 2.0,
cycles and 171 3.0 and
5.0
MoSe2/BC/ICN  1MKFSI  CMC- 4155at0.1A 367.6,3394, 0.1,0.2, 1
Ts in EMC Na g! after 250 301.0,273.0 0.5,1 and

13
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Table S2. The fitted impedance results of MoSe:@N-HCS, MoSe:@N-HCS-no-PDA,
MoSe:@HCS, commercial MoSe, and N-HCS.

Electrode R. (Q) Rser (Q) Rt (Q)
MoSe:@N-HCS 3.501 20.17 624.1
MoSe:@N-HCS-no-PDA 4.457 10.51 1621
MoSe;@HCS 2.711 45.29 935.9
Commercial MoSe; 2.661 8.076 1662

N-HCS 2.535 3.203 1286

15



Table S3. The average ion diffusion coefficients of MoSe,@N-HCS,
MoSex@N-HCS-no-PDA, MoSe>@HCS, commercial MoSe, and N-HCS.

Average Dgirt MoSe;@N- MoSe;@N-HCS MoSe;@  Commercial  N-HCS
(x10”° cm* s™) HCS -no-PDA HCS MoSe;

Discharged-state ~ 3.781484 2.165466 2.68036 1.072173 2.488965

Charged-state 6.626458 4.880653 4.58726 1.672009 3.580949
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