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Figure S1. Schematic diagram of single-electrode TENG (SETENG) integrated with voltage multiplier units (VMC) 
for accelerated charge accumulation.     

The calculation of fast charge accumulation in SETENG was adapted from the previous 

publication of two-electrode mode TENG.1 As demonstrated in Figure S1, the capacitance and 

charge quantity of single-electrode TENG (SETENG) and capacitors are denoted by C, Q and 𝐶𝑜

, , respectively during its initial position. After a dielectric 1 contacted with the primary 𝑄𝑜

electrode that attached to the dielectric 2, the charge of SETENG is obtained as

                                                                                           (1)
𝑄𝑜

𝐶𝑜
=

𝑄1

𝐶

                                                                                                                                      (2)  𝑄1 =
𝐶𝑄𝑜

𝐶𝑜

During the first contact of SETENG after its original state, charge transferred from SETENG to 

the capacitors is . When TENG is separated, the charge transferring from the capacitors back to 
𝑄1

2

SETENG is , then the expression can be written as𝑄2

                                                                                                                                (3)
𝑄𝑜 +

𝑄1
2 ― 𝑄2

𝐶𝑜
=

𝑄2

𝐶

                                                                                                        (4)𝑄2 = (𝑄𝑜 +
𝑄1

2 ) ∙ (1 +
𝐶𝑜

𝐶 ) ―1
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Equivalently, the charge transferred to SETENG for the second contact is . Later when they 𝑄3

are separated, the charges from capacitors moved back to SETENG is , one can rewrite as
𝑄3

2

  

                                                                                                                                          (5)
𝑄𝑜 +

𝑄1
2 +

𝑄2
2 ― 𝑄3

𝐶𝑜
=

𝑄3

𝐶

                                                                                               (6)𝑄3 = (𝑄𝑜 +
𝑄1

2 +
𝑄2

2 ) ∙ (1 +
𝐶𝑜

𝐶 ) ―1

Similarly for n contacts by SETENG, one can find the relationship as

                                                   (7)𝑄𝑛 = (𝑄𝑜 +
𝑄1

2 +
𝑄2

2 +
𝑄3

2 ∙∙∙∙ +
𝑄𝑛 ― 1

2 ) ∙ (1 +
𝐶𝑜

𝐶 ) ―1
, 𝑓𝑜𝑟 𝑛 ≥ 2
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Figure S2. Theoretical calculation for accumulated charges by single-electrode TENG vs. the number of times of 
contact-separation at different ratios of Co/C and Qo = 1 F.    
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Figure S3. Theoretical calculation for a ratio between SETENG surface charge with and without-VMC circuit vs. 
the number of times of contact-separation at different ratios of Co/C and Qo = 1 F.    

The charge density of SETENG can be derived as

                                                                                                                                       (8)𝜎 =
𝜀0𝜀𝑟𝑉

𝑑

Where εo is the vacuum dielectric permittivity, εr denotes as relative permittivity, d is a 

separation distance, and V is the excitation voltage applied to TENG. Without the integration of 

VMC circuit, the SETENG surface charge with the number of times of contact-separation is 

define as

                                                                                                                  (9)𝜎𝑛, 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑉𝑀𝐶 =
𝜀0𝜀𝑟𝑄1

𝑑𝐶

Where in all cases, C is SETENG capacitance, while Q1 is the charge quantity at the first 

contact-separation. It assumes that all charges from SETENG go through an energy harvesting 
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system. For the case of VMC circuit integrated into SETENG, the surface charge with the 

number of times of contact-separation is described as

                                                                                                                    (10)𝜎𝑛, 𝑤𝑖𝑡ℎ 𝑉𝑀𝐶 =
𝜀0𝜀𝑟𝑄𝑛

𝑑𝐶

Where Qn is obtained from Equation (7) above. 

The ratio of with and without-VMC SETENG surface charge can be written as 

                                                                                                                     (11)
𝜎𝑛, 𝑤𝑖𝑡ℎ 𝑉𝑀𝐶

𝜎𝑛, 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑉𝑀𝐶
=  

𝑄𝑛

𝑄1
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Figure S4. Output voltage and current density obtained for SETENG at different loading resistances. 
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Figure S5. Output power density obtained for SETENG at different loading resistances. 

The power density of the SETENG structure was obtained according to the expression as

                                                                                                                       (12)𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑃
𝐴 =

𝐼2𝑅
𝐴

where Pdensity is defined as the power density, P is the obtained power, R is the load resistance, I 

is the output current, and A is the effective contact area of SETENG.
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Figure S6. Normalized capacitance response for the laser-engraved electret with continuous angle change. 
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Figure S7. The response time of laser-engraved electret at the pressure detection limit of 1.9 Pa. 
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Table S1

Comparison of this output performance of the capacitive electret with other capacitive sensors.

Materials Sensitivity
(Range)

Detection 
Limit

Response 
Time

Ref

Microporous CNT/Ecoflex 0.6 kPa-1 (5 kPa) 0.2 Pa n/a [2]

GO/PDMS/Nylon 0.3 kPa-1 (1 kPa) 3.3 Pa 20 ms [3]
PDMS/rGO 0.002 kPa-1 (10 

kPa)
0.5 kPa 200 ms [4]

AgNWs/Polyurethane 8.3 kPa-1 (1 kPa) 0.5 Pa 27.3 ms [5]
Laser-engraved GO-
Cu(II)/PTFE 

1.5 kPa-1 (2.2 
kPa)

1.9 Pa 25.8 ms This work
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Figure S8. Output triboelectric current of single-electrode TENG under a human finger pressure. 
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Video S1. The self-powered SETENG wearable sensor for sending life-emergency requests.

Video S2. Demonstration to activate the SETENG wearable sensor by pressing the password “ACE”. 

Video S3. Demonstration of SETENG wearable sensor to light on several LEDs.
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