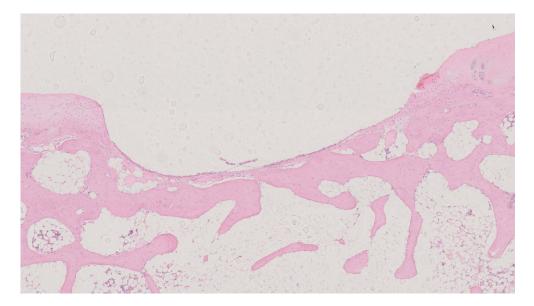
Supporting Information

Using platelet-rich plasma hydrogel to deliver mesenchymal stem cells into three-dimensional PLGA scaffold for cartilage tissue engineering

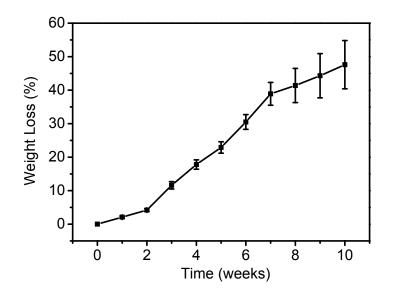
Ying Tang¹, Huaping Wang¹, Yilin Sun¹, Yang Jiang⁵, Sha Fang¹, Ze Kan¹, Yingxi Lu³, Shenghou Liu^{4,*}, Xianfeng Zhou^{1,*}, Zhibo Li^{2,*}.

¹ Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China;

² College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China;


³ College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China;

⁴ Department of Orthopaedics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China;


⁵ Hematology Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.

* To whom correspondence should be addressed.

E-mail: <u>xinying5475@sina.com</u>; <u>xianfeng@uakron.edu</u>; <u>zbli@qust.edu.cn</u> Phone: +86-532-84022950

Figure S1. H&E staining indicates that there is no obvious inflammatory cell infiltration in the defect area after the scaffold is absorbed.

Figure S2. Weight loss of the PLGA 3D-printing scaffold as a function of immersion time in PBS (pH 7.4).