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Materials

Without additional notes, all reagents were commercially available and used without further purification.
DCM was distilled over CaHz, and THF was distilled over sodium and benzophenone. DMF were purified
by solvent purification system using alumina column. N-methyl-2-pyrrolidone (NMP), p-xylene and
methanol were purchased from Sigma-Aldrich, and directly used without further purification.

1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl) copper(l) chloride (IPrCuCl), 1,3-bis(2,6-
diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl) copper(l) bromide (IPrCuBr), 1,3-bis(2,6-
diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl)  copper(l) iodide (IPrCul), and 1,3-bis(2,6-
diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl) gold(l) chloride (IPrAuCl) were synthesized as reported
priviously.t2

Experimental procedures for ligand synthesis

1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-imidazol-2-yl copper(l)
chloride (NHC-CuCl)

S "

NHC-CuCl

Precursor | was prepared by the method from the previous literature.® A flask was charged with Precursor
| (100 mg, 0.15 mmol), potassium tert-butoxide (60.7 mg, 0.54 mmol) and copper(l) chloride (22.3 mg,
0.23 mmol). To this flask, dry tetrahydrofuran (THF) was added and the reaction mixture was stirred for
48 h under a nitrogen atmosphere. The mixture was filtered through Celite. The filtrate was evaporated
and acidified with 1 N HCI. The crude material was washed with water and recrystallized from methanol
to give 54 mg of NHC-CuCl (48% yield). *H NMR (400 MHz, CDs;0OD): & 8.07-8.05 (d, 4H), 7.69-7.66 (m,
6H), 7.62 (s, 4H), 2.75-2.67 (sept, 4H), 1.40-1.37 (d, 12H), 1.35-1.33 (d, 12H); *C NMR (100 MHz,
CDsOD): 6 175.10, 147.61, 144.36, 143.56, 138.69, 135.54, 130.98, 127.59, 125.63, 124.09, 30.22,
25.14, 24.16; Anal. Calcd. for C41HasN2O4CuCl: C, 67.66; H, 6.09; N, 3.85. Found: C, 67.59; H, 5.91; N,
3.90.

1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-imidazol-2-yl copper(l)
bromide (NHC-CuBr)



CuBr, KO'Bu

OQOO OO OO

| NHC-CuBr

Y

A flask was charged with precursor | (100 mg, 0.15 mmol), potassium tert-butoxide (60.7 mg, 0.54 mmol)
and copper(l) bromide (32.3 mg, 0.23 mmol). To this flask, dry tetrahydrofuran (THF) was added and the
reaction mixture was stirred for 48 h under a nitrogen atmosphere. The mixture was filtered through
Celite. The filtrate was evaporated and acidified with 1 N HCI. The crude material was washed with water
and recrystallized from methanol to give 62 mg of NHC-CuBr (53% yield). *H NMR (400 MHz, CDs;0D):
0 8.08-8.06 (d, 4H), 7.70-7.65 (m, 6H), 7.62 (s, 4H), 2.75-2.68 (sept, 4H), 1.39-1.37 (d, 12H), 1.35-1.33
(d, 12H); 3C NMR (100 MHz, CDsOD): d 175.13, 147.59, 144.30, 143.61, 138.63, 135.47, 130.96,
127.63, 125.56, 124.05, 30.18, 25.17, 24.17; Anal. Calcd. for Cs1H4aN204CuBr: C, 63.77; H, 5.74; N,
3.63. Found: C, 63.87; H, 5.56; N, 3.30.

1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-imidazol-2-yl copper(l)
iodide (NHC-Cul)

S

NHC-Cul

A flask was charged with precursor | (100 mg, 0.15 mmol), potassium tert-butoxide (60.7 mg, 0.54 mmol)
and copper(l) iodide (42.9 mg, 0.23 mmol). To this flask, dry tetrahydrofuran (THF) was added and the
reaction mixture was stirred for 48 h under a nitrogen atmosphere. The mixture was filtered through
Celite. The filtrate was evaporated and acidified with 1 N HCI. The crude material was washed with water
and recrystallized from methanol to give 58 mg of NHC-Cul (47% yield). *H NMR (400 MHz, CDs;OD): &
8.08-8.06 (d, 4H), 7.65-7.62 (m, 6H), 7.62 (s, 4H), 2.75-2.69 (sept, 4H), 1.40-1.38 (d, 12H), 1.35-1.33 (d,
12H); C NMR (100 MHz, CD30OD): & 175.15, 147.57, 144.30, 143.64, 138.61, 135.40, 130.96, 127.64,
125.43, 124.03, 30.18, 25.23, 24.19; Anal. Calcd. for C41H44N204Cul: C, 60.11; H, 5.41; N, 3.42. Found:
C, 60.03; H, 5.53; N, 3.32.

1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-imidazol-2-yl gold(l)
chloride (NHC-AuCl)



N, N

NHC-AuCl

A flask was charged with precursor | (100 mg, 0.15 mmol), potassium tert-butoxide (60.7 mg, 0.54 mmol)
and dimethylsulfide gold(l) chloride (66.4 mg, 0.23 mmol). To this flask, dry tetrahydrofuran (THF) was
added and the reaction mixture was stirred for 48 h under a nitrogen atmosphere. The mixture was
filtered through Celite. The filtrate was evaporated and acidified with 1 N HCI. The crude material was
washed with water and recrystallized from methanol to give 67 mg of NHC-AuCl (52% yield). *H NMR
(400 MHz, CDsOD): & 8.08-8.06 (d, 4H), 7.74-7.68 (m, 6H), 7.62 (s, 4H), 2.74-2.70 (sept, 4H), 1.44-1.42
(d, 12H), 1.34-1.33 (d, 12H); 3C NMR (100 MHz, CDs0OD): 5 175.11, 147.60, 144.52, 143.58, 138.66,
135.08, 130.98, 127.63, 125.61, 124.15, 30.28, 24.76, 24.33; Anal. Calcd. for C41H44N204AuCl: C, 57.18;
H, 5.15; N, 3.25. Found: C, 57.10; H, 5.27; N, 3.18.

(1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yI)-2,3-dihydro-1H-imidazol-2-yl)silver(l)
chloride

@

A flask was charged with precursor | (50 mg, 0.075 mmol) and silver oxide (10 mg, 0.045 mmol). To this

flask, dry tetrahydrofuran (THF) was added and the reaction mixture was stirred for 48 h under a nitrogen
atmosphere. The mixture was filtered through Celite. The crude material was washed with water and
recrystallized from methanol to give 30 mg of desired complex (52% yield). *H NMR (400 MHz, CD3;0D):
0 8.35 (s, 2H), 8.10-8.08 (d, 4H), 7.75 (s. 4H), 7.72-7.69 (d, 4H), 2.56 (sept, 4H), 1.43-1.41 (d, 12H),
1.36-1.34 (d, 12H); *C NMR (100 MHz, CD3OD): & 174.79, 147.10, 146.14, 142.69, 139.09, 131.06,
130.81, 127.70, 124.63, 30.66, 24.76, 23.87.

Allyl(1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-imidazol-2-
yl)Chloropalladium(ll)

™




A flask was charged with precursor | (50 mg, 0.075 mmol), potassium tert-butoxide (60.7 mg, 0.27 mmol)
and Allylpalladium(ll) chloride dimer (17 mg, 0.045 mmol). To this flask, dry tetrahydrofuran (THF) was
added and the reaction mixture was stirred for 48 h under a nitrogen atmosphere. The mixture was
filtered through Celite. The filtrate was evaporated and acidified with 1 N HCI. The crude material was
washed with water and recrystallized from methanol to give 33 mg of desired complex (53% yield). *H
NMR (400 MHz, CDsOD): 6 8.09-8.06 (d, 4H), 7.69-7.66 (d, 4H), 7.63 (s, 2H), 7.59 (s, 4H), 3.86-3.83 (d,
1H), 3.28-3.26 (m, 1H), 3.21-3.17 (m, 2H), 2.98-2.91 (m, 2H), 2.84-2.81 (d, 1H), 1.83-1.80 (d, 1H), 1.50-
1.43 (dd, 12H), 1.31-1.28 (d, 6H), 1.22-1.20 (d, 6H); **C NMR (100 MHz, CD3;0OD): & 175.20, 147.94,
143.82, 143.65, 138.49, 136.85, 130.93, 127.70, 127.50, 126.52, 123.74, 116.06, 73.59, 30.03, 26.74,
26.12, 24.76, 23.35, 23. 23.

[(IPr)(CO2H),IrCI(COD)]

[Ir(COD)CI],, KO'Bu HOO @,Zj ooH
N/ N THF, rt > N\)_\/N

A flask was charged with precursor | (50 mg, 0.075 mmol), potassium tert-butoxide (60.7 mg, 0.27 mmol)

and Bis(1,5-cyclooctadiene)diiridium(l) dichloride (30 mg, 0.045 mmol). To this flask, dry tetrahydrofuran
(THF) was added and the reaction mixture was stirred for 48 h under a nitrogen atmosphere. The mixture
was filtered through Celite. The filtrate was evaporated and acidified with 1 N HCI. The crude material
was washed with water and recrystallized from methanol to give 33 mg of desired complex (45% vyield).
'H NMR (400 MHz, CDsOD): 5 8.09-8.06 (d, 4H), 7.71-7.68 (d, 4H), 7.60 (s, 4H), 7.46 (s, 2H), 4.15-4.12
(m, 2H), 3.49-4.42 (m, 2H), 3.13-3.11 (m, 2H), 2.78 (br, 2H), 1.79-1.70 (m, 2H), 1.64-1.59 (m, 2H), 1.50-
1.42 (m, 12H), 1.40-1.24 (m, 7H), 1.21-1.20 (d, 12H); **C NMR (100 MHz, CD3;OD): & 175.24, 144.01,
143.55, 138.41, 137.17, 130.95, 127.49, 126.64, 83.41, 53.33, 34.41, 30.33, 29.62, 26.74, 24.76, 23.88.

[(IPr)(CO;H);RhCI(COD)]

O O [Rh(COD)CI],, KO'Bu HO° Q QR,?% O OOH
O N/ N O THF, rt g O N\):\/NCI

A flask was charged with precursor | (50 mg, 0.075 mmol), potassium tert-butoxide (60.7 mg, 0.27 mmol)

and Chloro(1,5-cyclooctadiene)rhodium(l) dimer (22 mg, 0.045 mmol). To this flask, dry tetrahydrofuran
(THF) was added and the reaction mixture was stirred for 48 h under a nitrogen atmosphere. The mixture
was filtered through Celite. The filtrate was evaporated and acidified with 1 N HCI. The crude material
was washed with water and recrystallized from methanol to give 31 mg of desired complex (47% yield).
'H NMR (400 MHz, CD;0D): 5 8.10-8.07 (d, 4H), 7.73-7.70 (d, 4H), 7.65 (s, 4H), 7.46 (s, 2H), 4.53-4.43



(m, 2H), 3.67-3.60 (M, 2H), 3.49-3.47 (m, 2H), 2.69-2.61 (M, 2H), 2.54-2.42 (m, 2H), 1.91-1.87 (m, 2H),
1.78-1.73 (m, 2H), 1.59-1.40 (m, 18H), 1.35-1.32 (d, 1H), 1.20-1.18 (d, 12H); *C NMR (100 MHz,
CDsOD): & 175.26, 144.01, 143.66, 138.44, 137.36, 130.97, 127.70, 127.53, 126.94, 97.05, 69.95, 69.81,
33.59, 30.29, 29.16, 26.85

Experimental procedures for construction of MOFs

MOFcuci

ZNn(NOs3)2-6H20 (0.16 mmol, 49 mg), NHC-CuClI (0.041 mmol, 30 mg) were added to 4-mL vial with mixed
solvent of N-methyl-pyrrolidone (1 mL) and p-xylene (2 mL). The vial was sealed and placed in a
preheated oven at 80 °C. After 72 h, block shaped crystals were obtained. The crystals were washed
with DMF, followed by exchange solvent to THF. The crystals dried under vacuum to afford 28 mg of
product as white crystals (75% vyield). Anal. Calcd for Cizg25H13925N9.75021.25ZN4CusCls:
{ZnaL3(NO3)2(C3H7NO)1.75(H20)05} C, 56.72; H, 5.17; N, 5.03. Found: C, 56.58; H, 5.12; N, 5.04.

MOFcusr

ZNn(NOs3)2-6H20 (0.15 mmol, 46 mg), NHC-CuBr (0.039 mmol, 30 mg) were added to 4-mL vial with
mixed solvent of N-methyl-pyrrolidone (1 mL) and p-xylene (2 mL). The vial was sealed and placed in a
preheated oven at 80 °C. After 72 h, block shaped crystals were obtained. The crystals were washed
with DMF, followed by exchange solvent to THF. The crystals dried under vacuum to afford 30 mg of
product as white crystals (82% vyield). Anal. Calcd for CizsH1345N9O2075ZN4Cu3zBr3:
{Zn4L3(NO3)2(C3sH/NO)(H20)0.75} C, 54.07; H, 4.84; N, 4.50. Found: C, 54.12; H, 4.92; N, 4.59.

MOFCU|

ZNn(NOs3)2-6H20 (0.15 mmol, 44 mg), NHC-Cul (0.037 mmol, 30 mg) were added to 4-mL vial with mixed
solvent of N-methyl-pyrrolidone (1 mL) and p-xylene (2 mL). The vial was sealed and placed in a
preheated oven at 80 °C. After 72 h, block shaped crystals were obtained. The crystals were washed
with DMF, followed by exchange solvent to THF. The crystals dried under vacuum to afford 29 mg of
product as white crystals (77% vyield). Anal. Calcd for CizosH14a5N105022ZN4Cusls:
{ZnaL3(NO3)2(C3H7NO)25(H20)05} C, 51.47; H, 4.78; N, 4.83. Found: C, 51.45; H, 4.59; N, 4.77.



MOFauci

ZNn(NOs3)2-6H20 (0.14 mmol, 42 mg), NHC-AuCl (0.035 mmol, 30 mg) were added to 4-mL vial with mixed
solvent of N-methyl-pyrrolidone (1 mL) and p-xylene (2 mL). The vial was sealed and placed in a
preheated oven at 80 °C. After 72 h, block shaped crystals were obtained. The crystals were washed
with DMF, followed by exchange solvent to THF. The crystals dried under vacuum to afford 26 mg of
product as white crystals (73% vyield). Anal. Calcd for Ci29H142N10022ZnsAusCls:
{ZnaLs(NO3)2(CsH/NO)(H.0)} C, 49.29; H, 4.55; N, 4.46. Found: C, 49.13; H, 4.61; N, 4.38.
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Crystal structures of Cu-NHC MOF and Au-NHC MOF

: Catalytic active sites (NHC metal complexes)

Figure S1. Single crystal X-ray structures of copper(l) chloride, copper(l) bromide, and gold(l) chloride bounded Zn MOFs.
(a) coordination environment, (b) single set of cubic network, and (c) perspective view of 4-fold interpenetrated network of
CuCl bounded Zn MOF. (d) coordination environment, () single set of cubic network, and (f) perspective view of 4-fold
interpenetrated network of CuBr bounded Zn MOF. (g) coordination environment, (h) single set of cubic network, and (i)
perspective view of 4-fold interpenetrated network of AuCl bounded Zn MOF. (C: gray, N: blue, O: red, Zn: cyan, Cu: brown,
Au: yellow, CI: light green, Br: dark brown. Hydrogen atoms and isopropyl substituents are omitted for clarity.)



Analysis of Digested Solution of Cu-NHC MOFs and Au-NHC MOF by ICP-
OES

As-synthesized Cu-NHC MOFs and Au-NHC MOFs were soaked in THF for 3 days and evacuated by
heating to 100 °C under a high vacuum (102 Pa) for overnight to remove residual solvents in MOFs.
The activated MOFs (MOFcuc (21 mg, CizsHi26NgO19ZnaCusCls: {Znals(NOs)2}), MOFcwer (20 mg,
Ci23H126Ng019ZN4CusBrs:  {ZnsLs(NOs)2}), MOFcu (20 mg, CizsHi26NgO190ZNaCusls: {Znals(NOs3)2}),
MOFauci (14 mg, Ci23H126NsO10ZN4AUsCls: {Znals(NOs)2})) were dissolved in 5 mL of 1 M HCI. To digested
solution, 35 mL of 1% aqueous solution of nitric acid was added for dilution. The resulting solution was
evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) for Cu, Au, and Zn
contents.

Table S1. Compositional analysis of Cu-NHC MOFs and Au-NHC MOF by ICP-OES.

Formula Calculated (ppm) Observed (ppm)
MOFcuci 0123"'{122‘;]':"??(;19(232;‘2(}:“30'3 Cu: 38.81 Zn: 53.24 Cu: 38.72 Zn: 53.05
MOFcuer C”SH{l;‘;]':'Eiﬁ’ézgue’B“ Cu: 35.15 Zn: 48.21 Cu: 35.35 Zn: 48.68
MOFecu Cm:';rfﬁ?l\}gozsr)'g}(:“3'3 Cu: 33.41 Zn: 45.83 Cu: 33.71 Zn: 45.85
MOFauci C123H{122f]':'530(,1\j’(z)2;‘£‘“3c'3 Au: 69.42 Zn: 30.72 Au: 69.79 Zn: 31.03
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Nitrogen sorption isotherms of MOFs

Nitrogen sorption isotherms were measured with a Autosorp-iQ volumetric adsorption equipment.

Typically, as-synthesized materials (~30 mg) was soaked in THF for 3 days in order to remove residual

solvents in the frameworks and evacuated by heating to 100 °C under a high vacuum (102 Pa) for

overnight. Nitrogen isotherm was collected at 77 K. BET surface areas of MOFcyuci, MOFcugr, MOFcy and
MOFauci are 1070 m?/g, 1002 m?/g, 958 m?/g and 984 m?/g, respectively.
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Figure S2. N sorption isotherms of (a) MOFcyci, (b) MOFcusr, (¢) MOFcu;, (d) MOFauci at 77 K. (open symbols: desorption,

closed symbols: adsorption)
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Recycle experiments and ICP spectroscopic evaluations

1. Cu-catalyzed azide-alkyne cycloaddition

Recycle Experiment in CUAAC

MOF¢,, (5 mol%) @
D=+ O e O
N3  Et3N, THF, rt,5h N=N

To THF (1.2 mL) in a vessel was added MOFcy (51 mg, 0.054 mmol, 5 mol%), phenylacetylene (118 pL,
1.07 mmol, 1 eq), TEA (180 pL, 1.30 mmol, 1.2 eq) under N atmosphere, and then, benzyl azide (163
pL, 1.30 mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture was stirred at room
temperature for 5 h. The yield of the reaction was determined by *H NMR (400 MHz) spectroscopy using
CH2Br; as an internal standard in CDCls. After each cycle, MOFcy was separated by filtration, washed
with DMF and THF and dried under high vacuum for 16 h, then reused in a freshly made reaction mixture.
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Figure S3. Recycling experiments of MOF¢y in Cu-catalyzed azide-alkyne cycloaddition reaction.
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Figure S4. Powder X-ray diffraction (PXRD) profiles of as-synthesized MOFcy (red), after Cu-catalyzed azide-alkyne

cycloaddition reaction between phenylacetylene and benzyl azide (blue) and after 41 run (magenta).
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Figure S5. N sorption isotherms of of (a) as-synthesized MOFcy, (b) after 4™ run of Cu-catalyzed azide-alkyne cycloaddition

reaction between phenylacetylene and benzyl azide.

ICP spectrometric evaluation of metal loss in CUAAC

To THF (1.2 mL) in a vessel was added MOFcu (51 mg, 0.054 mmol, 5 mol%), phenylacetylene (118 uL,
1.07 mmol, 1 eq), TEA (180 pL, 1.30 mmol, 1.2 eq) under N, atmosphere, and then, benzyl azide (163
uL, 1.30 mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture was stirred at room
temperature. After 5 h, the mixture was passed through a pad of celite, and washed by THF. The

combined organic solvent was removed under reduced pressure. The remaining solid mixture was
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dissolved in 5 mL of 1% aqueous solution (use doubly distilled water) of nitric acid by sonication. The
resulting solution was then evaluated by inductively coupled plasma optical emission spectrometer (ICP-
OES) for Cu and Zn contents. The Cu and Zn contents were measured in ppm based on calibration
curves obtained with a series of calibration standard solutions doped with different amount of Cu and Zn.
The quantity of Cu lost and Zn lost from Cul MOF was calculated to be 0.08% (0.572 ppm) of total Cu
and 0.06% (0.515 ppm) of total Zn, respectively.

2. Cu-catalyzed multicomponent reaction

Recycle Experiment in MCR

MOF 10 mol%
Q_: + TsNj; + /\/NHZ cu ( ) F N\/\
Et3N, THF, rt, 1h NTs

To THF (1.3 mL) in a vessel was added MOFcu (65 mg, 0.075 mmol, 10 mol%), phenylacetylene (75 uL,
0.68 mmol, 1 eq), propylamine (75 uL, 0.83 mmol, 1.2 eq), TEA (113 uL, 0.83 mmol, 1.2 eq) under N,
atmosphere, and then, tosyl azide (126 uL, 0.83 mmol, 1.2 eq) was added slowly to the above vessel.
The reaction mixture was stirred at room temperature for 1 h. The yield of the reaction was determined
by *H NMR (400 MHz) spectroscopy using CH2Br; as an internal standard in CDCls. After each cycle,
Cul MOF was separated by filtration, washed with DMF and THF and dried under high vacuum for 16 h,
then reused in a freshly made reaction mixture.
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Figure S6. Recycling experiments of MOFcy, in multicomponent reaction.
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Figure S7. Powder X-ray diffraction (PXRD) profiles of as-synthesized MOFcy (red), after multicomponent reaction

between phenylacetylene, tosyl azide and propylamine (blue) and after 4™ run (magenta).
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Figure S8. N sorption isotherms of of (a) as-synthesized MOFcu, (b) after 4™ run of multicomponent reaction between

phenylacetylene, tosyl azide and propylamine.

ICP spectrometric evaluation of metal loss in MCR

To THF (1.3 mL) in a vessel was added MOFc (65 mg, 0.075 mmol, 10 mol%), phenylacetylene (75 uL,
0.68 mmol, 1 eq), propylamine (75 uL, 0.83 mmol, 1.2 eq), TEA (113 uL, 0.83 mmol, 1.2 eq) under N,
atmosphere, and then, tosyl azide (126 uL, 0.83 mmol, 1.2 eq) was added slowly to the above vessel.
The reaction mixture was stirred at room temperature. After 1 h, the mixture was passed through a pad
of celite, and washed by THF. The combined organic solvent was removed under reduced pressure. The
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remaining solid mixture was dissolved in 5 mL of 1% aqueous solution (use doubly distilled water) of
nitric acid by sonication. The resulting solution was then evaluated by inductively coupled plasma optical
emission spectrometer (ICP-OES) for Cu and Zn contents. The Cu and Zn contents were measured in
ppm based on calibration curves obtained with a series of calibration standard solutions doped with
different amount of Cu and Zn. The quantity of Cu lost and Zn lost from Cul MOF was calculated to be
0.08% (0.731 ppm) of total Cu and 0.04% (0.509 ppm) of total Zn, respectively.

3. Au-catalyzed hydroamination

Recycle Experiment in hydroamination

MOF 5, ¢ (3 mol%)
C _ . @NHZ AgOT! (6mol%) Q_(\N

Dioxane, 70 °C, 5 h <:>
To dioxane (2.2 mL) in a vessel was added MOFauci (34 mg, 0.034 mmol, 3 mol%), AgOTf (19 mg, 0.069
mmol, 6 mol%), phenylacetylene (126 uL, 1.14 mmol, 1 eq) under N, atmosphere, and then, anline (114
pL, 1.38 mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture was stirred at 70 °C
for 5 h. The yield of the reaction was determined by *H NMR (400 MHz) spectroscopy using CH2Br, as

an internal standard in CDCls. After each cycle, Cul MOF was separated by filtration, washed with DMF
and THF and dried under high vacuum for 16 h, then reused in a freshly made reaction mixture.
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Figure S9. Recycling experiments of MOF auci in hydroamination reaction.
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Figure S11. N, sorption isotherms of of (a) as-synthesized MOF auci, (b) after 4™ run of hydroamination reaction between

phenylacetylene and aniline.

ICP spectrometric evaluation of metal loss in hydroamination

To dioxane (2.2 mL) in a vessel was added MOFauci (34 mg, 0.034 mmol, 3 mol%), AgOTf (19 mg, 0.069
mmol, 6 mol%), phenylacetylene (126 uL, 1.14 mmol, 1 eq) under N> atmosphere, and then, anline (114

uL, 1.38 mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture was stirred at 70 °C

for 5 h. After 5 h, the mixture was passed through a pad of celite, and washed by THF. The combined

organic solvent was removed under reduced pressure. The remaining solid mixture was dissolved in 5
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mL of 1% aqueous solution (use doubly distilled water) of nitric acid by sonication. The resulting solution
was then evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) for Au and
Zn contents. The Au and Zn contents were measured in ppm based on calibration curves obtained with
a series of calibration standard solutions doped MOFa,c with different amount of Au and Zn. The quantity
of Au lost and Zn lost from was calculated to be 0.05% (0.728 ppm) of total Au and 0.08% (0.504 ppm)

of total Zn, respectively.
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Experimental details of catalyzed reactions

1. Cu-catalyzed azide-alkyne cycloaddition

Caution! Organic azides are potentially-explosive substances that can and will
decompose with the slightest input of energy from external sources (heat, light,
pressure).

Typical procedure (A, heterogeneous catalyst): To THF (0.1 mL) in a vessel was added MOFc¢, (4.3
mg, 4.6 pymol, 5 mol%), alkyne (0.091 mmol, 1 eq), TEA (15.2 pyL, 0.11 mmol, 1.2 eq) under N
atmosphere, and then, azide (0.11 mmol, 1.2 eq) was added slowly to the above vessel. The reaction
mixture was stirred at room temperature for 5 h. The crude compound was isolated by silica column
chromatography.

Typical procedure (B, homogeneous catalyst): To THF (0.1 mL) in a vessel was added IPrCul
(lodo[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper(l)) (2.6 mg, 4.6 umol, 5 mol%), alkyne
(0.091 mmol, 1 eq), TEA (15.2 uL, 0.11 mmol, 1.2 eq) under N2 atmosphere, and then, azide (0.11
mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture was stirred at room
temperature for 5 h. The crude compound was isolated by silica column chromatography.

1-benzyl-4-phenyl-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(5:1, Rr: 0.21) to afford 1 as white solid (A: 40 mg, 95% yield, B: 43 mg, 99% vyield). *H NMR (400 MHz,
CDCls): 8 7.85-7.83 (d, 2H), 7.71 (s, 1H), 7.44-7.32 (m, 8H), 5.61 (s, 2H); *3C NMR (100 MHz, CDClz): &
148.20. 134.78, 130.61, 129.15, 128.83, 128.76, 128.17, 128.06, 125.72, 119.66, 54.19. These
spectroscopic data are consistent with those previously reported in the literature.*

1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(5:1, Rr: 0.11) to afford 2 as yellow solid (47 mg, 93% yield). *H NMR (400 MHz, CDCls): d 8.28-8.26 (d,
2H), 7.85-7.84 (d, 2H), 7.83 (s, 1H), 7.48-7.33 (m, 5H), 5.73 (s, 2H); *C NMR (100 MHz, CDCls): &
148.78, 148.18, 141.86, 130.18, 129.02, 128.67, 128.61, 125.85, 124.42, 119.90, 53.28. These

spectroscopic data are consistent with those previously reported in the literature.®

1-(4-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole
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The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(3:1, Rr: 0.44) to afford 3 as yellow solid (44 mg, 92% yield). *H NMR (400 MHz, CDCl3): & 7.82-7.80(dd,
2H), 7.64 (s, 2H), 7.43-7.28 (m, 4H), 6.95-6.92 (d, 2H), 5.53 (s, 2H), 3.84 (s, 3H); *C NMR (100 MHz,
CDClz): 6 159.99, 148.10, 130.69, 129.70, 128.83, 128.15, 126.72, 125.72,119.44, 114.55, 55.38, 53.79.
These spectroscopic data are consistent with those previously reported in the literature.®

1-benzyl-4-(4-nitrophenyl)-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(3:1, Rr: 0.32) to afford 4 as yellow solid (46 mg, 92% yield). *H NMR (400 MHz, CDCls): 5 8.30-8.28 (d,
2H), 8.00-7.98 (d, 2H), 7,81 (s, 1H), 7.44-7.32 (m, 5H), 5.63 (s, 2H); *C NMR (100 MHz, CDCls): &
147.45, 146.44, 137.00, 134.30, 129.43, 129.20, 128.33, 126.25, 124.40, 121.33, 54.66. These
spectroscopic data are consistent with those previously reported in the literature.®

1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(3:1, Rr: 0.35) to afford 5 as yellow solid (42 mg, 90% yield). *H NMR (400 MHz, CDCls): 8 7.76-7.73 (d,
2H), 7.59 (s, 1H), 7.42-7.32 (m, 5H), 6.96-6.94 (d, 2H), 5.59 (s, 2H), 3.85 (s, 3H); *C NMR (100 MHz,
CDCls): 6 159.69, 148.17,134.91, 129.20, 128.80, 128.12, 127.09, 123.41, 118.82, 114.30, 55.39, 54.25.
These spectroscopic data are consistent with those previously reported in the literature.®

1-([1,1'-biphenyl]-4-yImethyl)-4-phenyl-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(3:1, Rr: 0.40) to afford 6 as yellow solid (A: 35 mg, 61% yield, B: 48 mg, 85% yield). *H NMR (400 MHz,
CDCl3): & 7.85-7.82 (d, 2H), 7.73 (s, 1H), 7.65-7.57 (m, 4H), 7.49-7.32 (m, 8H), 5.65 (s, 2H); *C NMR
(100 MHz, CDCls): 6 148.51, 141.96, 140.36, 133.71, 130.67, 129.02, 128.67, 128.33, 128.00, 127.83,
127.25, 125.85, 119.72, 54.12. These spectroscopic data are consistent with those previously reported
in the literature.®

4-([1,1'-biphenyl]-4-yl)-1-benzyl-1H-1,2,3-triazole

The reaction mixture was stirred at room temperature for 5 h. The crude compound was isolated by silica
column chromatography eluting with hexane/ethyl acetate (3:1, Rr: 0.42) to afford 7 as yellow solid (A:
11 mg, 20% yield, B: 41 mg, 73%). *H NMR (400 MHz, CDCls): & 7.92 (s, 2H), 7.68-7.63 (m, 4H), 7.48-
7.25 (m, 9H), 5.62 (s, 2H); 3C NMR (100 MHz, CDCls): 5 141.08, 140.73, 134.77, 129.32, 129.00, 128.96,
128.29, 127.69, 127.59, 127.12, 126.11, 54.73. These spectroscopic data are consistent with those
previously reported in the literature.’
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1-(naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(3:1, Rr: 0.47) to afford 8 as yellow solid (A: 22 mg, 43% yield, B: 39 mg, 76% yield). *H NMR (400 MHz,
CDCls): 6 8.05-8.02(m, 1H), 7.96-7.91(m, 2H), 7.77 (s, 2H), 7.58-7.50 (m, 5H), 7.40-7.30 (m, 3H), 6.05
(s, 2H); C NMR (100 MHz, CDCls): d 148.00, 133.95, 131.19, 130.55, 130.05, 129.97, 138.96, 128.76,
128.11, 127.80, 127.34, 126.46, 125.66, 125.41, 122.93, 119.60, 52.36. These spectroscopic data are
consistent with those previously reported in the literature.®

1-benzyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(5:1, Rf: 0.37) to afford 25 as yellow solid (35 mg, 93% vyield). *H NMR (400 MHz, CDClz): & 7.97-7.95
(d, 2H), 7.80 (s, 1H), 7.69-7.67 (d, 2H), 7.44-7.32 (m, 5H), 5.62 (s, 2H); 3*C NMR (100 MHz, CDCls): &
146.95, 134.53, 134.13, 130.57, 130.25, 129.93, 129.60, 129.35, 129.05, 128.24, 125.94, 125.88, 125.84,
125.56, 124.31, 122.86, 120.41, 54.47. These spectroscopic data are consistent with those previously
reported in the literature.®

1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(5:1, Rr: 0.15) to afford 26 as yellow solid (41 mg, 91% vyield). 'H NMR (400 MHz, CDCl3): 8 7.72-7.71
(d, 2H), 7.66 (s, 1H), 7.42-7.3 (m, 5H), 7.24-7.22 (d, 2H), 5.59 (s, 2H), 2.38 (s, 3H); 13C NMR (100 MHz,
CDCls): 6 148.48, 138.07, 134.87, 129.57, 129.21, 128.82, 128.14, 127.90, 125.68, 119.35, 54.30, 21.35.
These spectroscopic data are consistent with those previously reported in the literature.®

1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(3:1, Rr: 0.23) to afford 27 as white solid (43 mg, 94% yield). *"H NMR (400 MHz, CDClz): 5 8.11-7.78 (m,
2H), 7.43 (s, 2H), 7.37-7.33 (m, 1H), 7.22(s, 4H), 5.55 (s, 2H), 2.39 (s, 3H); *C NMR (100 MHz, CDCls):
6 148.16, 138.74, 131.75, 130.69, 129.84, 128.83, 128.17, 128.15, 125.74, 119.52, 54.05, 21.22. These
spectroscopic data are consistent with those previously reported in the literature.®
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4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(5:1, Re: 0.21) to afford 28 as yellow solid (52 mg, 94% vyield). *H NMR (400 MHz, CDClz): & 7.85-7.84
(m, 2H), 7.72 (s, 1H), 7.69-7.66 (d, 2H), 7.45-7.33(m, 5H), 5.68 (s, 2H); *C NMR (100 MHz, CDCls): &
148.61, 138.80, 131.53, 131.21, 130.88, 130,56, 130.42, 128.95, 128.42, 128.25, 126.22, 126.18, 126.14,
126.11, 125.78, 122.52, 119.81, 53.59. These spectroscopic data are consistent with those previously
reported in the literature.®
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2. Cu-catalyzed multicomponent reaction

Typical procedure (A, heterogeneous catalyst): To THF (0.18 mL) in a vessel was added MOFc, (8.7
mg, 9.1 ymol, 10 mol%), alkyne (0.091 mmol, 1 eq), amine (0.11 mmol, 1.2 eq), TEA (15.2 uL, 0.11
mmol, 1.2 eq) under N2 atmosphere, and then, sulfonyl azide (0.11 mmol, 1.2 eq) was added slowly to
the above vessel. The reaction mixture was stirred at room temperature for 1 h. The crude compound
was isolated by silica column chromatography.

Typical procedure (B, homogeneous catalyst): To THF (0.18 mL) in a vessel was added IPrCul
(lodo[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper(l)) (5.3 mg, 9.1 umol, 10 mol%), alkyne
(0.091 mmol, 1 eq), amine (0.11 mmol, 1.2 eq), TEA (15.2 uL, 0.11 mmol, 1.2 eq) under N, atmosphere,
and then, sulfonyl azide (0.11 mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture
was stirred at room temperature for 1 h. The crude compound was isolated by silica column
chromatography.

2-phenyl-N-propyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Ry 0.38) to afford 9 as white solid (A: 56 mg, 93% yield, B: 60 mg, 99% yield, a mixture of two
isomers with a ratio 1:5, which is tentatively assigned as Z/E of the generated imino C=N double bond).
'H NMR (400 MHz, CDClz): 5 7.88-7.85 (d, 2H), 7.41-7.32 (m, 3H), 7.29-7.26 (d, 2H), 7.22-7.19 (dd, 2H),
5.17 (br, 1H), 4.29 (s, 2H), 3.21 (m, 2H), 2.42 (s, 3H), 1.43-1.36 (m, 2H), 0.76 (t, 3H); **C NMR (100
MHz, CDCls): & 166.69, 143.44, 142.19, 140.89, 139.40, 133.18, 130.20, 129.71, 129.48, 129.26, 128.21,
126.48, 126.41, 43.73, 39,78, 21.60, 11.20; HRMS (FAB) m/z calcd. for CigH22N20,SNa [M+Na]* :
353.1300, found: 353.1297.

2-(4-nitrophenyl)-N-propyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Ry 0.17) to afford 10 as white solid (56 mg, 93% yield, a mixture of two isomers with a ratio 1:2,
which is tentatively assigned as Z/E of the generated imino C=N double bond). *H NMR (400 MHz,
CDCls): 6 8.26-8.23 (d, 2H), 7.85-7.83 (d, 2H), 7.48-7.45 (d, 2H), 7.36-7.33 (d, 2H), 5.10 (br, 1H), 4.44
(s, 2H), 3.28-3.23 (m, 2H), 2.44 (s, 3H), 1.51-1.49 (m, 2H), 0.83 (t, 3H); **C NMR (100 MHz, CDCls): &
164.63, 147.13, 142.49, 141.81, 140.44, 130.30, 129.52, 129.46, 129.20, 126.20, 126.06, 123.92, 44.02,
39.10, 21.56, 21.43, 11.33, 11.03; HRMS (FAB) m/z calcd. for C1gH21N304SNa [M+Na]* : 398.1151,
found: 398.1148.

2-(4-methoxyphenyl)-N-propyl-N'-tosylacetimidamide
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The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Rr: 0.29) to afford 11 as white solid (54 mg, 85% yield, a mixture of two isomers with a ratio 1:6,
which is tentatively assigned as Z/E of the generated imino C=N double bond). *H NMR (400 MHz,
CDCls): 6 7.90-7.88 (d, 2H), 7.31-7.29 (d, 2H), 7.15-7.12 (d, 2H), 6.93-6.91 (d, 2H), 5.24 (br, 1H), 4.24
(s, 2H), 3.83 (s, 3H), 3.24-3.18 (m, 2H), 2.44 (s, 3H), 1.46-1.39 (m, 2H), 0.79 (t, 3H); *3C NMR (100 MHz,
CDClz): 6 167.18, 159.52, 142.15, 141.04, 131.46, 129.77, 129.50, 129.27, 126.46, 124.80, 114.94,
55.42, 43.71, 39.02, 21.68, 21.59, 11.27; HRMS (FAB) m/z calcd. for Ci9H24N2O3SNa [M+Na]* :
383.1405, found: 383.1403.

N,N-diisopropyl-2-phenyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Rr: 0.40) to afford 12 as white solid (A: 12 mg, 18% yield, B: 66 mg, 97% yield). *H NMR (400 MHz,
CDCls): 6 7.86-7.83 (d, 2H), 7.32-7.19 (m, 7H), 4.43 (s, 2H), 4.02 (sept, 1H), 2.41 (s, 3H), 1.41-1.40 (d,
6H), 0.92-0.88 (d, 6H); *3C NMR (100 MHz, CDCls): & 163.47, 141.61, 134.97, 129.08, 128.86, 128.03,
126.77, 126.25, 50.47, 48.07, 38.73, 21.48, 19.86. These spectroscopic data are consistent with those
previously reported in the literature.°

N-benzyl-2-phenyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(1:1, Ry 0.55) to afford 13 as white solid (A: 26 mg, 37% yield, B: 64 mg, 93% vyield, a mixture of two
isomers with a ratio 1:8, which is tentatively assigned as Z/E of the generated imino C=N double bond).
H NMR (400 MHz, CDCl3): 8 7.86-7.83 (d, 2H), 7.41-7.33 (m, 3H), 7.30-7.21 (m, 6H), 7.09-7.06 (m, 2H),
5.49 (br, 1H), 4.43 (d, 2H), 4.38 (s, 2H), 2.44 (s, 3H); *C NMR (100 MHz, CDCls): & 166.47, 142.23,
140.72, 136.49, 133.07, 130.10, 129.21, 128.77, 128.19, 127.78, 127.60, 126.42, 46.95, 39.74, 21.54.
These spectroscopic data are consistent with those previously reported in the literature.°

N-methyl-N,2-diphenyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(1:1, Rr: 0.59) to afford 14 as white solid (A: 6 mg, 8% yield, B: 63 mg, 92% yield). *H NMR (400 MHz,
CDCls): 6 7.91-7.89 (d, 2H), 7.32-7.20 (m, 5H), 7.12-7.09 (m, 3H), 6.84-6.78 (dd, 4H), 4.27 (s, 2H), 3.35
(s, 3H), 2.44 (s, 3H); *C NMR (100 MHz, CDCls): d 166.48, 142.66, 142.10, 141.15, 134.76, 129.54,
129.18, 128.27, 127.31, 126.49, 126.45, 41.18, 37.73, 21.53. These spectroscopic data are consistent
with those previously reported in the literature.®

2-phenyl-N-propyl-N'-((2,4,6-triisopropylphenyl)sulfonyl)acetimidamide

24



The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Ry 0.67) to afford 15 as white solid (A: 9 mg, 11% vyield, B: 73 mg, 91% yield, a mixture of two
isomers with a ratio 1.7, which is tentatively assigned as Z/E of the generated imino C=N double bond).
H NMR (400 MHz, CDClz): d 7.38-7.34 (m, 3H), 7.20-7.12 (m, 4H), 5.04 (br, 1H), 4.48 (sept, 1H), 4.16
(s, 2H), 3.21 (sept, 1H), 2.93 (sept, 1H), 1.43-1.36 (m, 4H), 1.29-1.27 (dd, 18H), 0.76 (t, 3H); *3C NMR
(100 MHz, CDCls): 6 165.93, 151.65, 149.25, 136.80, 133.37, 130.12, 129.46, 128.90, 128.36, 128.15,
123.34, 53.53, 43.53, 34.19, 29.55, 24.86, 24.81, 23.76, 21.66, 11.15; HRMS (FAB) m/z calcd. for
C26H39N20,S [M+H]" : 443.2732, found: 443.2731.

N-(naphthalen-1-yl)-2-phenyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, R 0.42) to afford 16 as white solid (A: 2 mg, 2% vyield, B: 57 mg, 76% yield, a mixture of two
isomers with a ratio 1:4, which is tentatively assigned as Z/E of the generated imino C=N double bond).
H NMR (400 MHz, CDClIz): 5 10.06 (br, 1H), 7.95-7.88 (q, 4H), 7.68-7.65 (d, 1H), 7.56-7.50 (t, 1H), 7.49-
7.46 (d, 1H), 7.43-7.39 (t, 1H), 7,37-7.34 (d, 2H), 7.16-7.14 (d, 1H), 7.08-7.05 (d, 1H), 7.01-6.99 (t, 2H),
6.75-6.72 (d, 2H), 3.49 (s, 2H), 2.49 (s, 3H); *C NMR (100 MHz, CDCls): & 167.26, 143.30, 139.28,
134.44,134.24,132.41,129.56, 129.39, 128.82, 128.45, 128.31, 127.64, 127.04, 127.01, 126.73, 125.92,
125.20, 122.10, 40,71, 21.72; HRMS (FAB) m/z calcd. for C2sH22N20,SNa [M+Na]* : 437.1300, found:
437.1297.

N-propyl-2-(p-tolyl)-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Ry: 0.35) to afford 29 as white solid (53 mg, 89% yield, a mixture of two isomers with a ratio 1:6,
which is tentatively assigned as Z/E of the generated imino C=N double bond). *H NMR (400 MHz,
CDCls): 6 7.91-7.88 (d, 2H), 7.32-7.30 (d, 2H), 7.21-7.19 (d, 2H), 7.11-7.08 (d, 2H), 5.23 (br, 1H), 4.26
(s, 2H), 3.23-3.18 (m, 2H), 2.44 (s, 3H), 2.38 (s, 3H), 1.45-1.39 (m, 2H), 0.78 (t, 3H); *3C NMR (100 MHz,
CDCls): 6 167.04, 143.65, 142.18, 141.02, 139.29, 138.14, 130.25, 130.21, 129.82, 129.29, 126.57,
126.48, 43.74, 39.48, 21.68, 21.63, 21.24, 11.26; HRMS (FAB) m/z calcd. for C19H24N20,SNa [M+Na]* :
367.1456, found: 367.1454.

N-isopropyl-2-phenyl-N'-tosylacetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(1:1, Ry 0.45) to afford 30 as white solid (A: 23 mg, 39% yield, B: 56 mg, 94% vyield, a mixture of two
isomers with a ratio 1:6, which is tentatively assigned as Z/E of the generated imino C=N double bond).
'H NMR (400 MHz, CDCls): d 7.90-7.87 (d, 2H), 7.43-7.34 (m, 3H), 7.31-7.28 (dd, 2H), 7.22-7.20 (dd,
2H), 4.97 (br, 1H), 4.29 (s, 2H), 4.12 (sept, 1H), 2.44 (s, 3H), 1.03 (d, 6H); **C NMR (100 MHz, CDCly):
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0 165.49, 142.06, 140.96, 133.28, 129.96 129.37, 129.19, 128.03, 126.30, 43.92, 39.68, 21.63, 21.50.
These spectroscopic data are consistent with those previously reported in the literature.°

N-propyl-N'-tosyl-2-(4-(trifluoromethyl)phenyl)acetimidamide

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(2:1, Rr: 0.53) to afford 31 as white solid (54 mg, 90% vyield, a mixture of two isomers with a ratio 1:3
which is tentatively assigned as Z/E of the generated imino C=N double bond). *H NMR (400 MHz,
CDClz): 6 7.87-7.85 (d, 2H), 7.70-7.64 (d, 2H), 7.40-7.37 (d, 2H), 7.30 (s, 2H) 5.08 (br, 1H), 4.40 (s, 2H),
3.27-3.22 (m, 2H), 2.44 (s, 3H), 1.49-1.43 (m, 2H), 0.81 (t, 3H); *C NMR (100 MHz, CDCls): d 165.29,
142.40, 140.69, 137.73, 137.72, 130.35, 129.45, 129.30, 128.92, 126.39, 126.36, 126.33, 126.29, 126.25,
125.90, 125.86, 125.82, 43.96, 39.51, 21.72, 21.72, 11.31; HRMS (FAB) m/z calcd. for C1gH21F3N20O,SNa
[M+Na]*: 421.1174, found: 421.1171.
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3. Au-catalyzed hydroamination

Typical procedure (A, heterogeneous catalyst): To dioxane (0.18 mL) in a vessel was added MOFaci
(2.7 mg, 2.7 ymol, 3 mol%), AgOTf (1.5 mg, 5.5 ymol, 6 mol%), alkyne (0.091 mmol, 1 eq) under Nz
atmosphere, and then, anline (0.11 mmol, 1.2 eq) was added slowly to the above vessel. The reaction
mixture was stirred at 70 °C for 5 h. The crude compound was isolated by silica column chromatography.

Typical procedure (B, homogeneous catalyst): To dioxane (0.18 mL) in a vessel was added IPrAuCl
(Chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]silver(l)) (1.7 mg, 2.7 ymol, 3 mol%), AgOTf
(1.5 mg, 5.5 umol, 6 mol%), alkyne (0.091 mmol, 1 eq) under N, atmosphere, and then, anline (0.11
mmol, 1.2 eq) was added slowly to the above vessel. The reaction mixture was stirred at 70 °C for 5 h.
The crude compound was isolated by silica column chromatography.

N-(1-phenylethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rt 0.44) to afford 17 as yellow solid (A: 33 mg, 93% vyield, B: 35 mg, 99% yield). *H NMR (400
MHz, CDCls): 6 8.03-8.00 (m, 2H), 7.51-7.37 (m, 5H), 7.15-7.10 (m, 1H), 6.85-6.83 (m, 2H), 2.27 (s, 3H);
13C NMR (100 MHz, CDCls): 8 165.59, 151.82, 139.62, 130.59, 129.08, 128.49, 127.30, 123.33, 119.50,
17.49. These spectroscopic data are consistent with those previously reported in the literature.!

4-nitro-N-(1-phenylethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rt: 0.21) to afford 18 as yellow solid (39 mg, 91% vyield). *H NMR (400 MHz, CDCl;): d 8.27-8.25
(d, 2H), 8.00-7.99 (d, 2H), 7.52-7.49 (m, 3H), 6.92-6.89 (d, 2H), 2.28 (s, 3H); *C NMR (100 MHz, CDCls):
0 166.40, 157.89, 143.85, 138.36, 131.40, 128.67, 127.50, 125.26, 119.70, 18.00. These spectroscopic
data are consistent with those previously reported in the literature.4

4-methoxy-N-(1-phenylethylidene)aniline

The reaction mixture was stirred at room temperature for 5 h. The crude compound was isolated by silica
column chromatography eluting with hexane/ethyl acetate (20:1, Ry. 0.24) to afford 19 as yellow solid (25
mg, 62% yield). *H NMR (400 MHz, CDCls): d 8.01-7.98 (m, 2H), 7.48-7.46 (m, 3H), 6.96-6.93 (d, 2H),
6.80-6.78 (d, 2H), 3.84 (s, 3H), 2.29 (s, 3H); *C NMR (100 MHz, CDCls): d 165.88, 156.08, 144.84,
139.83, 130.45, 128.45, 127.23, 120.88, 114.36, 55.58, 17.42. These spectroscopic data are consistent
with those previously reported in the literature.*?
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N-(1-(4-nitrophenyl)ethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rr. 0.23) to afford 20 as white solid (10 mg, 32% vyield). *H NMR (400 MHz, CDCls): & 8.33-8.30
(d, 2H), 8.17-8.15 (d, 2H) 7.42-7.38 (m, 2H), 7.18-7.13 (m, 1H), 6.84-6.81 (m, 2H), 2.31 (s, 3H); 3C NMR
(100 MHz, CDCls): & 163.81, 150.90, 149.12, 145.08, 129.25, 128.30, 124.11, 123.70, 119.22, 17.66.
These spectroscopic data are consistent with those previously reported in the literature.!?

N-(1-(4-methoxyphenyl)ethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rr: 0.26) to afford 21 as yellow solid (33 mg, 94% vyield). *H NMR (400 MHz, CDCls): & 7.93-7.90
(d, 2H), 7.39-7.34 (t, 2H) 7.12-7.08 (m, 1H), 7.13-7.10 (t, 1H), 6.99-6.97 (m, 2H), 3.89 (s, 3H), 2.23 (s,
3H); 3C NMR (100 MHz, CDCls): & 164.70, 161.69, 151.92, 132.28, 129.03, 128.98, 123.17, 119.76,
113.73, 55.51, 17.29. These spectroscopic data are consistent with those previously reported in the
literature.3

4-(tert-butyl)-N-(1-phenylethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rr: 0.42) to afford 22 as yellow solid (A: 11 mg, 24% vyield, B: 44 mg, 96% vyield). *H NMR (400
MHz, CDClIs): 6 8.03-7.99 (m, 2H), 7.48-7.46 (m, 3H), 7.42-7.39 (d, 2H), 6.80-6.76 (d, 2H), 2.29 (s, 3H),
1.38 (s, 3H); *C NMR (100 MHz, CDCls): d 165.43, 149.03, 146.15, 139.79, 130.47, 128.46, 127.30,
125.85, 119.23, 34.42, 31.65, 17.50. These spectroscopic data are consistent with those previously
reported in the literature.®

2,6-diisopropyl-N-(1-phenylethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rt 0.56) to afford 23 as yellow solid (A: 11 mg, 21% yield, B: 45 mg, 88% yield). *H NMR (400
MHz, CDCls): & 8.08-8.06 (m, 2H), 7.52-7.50 (m, 3H), 7.19-7.08 (m, 3H), 2.78 (sept, 2H), 2.13 (s, 3H),
1.17 (t, 12H); *C NMR (100 MHz, CDCls): d 164.93, 146.86, 139.26, 136.24, 130.52, 128.54, 127.27,
123.45, 123.08, 28.35, 23.27, 23.08, 18.22. These spectroscopic data are consistent with those
previously reported in the literature.®

N-(1-phenylethylidene)naphthalen-1-amine

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, R 0.38) to afford 24 as yellow solid (A: 9 mg, 20% yield, B: 43 mg, 97% yield). *H NMR (400
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MHz, CDCls): 6 8.18-8.16 (m, 2H), 7.91-7.89 (d, 1H), 7.84-7.81 (dd, 1H), 7.66-7.63 (d, 1H), 7.60-7.42
(m, 6H), 6.84 (dd, 1H), 2.25 (s, 3H); *C NMR (100 MHz, CDCls): & 166.66, 148.03, 139.36, 134.34,
130.83, 128.60, 128.11, 127.46, 126.24, 126.02, 125.54, 123.71, 123.41, 113.65, 17.83. These
spectroscopic data are consistent with those previously reported in the literature.*

N-(1-(p-tolylethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Ry 0.48) to afford 32 as yellow solid (30 mg, 92% vyield). *H NMR (400 MHz, CDCls): & 7.93-7.90
(d, 2H), 7.39-7.35 (t, 2H) 7.29-7.27 (t, 2H), 7.13-7.10 (t, 1H), 6.86-6.84 (d, 2H), 2.44 (s, 3H), 2.26 (s, 3H);
13C NMR (100 MHz, CDCls): 8 166.06, 151.29, 141.20, 136.57, 129.26, 129.11, 127.47, 123.55, 119.88,
21.54, 17.57. These spectroscopic data are consistent with those previously reported in the literature.*®

N-(1-(4-(trifluoromethyl)phenyl)ethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Ry 0.36) to afford 33 as yellow solid (17 mg, 53% yield). *H NMR (400 MHz, CDCls): 8 8.12-8.10
(d, 2H), 7.74-7.71 (d, 2H) 7.42-7.38 (m, 2H), 7.17-7.12 (m, 1H), 6.84-6.81 (m, 2H), 2.30 (s, 3H); 3*C NMR
(100 MHz, CDCls): 6 164.48, 151.22, 142.75, 132.43, 132.11, 129.20, 127.69, 125.53, 125.49, 125.45,
125.42, 123.82, 119.34, 17.58. These spectroscopic data are consistent with those previously reported
in the literature.?

N-(1-phenylethylidene)-4-(trifluoromethyl)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Rt: 0.40) to afford 34 as yellow solid (43 mg, 90% yield). *H NMR (400 MHz, CDCls): & 8.01-8.00
(d, 2H), 7.64-7.62 (d, 2H), 7.51-7.47 (m, 3H), 6.92-6.90 (d, 2H), 2.27 (s, 3H); *C NMR (100 MHz, CDCls):
0 166.62, 154.69, 138.84, 131.17, 128.64, 127.47, 126.49,126.46 126.42, 126.38, 125.97, 125.79,
125.47, 123.27, 119.67, 17.79. These spectroscopic data are consistent with those previously reported
in the literature.'*

4-methyl-N-(1-phenylethylidene)aniline

The crude compound was isolated by silica column chromatography eluting with hexane/ethyl acetate
(20:1, Ry 0.24) to afford 35 as yellow solid (30 mg, 80% yield). *H NMR (400 MHz, CDCls): 5 8.01-7.98
(m, 2H), 7.49-7.45 (m, 3H), 7.19-7.17 (d, 2H), 6.75-6.73 (d, 2H), 2.38 (s, 3H), 2.27(s, 3H); 3C NMR (100
MHz, CDCls): & 165.85, 148.96, 139.69, 132.86, 130.57, 129.65, 128.49, 127.33, 119.61, 21.00, 17.49.
These spectroscopic data are consistent with those previously reported in the literature.*®
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Single crystal X-ray structure determination

Summary of crystal data and structure refinement for MOFcuci

Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 24.849°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I1>2sigma(1)]
R indices (all data)

Largest diff. peak and hole

Ci23 Hizs Clz Cuz N7 O16 Zns
2516.75

100(2) K

0.71073 A

Monoclinic

C2lc

a=31.2209(16) A a= 90°,
b = 46.176(3) A B=101.183(2)°.
¢ = 28.6618(16) A v = 90°.
40536(4) A°

8

0.825 Mg/m?®

0.852 mm'*

10392

0.300 x 0.300 x 0.200 mm?

0.987 to 24.849°.

-36<h<31, -45<k<54, -33<1<33
173590

34821 [R(int) = 0.0581]

99.3%

Semi-empirical from equivalents
0.848 and 0.754

Full-matrix least-squares on F?
34821 /1296 / 1405

1.024

R1 =0.0936, wR; = 0.2622
R:=0.1419, wR, = 0.3130

1.239 and -1.601 e A3

Summary of crystal data and structure refinement for MOFcusr

Empirical formula
Formula weight
Temperature
Wavelength

Ci26 Hiz2 Brs Cuz N7 O15 Zn4
2676.21

100(2) K

0.70000 A
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Crystal system
Space group
Unit cell dimensions

Volume

VA

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 24.835°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I1>2sigma(1)]
R indices (all data)

Largest diff. peak and hole

Monoclinic

C2/c

a=31.173(6) A a= 90°,
b =45.755(9) A B=99.98(3)°.
¢ = 28.545(6) A y = 90°.
40098(14) A3

8

0.887 Mg/m?

1.326 mm*

10952

0.200 x 0.200 x 0.200 mm?

1.427 t0 24.941°,

-37<h<37, -55<k<53, -34<I<34
64931

36032 [R(int) = 0.0526]

98.1 %

Empirical

1.000 and 0.839

Full-matrix least-squares on F?
36032 /1303 /1424

1.020

R: =0.1136, wR; = 0.3243

R: =0.1682, wR, = 0.3494

1.196 and -1.284 e. A2

Summary of crystal data and structure refinement for MOFcu

Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

Ci23 Hize Cus I3 N7 O16 Zn4

2791.10

100(2) K

0.70000 A

Monoclinic

C2lc

a=31.335(6) A a=90°.
b =46.201(9) A B=101.00(3)°.
¢ =28.670(6) A v =90°.
40743(15) A3

8

0.910 Mg/m?

1.157 mm*
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F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 24.835°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I1>2sigma(1)]
R indices (all data)

Largest diff. peak and hole

11256

0.300 x 0.300 x 0.200 mm?
1.456 to 29.866°.

-44<h<44, -65<k<65, -40<I<40
112334

60369 [R(int) = 0.0475]

98.4 %

Empirical

1.000 and 0.875

Full-matrix least-squares on F2
60369 /1224 / 1425

1.020

R1 =0.1282, wR; = 0.3383

R1 =0.1657, wR, = 0.3546
1.519 and -2.238 e A2

Summary of crystal data and structure refinement for MOFauci

Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 24.835°
Absorption correction

Max. and min. transmission

Ci23 Hiz2a Aus Clz N7 O16 Zn4
2915.01

100(2) K

0.70000 A

Monoclinic

C2lc

a=31.303(6) A o= 90°.
b =46.242(9) A B=101.08(3)°.
¢ =28.703(6) A y =90°.
40773(15) A3

8

0.950 Mg/m?

2.496 mm*

11576

0.200 x 0.200 x 0.200 mm?

1.456 to 29.873°.

-44<h<44, -64<k<65, -40<I<40
115768

61044 [R(int) = 0.0276]

99.6 %

Empirical

1.000 and 0.805
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Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(l)]
R indices (all data)

Largest diff. peak and hole

Full-matrix least-squares on F?
61044 / 1453 / 1405

1.119

R:=0.0921, wR, = 0.2908

R; = 0.1053, wR; = 0.3056
2.388 and -4.858 e.A
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!H and *C NMR spectra

'H NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl copper(l) chloride (NHC-CuCl)
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13C NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl copper(l) chloride (NHC-CuCl)
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'H NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl copper(l) bromide (NHC-CuBr)
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13C NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl copper(l) bromide (NHC-CuBr)
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'H NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl copper(l) iodide (NHC-Cul)
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13C NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl copper(l) iodide (NHC-Cul)
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'H NMR spectrum of 1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl gold(l) chloride (NHC-AuCI)
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imidazol-2-yl gold(l) chloride (NHC-AuCl)
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'H NMR spectrum of (1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-ylsilver(l) chloride
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H NMR spectrum of Allyl(1,3-bis(4'-carboxy-3,5-diisopropyl-[1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-
imidazol-2-yl)Chloropalladium(ll)
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H NMR spectrum of [(IPr)(COzH).IrCI(COD)]
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H NMR spectrum of [(IPr)(COzH).IrCI(COD)]

: g
98T T L2
€02°1+
8Z€ T\
SPE T\ o
Z0p°T % B -
maw.auyr - wwmmv
: - - XA 58°92
WWMWM = - sl 9T 67
9851/ .W T 62°06—
@mp.ﬂb&ﬁ o 861 66°€E—
G6GL"T bx ey
\r\r‘r.ﬁ\\,\
9L8 T P
o LW “peg
768 Hw\x N et
. 66’1 .
TLe T .
mmm.m\\ o
[ ™
8LY "€ =
Z8bE > .ﬁUL X
5296 _— = 0% Hw.mouuv
§6°69
LS
<t
. n — .
906" F — «u Cog 122
II)IJ F o
© 50" L6 —

F6°92T
mm.ﬁmﬁ/

80L "L
6CL”
080"
oot~

on.hNHV
Le*
o o sw
™~ %0t

NVZ

‘I
N*Nc
\=/

Ui/ r~ -
(o] o
Ho - OH
U’

e "

9|0 8l5 8T0 7[0 6|5
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H NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole
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13C NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole
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'H NMR spectrum of 1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole
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H NMR spectrum of 1-(4-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole
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'H NMR spectrum of 1-benzyl-4-(4-nitrophenyl)-1H-1,2,3-triazole
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H NMR spectrum of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole
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13C NMR spectrum of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole
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H NMR spectrum of 1-([1,1'-biphenyl]-4-yImethyl)-4-phenyl-1H-1,2,3-triazole
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H NMR spectrum of 4-([1,1'-biphenyl]-4-yl)-1-benzyl-1H-1,2,3-triazole
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H NMR spectrum of 1-(naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole
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13C NMR spectrum of 1-(naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole
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H NMR spectrum of 2-phenyl-N-propyl-N'-tosylacetimidamide
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H NMR spectrum of 2-(4-nitrophenyl)-N-propyl-N'-tosylacetimidamide
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13C NMR spectrum of 2-(4-nitrophenyl)-N-propyl-N'-tosylacetimidamide
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H NMR spectrum of 2-(4-methoxyphenyl)-N-propyl-N'-tosylacetimidamide
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H NMR spectrum of N,N-diisopropyl-2-phenyl-N'-tosylacetimidamide
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H NMR spectrum of N-benzyl-2-phenyl-N'-tosylacetimidamide
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H NMR spectrum of N-methyl-N,2-diphenyl-N'-tosylacetimidamide
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H NMR spectrum of 2-phenyl-N-propyl-N'-((2,4,6-triisopropylphenyl)sulfonyl)acetimidamide
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H NMR spectrum of N-(naphthalen-1-yl)-2-phenyl-N'-tosylacetimidamide
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H NMR spectrum of N-(1-phenylethylidene)aniline
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13C NMR spectrum of N-(1-phenylethylidene)aniline
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H NMR spectrum of 4-nitro-N-(1-phenylethylidene)aniline
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H NMR spectrum of 4-methoxy-N-(1-phenylethylidene)aniline
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13C NMR spectrum of 4-methoxy-N-(1-phenylethylidene)aniline
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H NMR spectrum of N-(1-(4-nitrophenyl)ethylidene)aniline
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H NMR spectrum of N-(1-(4-methoxyphenyl)ethylidene)aniline
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H NMR spectrum of 4-(tert-butyl)-N-(1-phenylethylidene)aniline
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H NMR spectrum of 2,6-diisopropyl-N-(1-phenylethylidene)aniline
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H NMR spectrum of N-(1-phenylethylidene)naphthalen-1-amine
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13C NMR spectrum of N-(1-phenylethylidene)naphthalen-1-amine
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!H NMR spectrum of 1-benzyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole
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13C NMR spectrum of 1-benzyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole
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H NMR spectrum of 1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole
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13C NMR spectrum of 1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole
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H NMR spectrum of 1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazole
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!H NMR spectrum of 4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole
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13C NMR spectrum of 4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole
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H NMR spectrum of N-propyl-2-(p-tolyl)-N'-tosylacetimidamide
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H NMR spectrum of N-isopropyl-2-phenyl-N'-tosylacetimidamide
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13C NMR spectrum of N-isopropyl-2-phenyl-N'-tosylacetimidamide
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H NMR spectrum of N-propyl-N'-tosyl-2-(4-(trifluoromethyl)phenyl)acetimidamide
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H NMR spectrum of N-(1-(p-tolyl)ethylidene)aniline
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H NMR spectrum of N-(1-(4-(trifluoromethyl)phenyl)ethylidene)aniline
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H NMR spectrum of N-(1-phenylethylidene)-4-(trifluoromethyl)aniline
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H NMR spectrum of 4-methyl-N-(1-phenylethylidene)aniline
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