Supporting Information

Self-Limiting Opto-Electrochemical Thinning of Transition Metal Dichalcogenides

Suichu Huang, ^{†,‡} Jingang Li, [‡] Jie Fang, [‡] Hongru Ding, [‡] Wentao Huang, [†] Xuezeng

Zhao,*, † and Yuebing Zheng*,‡

⁺ Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China

⁺ Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin TX 78712, United States

*Corresponding author: E-mail: Zhaoxz@hit.edu.cn (X. Z.), zheng@austin.utexas.edu (Y. Z.)

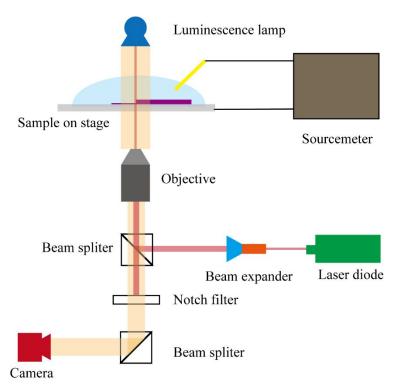
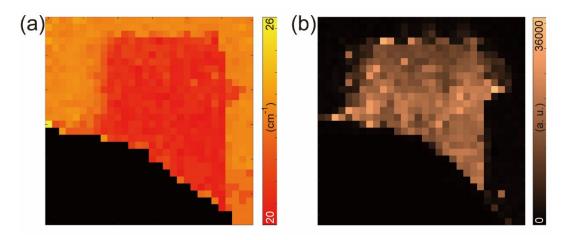



Figure S1. Schematic showing the experimental setup of sOET.

Figure S2. Raman scattering and PL mapping of the thinned MoS_2 in Figure 1. (a) Spatial mapping of the Raman frequency distance between E^{1}_{2g} mode and A_{1g} mode of MoS_2 . (b) Spatial mapping of the integrated PL intensity from 600 nm to 750 nm. Both the reduced Raman frequency distance of ~ 20.5 cm⁻¹ and enhanced PL intensity indicate the monolayer feature in the laser scanned area.

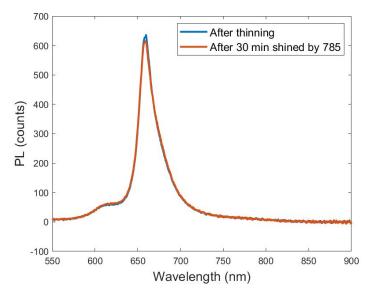
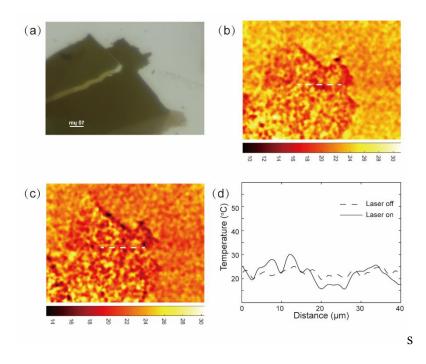
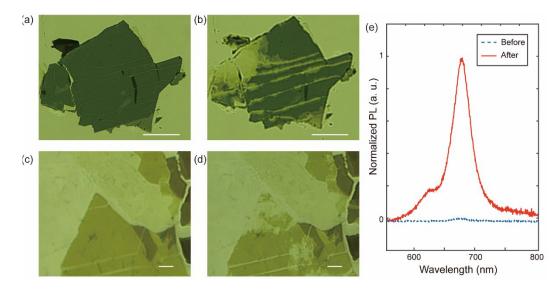




Figure S3. PL spectra of the thinned MoS_2 before and after laser excitation of 30 min. No obvious difference in the PL intensity was observed.

Figure S4. Temperature increase induced by a 0.102 mW μ m² 785 nm lasers irradiation on a MoS₂ flake in DI water. (a) Optical image of the MoS₂ flake; (b) Background temperature distribution when the laser was off, the ambient temperature was ~22 °C; (c) Temperature distribution when a 785 nm laser was directed on the MoS₂ flake.(d) Cross-sections of the temperature distribution with the laser off/on made at the white dashed line in (b) and (c). Scale bar: 10 µm.

Figure S5. Thinning of MoS_2 on thin gold film and graphene with no bias. a-b) Optical images of a MoS_2 flake on 5 nm gold film before (a) and after (b) illuminated by a 0.256 mW μ m⁻² 785 nm laser for 30 s in DI water. c-d) Optical images of a MoS_2 flake on monolayer graphene (glass substrate) before (c) and after (d) illuminated by a 0.257 mW μ m⁻² 785 nm laser for 30 s DI water. Even without applying bias, the thickness of the multilayer MoS_2 was reduced. (e) PL spectra before (blue dashed) and after thinning. Scale bars are 25 μ m.

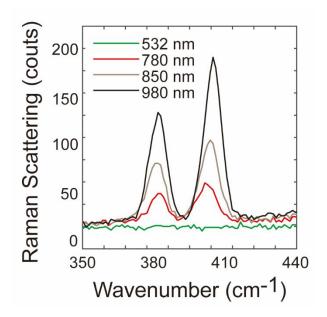
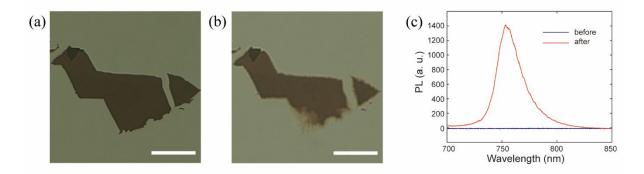



Figure S6. Raman spectra of MoS₂ flakes after scanning by different lasers.

Figure S7. sOET of WSe₂. (a) Optical image of the WSe₂ flake before thinning. (b) Optical image of the WSe₂ flake after thinning. (c) PL spectra before and after thinning. Scale bars are $10 \mu m$.