Supporting Information

Mechanochemical NaCl-Mediated Synthesis of Porous Cu_xMo_{1-x}O_y Catalyst for Knoevenagel Condensation

Dandan Liu,^a Shengtai Hou,^b Yuan Shu,^b Jiahua Zhao,^b Li Wang,^{a*} Pengfei Zhang^{b*}

^aKey Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (PR China)

^bSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (PR China)

*Corresponding author: Li Wang, E-mail: wangli@ecust.edu.cn

Pengfei Zhang, E-mail: chemistryzpf@sjtu.edu.cn

1. Materials and methods

1.1 Materials.

Chemicals involved in the material synthesis were used directly without further purification if no specification. Copper(II) chloride dihydrate (CuCl₂·2H₂O; > 98%, Energy Chemicals), Sodium chloride (NaCl; AR, > 99.5%, Macklin Chemicals), Sodium molybdate dihydrate (Na₂MoO₄·2H₂O; AR, Energy Chemicals), Malononitrile (C₃H₂N₂; 98%, Aladdin), Benzaldehyde (C₇H₆O, 98%, Macklin), p-Tolualdehyde (C₈H₈O; 97%, Rhawn), p-Anisaldehyde (C₈H₈O₂; 98%, Aladdin), 4-Fluorobenzaldehyde (C₇H₅FO; 98%, Aladdin), 4-Chlorobenzaldehyde (C₇H₅ClO; 98%, Aladdin),4-Bromobenzaldehyde (C₇H₅BrO; 97%, Rhawn), 4-Nitrobenzaldehyde (C₇H₅NO₃; 98%, dingchem), p-Hydroxybenzaldehyde (C₇H₆O₂; 98%, Aladdin), Veratraldehyde (C₉H₁₀O₃; >99%, Macklin), Cinnamaldehyde (C₉H₈O; 97%, Rhawn), 1-napthaldehyde (C₁H₈O, 98%, Macklin), 2-formylofuran (C₅H₄O₂; 98%, Macklin)

1.2 Experimental section

In order to examine the universality of Cu_xMo_{1-x}O_y in Knoevenagel condensation

reaction, another 11 different aromatic aldehyde substrates were employed under the same reaction conditions. 1 mmol aromatic aldehyde substrates and 1.2 mmol malononitrile were dissolved in 15 mL deionized water, then 15 mg $Cu_xMo_{1-x}O_y$ -M as catalyst was added into the above reaction solution. After a period of stirring, the appropriate amount of the mixture was extracted with ethyl acetate and analyzed by GC to determine yield. The product was confirmed by ¹H-NMR.

1.3 Characterization

X-ray diffraction (XRD) patterns were recorded on a Bruker D8 focus diffraction spectrometer with Cu K α radiation (1.54056 Å). The diffraction data was collected with a 2 theta range from 10° to 80° with a scan rate of 6 degrees min⁻¹. The Brunauer–Emmett–Teller surface area was investigated by N₂ adsorption-desorption isotherms measured at –196 °C using a Micromeritics TriStar II 3020 Version 3.02 analyzer. Before the measurements, the sample was degassed under vacuum at 180 °C for 5 h. Scanning electron microscopy (SEM) was carried out on a field emission scanning electron microscope (FESEM, Zeiss Gemini 500).High–angle annular dark-field scanning transmission electron microscopy (HAADF–STEM) images were obtained using a Nion UltraSTEM 100 with a probe aberration correction.

1.4 General Remarks. ¹H spectra were recorded at 500 MHz using CDCl₃ or $(CD_3)_2SO$ as solvents. Chemical shifts are reported as δ values relative to internal chloroform multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants (*J*) are reported in Hertz (Hz). The product formation was monitored by ¹H NMR using aliquots containing the solvent mixture. All commercial reagents and solvents were obtained from the commercial provider and used without further purification.

2.Figures and Tables

Table S1. The SSAs of Cu_xMo_{1-x}O_y-M under different conditions

Entry	NaCl (g)	Washing	SSA
		time(min)	
1	1.2	5	61

2	1.2	10	111
3	1.2	30	135
4	1.2	60	116
6	0.6	30	96
7	2.4	30	88

Figure S1. The UV-vis spectrum of NaCl, CuCl₂, NaCl+CuCl₂ (ball milling NaCl and CuCl₂)

The UV-vis spectrum of NaCl, CuCl₂, NaCl/CuCl₂ was shown in Figure S1. NaCl had no UV absorption from 200 nm to 800nm. CuCl₂ had UV absorption peaks at 200~400 nm and 600~800 nm, and the UV absorption peaks of NACl+CuCl₂ did not shift significantly, indicating that the chemical environment of Cu had not changed. Therefore CuCl_x (x> 2) was absent.

Figure S2. XRD patterns of the Cu_xMo_{1-x}O_y-M and Cu_xMo_{1-x}O_y-M-300

Figure S3. N₂ adsorption-desorption isotherms of Fe_xMo_{1-x}O_y-M; the corresponding pore size distribution obtained from the adsorption branch

Figure S4. XRD patterns of the Fe_xMo_{1-x}O_y-M

Figure S5. N₂ adsorption-desorption isotherms of CaCO₃

3.Analytical Data of Products

¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.5 Hz, 2H), 7.78 (s, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.9 Hz, 2H), 7.65 (s, 1H), 7.01 (d, *J* = 9.0 Hz, 2H), 3.91 (s, 3H).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 – 7.77 (m, 2H), 7.72 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 – 7.92 (m, 2H), 7.76 (s, 1H), 7.27 – 7.17

(m, 2H).

¹H NMR (500 MHz, Chloroform-d) δ 7.87 (d, J = 8.8 Hz, 2H), 7.74 (s, 1H), 7.53 (d, J = 8.8 Hz, 2H).

¹H NMR (500 MHz, Chloroform-d) ,δ 7.78–7.76 (m, 2H), 7.73 (s, 1H), 7.70–7.67 (m, 2H).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.72 (s, 1H), 8.43 (d, *J* = 8.9 Hz, 2H), 8.14 (d, *J* = 8.9 Hz, 2H).

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.07 (s, 1H), 8.31 (s, 1H), 7.96 – 7.82 (m, 2H), 7.08 – 6.82 (m, 2H).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 2.2 Hz, 2H), 7.35 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.93 (d, *J* = 8.5 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 3H).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 – 7.58 (m, 3H), 7.51 – 7.43 (m, 3H), 7.29 (d, *J* = 3.4 Hz, 2H).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 1.7 Hz, 1H), 7.52 (s, 1H), 7.34 (d, *J* = 3.8 Hz, 1H), 6.71 (dd, *J* = 3.8, 1.8 Hz, 1H).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.63 (s, 1H), 8.26 (d, 1H), 8.09 (d, 1H), 7.94 (d, 2H), 7.68–7.59 (m, 3H).

Figure S6. ¹H NMR spectra of 2-benzylidenemalononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S7. ¹H NMR spectra of 2-(4-methoxybenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S8. ¹H NMR spectra of 2-(4-methylbenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S9. ¹H NMR spectra of 2-(4-fluorobenzylidene)malononitrile. ¹H NMR was recorded on

Bruker 500 MHz; Solvent: CDCl₃

Figure S10. ¹H NMR spectra of 2-(4-chlorobenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S11. ¹H NMR spectra of 2-(4-bromobenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S12. ¹H NMR spectra of 2-(4-nitrobenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S13. ¹H NMR spectra of 2-(4-hydroxybenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: (CD₃)₂SO

Figure S14. ¹H NMR spectra of 2-(3,4-dimethoxybenzylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S15. ¹H NMR spectra of 2-(3-phenylallylidene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S16. ¹H NMR spectra of 2-(furan-2-ylmethylene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃

Figure S17. ¹H NMR spectra of 2-(naphthalen-1-ylmethylene)malononitrile. ¹H NMR was recorded on Bruker 500 MHz; Solvent: CDCl₃