Supporting information for

Heterotrimetallic ring opening copolymerisation catalysis: Structure-activity relationships

Alex Plajer, Charlotte K Williams*

Oxford Chemistry, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK; *charlotte.williams@chem.ox.ac.uk,

Contents

Section S1: Methods	3
Section S2: Summary of ROCOP results and comparison to previous reports	5
Section S3: Synthesis and Characterisation of H_2L^2 and 2_{ZnNa} and Polymerisation kinetics 2_{ZnNa} .	of 9
Section S4: Synthesis and Characterisation of H_2L^3 and 3_{ZnNa} and Polymerisation kinetics 3_{ZnNa}	of .15
Section S5: Synthesis and Characterisation of H_2L^4 and 4_{ZnNa} and Polymerisation kinetics 4_{ZnNa}	of .22
Section S6: Synthesis and Characterisation of H_2L^5 and 5_{ZnNa} and Polymerisation kinetics 5_{ZnNa}	of .28
Section S7: Synthesis and Characterisation of H_2L^6 and 6_{ZnNa} and Polymerisation kinetics S_{ZnNa}	of .35
Section S8: Synthesis, characterisation and polymerisation kinetics of 1 _{MgNa}	.40
Section S9: Synthesis, characterisation and polymerisation kinetics of 1 _{NiNa}	.45
Section S10: Synthesis, characterisation and polymerisation kinetics of 1 _{AINa}	.48
Section S11: Synthesis, characterisation and polymerisation kinetics of 1 _{CoNa}	.51
Section S12 Bibliography	.53

Section S1: Methods

Materials: Solvents and reagents were obtained from commercial sources and used as received unless stated otherwise. Cyclohexene oxide was dried over calcium hydride overnight and purified via fractional distillation prior to use and stored in an inert atmosphere. Phthalic anhydride was extracted with dry benzene, recrystallised from dry chloroform and sublimed at 100 °C and 0.05 bar. Commercial 1,2-cyclohexenediol was recrystallized from dry chloroform and dried under dynamic vacuum before use. 99.8% carbon dioxide supplied by BOC Ltd was dried by passing it through two drying columns (VICI Metronics carbon dioxide purifier) prior to use. **A**, H_2L_1 and $\mathbf{1}_{Co}$ were synthesized according to procedures published by *Akine* and coworkers.^[1,2]

NMR spectra were recorded on a Bruker Advance 200 QNP or Bruker Avance 500 MHz cryo spectrometer. All spectra were recorded with external standards. Unambiguous assignments of NMR resonances were made on the basis of 2D NMR experiments.

UV-visible spectra were collected on a Varian Cary 50 UV spectrometer.

Gel permeation chromatography analysis was carried out on a Shimadzu LC-20AD instrument equipped with two mixed bed PSS SDV linear S columns in series, THF as the eluent at a flow rate of 1mL/min and at 40 °C. Polymer molecular mass (M_n) was determined by comparison against narrow molecular mass polystyrene standards which were used to calibrate the instrument. Each polymer sample was dissolved in HPLC-grade THF (10 mg/mL) and filtered through a 0.20 µm porous filter frit prior to analysis.

High-resolution ESI mass spectra were obtained using a Thermofisher LTQ Orbitrap XL, by the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Elemental analysis was obtained using a Perkin Elmer 240 Elemental Analyser, by Dr Nigel Howard from the elemental analysis lab at the University of Cambridge.

General Polymerization protocols: A mixture of the catalyst (5.0 µmol, 1 equiv.), 1,2cyclohexenediol (11.7 mg. 100.0 µmol, 20 equiv.), phthalic anhydride (if used, 148.7 mg, 1.0 mmol, 200 equiv.) and cyclohexene oxide (2 mL, 20.0 mmol, 4000 equiv.) was added to a Schlenk tube, under nitrogen. If carbon dioxide was applied, the reaction was subjected to three vacuum/CO₂ cycles (pressure regulated at 1 bar CO₂). If carbon dioxide was not used, the Schlenk tube was connected to vacuum/nitrogen line. The Schlenk tube was fitted with a DiComp probe for *in situ*-ATRIR spectroscopy (REACTIR) and submerged into an oil bath that was preheated to the appropriate temperature. At this point the REACTIR instrument was set to begin data-collection (t_0). After the reaction was completed, the mixture was allowed to cool to room temperature and the crude product composition was analysed by NMR spectroscopy of an aliquot to determine the ratio of products (poly(cyclohexene carbonate) PCHC, poly(cyclohexene oxide) PCHO, poly(cyclohexene-alt-phthalate) PCHPE and cyclohexene carbonate c5c). The polymer was isolated by adding the concentrated polymerisation mixture (ca 0.5 mL, achieved by removing excess CHO under a stream of N₂) to 100 mL of acidified MeOH (10 μ L concentrated HCl, per 100 mL MeOH) resulting in the precipitation of the polymer.

Cat. ^a	Polymer Selectivity (%) ^b	Carbonate: Ether (%) ^c	Polymer TON ^d	Polymer TOF [h ⁻¹] ^e	M _n [kg/mol] (Đ) ^f
1 _{ZnNa} g	97	86:14	1960	478	5.61 (1.29)
2 _{ZnNa}	95	82:18	1440	416	4.65 (1.22)
3 _{ZnNa}	97	95:5	800	310	3.01 (1.19)
4 _{ZnNa}	95	87:13	1956	1084	5.48 (1.18)
5 _{ZnNa}	91	78:22	1740	282	5.43 (1.23)
6 _{ZnNa}	inactive	-	-	-	-
1 _{MgNa}	62	>99:1	314	16	n.d.
1 _{AINa}	Decomp.	-	-	-	-
1 _{NiNa}	Decomp.	-	-	-	-
1 _{CoNa} *	>99	73:27	520	270	2.0 (1.15)

Section S2: Summary of ROCOP results and comparison to previous reports

Table S 1: ^aCopolymerization conditions: 0.025 mol% catalyst loading (1:4000), 20 equiv. 1,2-cyclohexane diol (CHD), 1 bar CO₂, CHO neat (9.99 M), 100°C (*80°C). Polymerizations were stopped once conversions versus time plots deviate from linearity. ^bDetermined by comparison of the relative integrals, in the normalised ¹H NMR spectrum (CDCl₃, 25°C), of resonances due to polymer (δ 4.65 ppm, 3.45 ppm) and cyclic carbonate (δ 4.00 ppm).^cDetermined by comparison of the relative integrals, in the normalised the ¹H NMR spectrum, of resonances due to carbonate (δ 4.65 ppm) and ether (δ 3.45 ppm) linkages. ^dTurnover number (TON), number of moles of CHO consumed per mole of catalyst. ^eTurnover frequency (TOF) determined from initial rates analysis by *in situ* ATR-IR spectroscopy (typically 5 – 15% conversion) as TON/time. ¹Determined by GPC (gel permeation chromatography) measurements conducted in THF, using narrow MW polystyrene standards to calibrate the instrument; $D = M_w/M_n$. ⁹According to Reference [3].

Cat. ^a	PE	РСНО	M _n [kg/mol] (Đ) ^d
	TOF [h⁻¹]⁵	TON[h⁻¹]⁰	
1 _{ZnNa} e	173	-	-
2 _{ZnNa}	120	208	2.26 (1.18)
3 _{ZnNa}	225	56	1.90 (1.17)
4 _{ZnNa}	92	120	2.05 (1.16)
5 _{ZnNa} †	6	-	1.05 (1.16)
6 _{ZnNa}	50	-	1.75 (1.15)
1 _{MgNa}	142	840	3.97 (1.19)
1 _{NiNa}	Decomp.	-	-
1 _{AINa}	Decomp.	-	-
1coNa*	136, 51	200	2.23 (1.17)

Table S 2: ^aCopolymerization conditions: 0.025 mol% catalyst loading (1:4000), 20 equiv. 1,2-cyclohexane diol (CHD), 200 equiv. PA ([†]100 equiv.), CHO neat (9.99 M), 100°C (*80°C). Polymerizations were stopped once CHO to PCHO conversions versus time plots deviate from linearity after complete PA consumption. ^bTurnover frequency (TOF) determined from rate analysis by in situ ATR-IR spectroscopy (typically 20 – 80% PA conversion) as TON/time. ^cTurnover number (TON), number of moles of CHO consumed per mole of catalyst, overall turnover determined by ¹H NMR. ^dDetermined by GPC (gel permeation chromatography) measurements conducted in THF, using narrow MW polystyrene standards to calibrate the instrument; $D = M_w/M_n$. ^eAccording to Reference [3].

Figure S 1: GPC traces of polymers produced in this study.

TOF 350 h⁻¹ at 100 °C, 0.05 mol%, 1 bar CO₂ >99% PCHC Nat. Chem., 2020, 12, 372 - 380

TOF 74 h⁻¹ at 80 °C, 0.07 mol%, 1 bar CO₂ >99% PCHC Chem. Eur. J., 2017, 23, 16472 - 16475

TOF 136 h⁻¹ at 50 °C, 0.02 mol%, 1 bar CO₂ >99% PCHC Macromolecules, 2010, 43, 1396 - 1402

TOF 478 h⁻¹ at 100 °C, 0.025 mol%, 1 bar CO₂ 86% PCHC, 14% PCHO Angew. Chem. Int. Ed., 2021, 60, 13372 –13379

TOF 100 h⁻¹ at 100 °C, 0.05 mol%, 3 bar CO₂ >99% PCHC Angew. Chem. Int. Ed., 2018, 57, 2492 - 2496

TOF 15 h⁻¹ at 80 °C, 1 mol%, 1 bar CO₂ >99% PCHC J. Am. Chem. Soc., 2018, 140, 6893 - 1903

TOF 795 h⁻¹ at 100 °C, 0.025 mol%, 1 bar CO₂ >99% PCHC Chem. Eur. J, accepted, DOI: 10.1002/chem.202101140

Figure S 2: Selected high activity, under low carbon dioxide pressure (<3 atm), catalysts for CO_2/CHO ROCOP. Note that the activity values are quoted per initiating group in each case.

Figure S 3: High activity, PA/CHO ROCOP catalysts previously reported in the literature. Activity is given per initiator and the loading is reported as per catalyst : PA : CHO

Section S3: Synthesis and Characterisation of H_2L^2 and 2_{ZnNa} and Polymerisation kinetics of 2_{ZnNa}

Scheme S 1: Synthesis of H_2L^2 from **A** and NMR assignment numbering for **Zn₂Na**.

Synthesis of H₂**L**²: A solution of **A** (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL) was added to a solution of 4,5-dimethyl-phenylenediamine (37.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for one week at room temperature during which orange crystals formed, which were isolated by decantation, washed with Et₂O (1mL) and died *in vacuo* to yield H₂L² 1.5H₂O as an orange crystalline powder (32.3 mg, 43 µmol, 31%).

¹H NMR (400 MHz, CDCl₃) δ 13.30 (s, 1H, OH), 8.59 (s, 1H, H4), 7.12 (dd, *J* = 7.9, 1.6 Hz, 1H, H6), 7.05 – 6.91 (m, 2H, H2, H8), 6.80 (t, *J* = 7.8 Hz, 1H, H7), 2.33 (s, 3H, Me).

¹³C{¹H} NMR (126 MHz, 1:1 d₆-DMSO:CDCl₃) δ 161.73 (C4), 151.79 (C10), 143.80 (C9), 139.14 (C3), 136.37 (C1), 126.38 (C6), 121.02 (C8), 119.84 (C2), 119.34 (C5), 117.74 (C7), 18.98 (Me).

Elemental Analysis (H_2L^2 1.5 H_2O , $C_{44}H_{39}N_4O_{7.5}$) calculated C 71.1% H 5.3% N 7.5% found C 71.0% H 5.0% N 7.4%

HRESI-MS m/z = calculated [M + H]⁺ 717.2708, [M + Na]⁺ 739.2527. Found [M + H]⁺ 717.2709, [M + Na]⁺ 739.2522

Figure S 4: ¹H NMR spectrum (500 MHz, d₆-DMSO, 25°C) of H_2L^2 .

Figure S 5: ¹³C{¹H} NMR spectrum (126 MHz, 1:1 d₆-DMSO:CDCl₃, 25°C) of H₂L².

Figure S 6: Positive mode high-resolution ESI mass spectrum of H_2L^2 .

Scheme S 2: Synthesis of 2_{ZnNa} from H_2L^2 and NMR assignment numbering for 2_{ZnNa} .

Synthesis of 2_{*z*nNa}: A solution of Zn(OAc)₂·(H₂O)₂ (33.3 mg, 151 µmol, 2 equiv.) and CF₃C₆F₄CO₂Na (17.2 mg, 75 µmol, 1 equiv.) in MeOH (5 mL) was added to a solution of H₂L² (53.8 mg, 75 µmol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was left unperturbed for 5 min. Afterwards all volatiles were removed *in vacuo* yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the crude product was suspended in toluene (20 mL) which was afterwards removed under vacuum. This process was repeated, yielding **Zn₂Na**·2.5H₂O as an orange powder (80 mg, 73 µmol, 96%).

¹H NMR (500 MHz, d₆-DMSO) δ 8.81 (s, 1H, H4), 7.92 (s, 0.5H, H13), 7.62 (s, 0.5H, H14), 7.57 (s, 1H, H2), 7.20 (d, *J* = 7.3 Hz, 1H, H6), 7.16 (d, *J* = 7.7 Hz, 1H, H8), 6.52 (t, *J* = 7.9 Hz, 1H, H7), 2.33 (s, 3H, Me).

¹³C{¹H} NMR (126 MHz, d₆-DMSO) δ 168.36 (C11), 162.91 (C4), 162.30 (C3), 148.47 (C9), 140.94 (C12), 137.93 (C10), 136.21 (C1), 130.50 (C6), 130.12 (C13), 124.31 (q, J = 271 Hz, C16), 124.46 (C14), 120.84 (C15, C5), 120.59 (C8), 117.66 (C2), 111.81 (C7), 19.49 (Me).

¹⁹F{¹H} NMR (470 MHz, d₆-DMSO) δ -61.01.

Elemental Analysis (2_{ZnNa} 2.5H₂O, C₅₂H₄₁ F₃ N₄O_{10.5}Zn₂) calculated C 56.8% H 3.8% N 5.1% found C 57.2% H 3.4% N 4.7%

HRESI-MS m/z = calculated $[M - CF_3C_6F_4CO_2Na]^+$ 865.0766. Found 865.0773

Figure S 7: ¹H NMR spectrum (500 MHz, d₆-DMSO, 25°C) of 2_{ZnNa}.

Figure S 8: ${}^{13}C{}^{1}H$ NMR spectrum (126 MHz, d₆-DMSO, 25°C) of 2_{ZnNa} .

Figure S 9: ¹⁹F{¹H} NMR (470 MHz, d₆-DMSO, 25°C) of 2_{ZnNa}.

Figure S 10: Positive mode high-resolution ESI mass spectrum of 2_{ZnNa}.

Figure S 11: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c vs. time (

Table S 1, run #2). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 3_{ZnNa} , 20 equiv. cyclohexane diol (CHD), 4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1744 cm⁻¹ (PCHC), 1089 cm⁻¹ (PCHO) and 1785 cm⁻¹ (c5c). The turn-over-frequency (TOF) were obtained from 5-15.0% conversion to PCHC.

Figure S 12: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO respectively) vs. time (**Table S 2**, run #2). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. **Zn₂Na**, 20 equiv. cyclohexane diol (CHD), 200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1730 cm⁻¹ (PCHC) and 1089 cm⁻¹ (PCHO). The turn-over-frequency was obtained from 20-80.0% PA conversion.

Section S4: Synthesis and Characterisation of H_2L^3 and 3_{ZnNa} and Polymerisation kinetics of 3_{ZnNa}

Scheme S 3: Synthesis of H₂L³ from A and NMR assignment numbering for H₂L³

Synthesis of H₂L³: A solution of **A** (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL) was added to a solution of 4,5-dichloro-phenylenediamine (48.9 mg, 0.28 mmol,

1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for one week at room temperature during which brown crystals formed, which were isolated by decantation, washed with Et₂O (1mL) and died under vacuum to yield H_2L^3 as a brown crystalline powder (28.5 mg, 35 µmol, 25%).

¹H NMR (400 MHz, CDCl₃) δ 12.84 (s, 1H, OH), 8.58 (s, 1H, H4), 7.31 (s, 1H, H2), 7.15 (dd, J = 7.8, 1.6 Hz, 1H, H6), 7.04 (dd, J = 7.9, 1.6 Hz, 1H, H8), 6.83 (t, J = 7.9 Hz, 1H, H7).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 164.46 (C4), 152.22 (C10), 144.58 (C9), 142.24 (C3), 131.06 (C1), 127.31 (C2), 122.44 (C8), 120.52 (C6), 120.15 (C5), 118.59 (C7).

Elemental Analysis (H₂L³ H₂O, C₄₀H₂₆Cl₄N₄O₇) calculated C 58.8% H 3.2% N 6.9% found C 58.9% H 3.0% N 7.2%

HRESI-MS m/z = calculated [M + H]⁺ 821.0336; found 821.0322.

Figure S 13: ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of H_2L^3 .

Figure S 14: ¹³C{¹H} NMR spectrum (126 MHz, CDCl₃, 25°C) of H_2L^3 .

Figure S 15: Positive mode high-resolution ESI mass spectrum of H_2L^3 .

Scheme S 4: Synthesis of 3_{ZnNa} from H_2L^3 and NMR assignment numbering for 3_{ZnNa} .

Synthesis of 3_{ZnNa}: A solution of Zn(OAc)₂·(H₂O)₂ (33.3 mg, 151 µmol, 2 equiv.) and CF₃C₆F₄CO₂Na (17.2 mg, 75 µmol, 1 equiv.) in MeOH (5 mL) was added to a solution of H₂L³ (60.0 mg, 75 µmol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was stirred for 5 min. Afterwards all volatiles were removed *in vacuo* yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the crude product was suspended in toluene (20 mL) which was afterwards removed *in vacuo*. This process was repeated, yielding **3**_{ZnNa} 5H₂O as a red powder (87.5 mg, 71 µmol, 95%).

¹H NMR (500 MHz, d₆-DMSO) δ 8.89 (s, 1H, H4), 8.12 (s, 1H, H2), 7.96 (s, 0.5H, H13), 7.65 (s, 0.5H, H14), 7.21 (d, *J* = 8.0 Hz, 1H, H6), 7.17 (d, *J* = 7.9 Hz, 1H, H8), 6.54 (t, *J* = 7.8 Hz, 1H, H7).

¹³C{¹H} NMR (126 MHz, d_6 -DMSO) δ 167.88 (C11) , 165.93 (C4), 163.40 (C3), 148.89 (C9), 140.85 (C10), 135.42 (C12), 131.91 (C6), 130.33 (C1), 129.85 (C13), 128.69, 125.01 (C14), 124.27 (m, C15,C5), 121.82 (C8), 119.71 (C2), 112.65 (C7).

¹⁹F{¹H} NMR (470 MHz, d₆-DMSO) δ -61.01.

Elemental Analysis (3_{z_nNa} 5H₂O, C₄₈H₃₄Cl₄F₃N₄ NaO₁₃Zn₂) calculated C 47.0% H 2.8% N 4.4% found C 47.0% H 2.5% N 4.4%

HRESI-MS m/z = calculated $[M - CF_3C_6F_4CO_2Na]^+$ 946.8560. Found 946.8564

Figure S 17: ¹³C{¹H} NMR spectrum (126 MHz, d₆-DMSO, 25°C) of 3_{ZnNa}.

Figure S 18: ¹⁹F{¹H} NMR (470 MHz, d₆-DMSO, 25°C) of 3_{ZnNa}.

Figure S 19: Positive mode high-resolution ESI mass spectrum of 3_{ZnNa}.

Figure S 20: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c vs. time (

Table S 1, run #3). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 3_{ZnNa} , 20 equiv. cyclohexane diol (CHD), 4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1744 cm⁻¹ (PCHC), 1089 cm⁻¹ (PCHO) and 1785 cm⁻¹ (c5c). The turn-over-frequency (TOF) was obtained from 5-15.0% conversion to PCHC.

Figure S 21: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO respectively) vs. time (**Table S 2**, run #3). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. **Zn₂Na**, 20 equiv. cyclohexane diol (CHD), 200 equiv PA, 4000 equiv. cyclohexane oxide (CHO)

and 1 bar N_2 pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1730 cm⁻¹ (PCHC) and 1089 cm⁻¹ (PCHO). The turn-over-frequency was obtained from 20-80.0% PA conversion.

Section S5: Synthesis and Characterisation of H_2L^4 and 4_{ZnNa} and Polymerisation kinetics of 4_{ZnNa}

Scheme S 5: Synthesis of H_2L^4 and NMR assignment numbering for H_2L^4 .

Synthesis of H₂**L**²: A solution of **A** (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL) was added to a solution of 4,5-dimethyl-phenylenediamine (39.8 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for one week at room temperature during which brown crystals formed, which were isolated by decantation, washed with Et₂O (1mL) and dried under vacuum to yield H₂L⁴ H₂O as a brown crystalline powder (29.4 mg, 39 µmol, 28%).

¹H NMR (500 MHz, CDCI₃) δ 8.80 (s, 1H, H4), 7.44 (t, *J* = 9.5 Hz, 1H, H2), 7.28 (dd, *J* = 7.7, 1.6 Hz, 1H, H6), 6.95 (dd, *J* = 8.0, 1.6 Hz, 1H, H8), 6.82 (t, *J* = 7.9 Hz, 1H, H7).

¹³C NMR (126 MHz, CDCl₃) δ 164.70 (d, *J* = 9.5 Hz, C4), 151.57 (C10), 148.76 (dd, *J* = 251.1, 15.5 Hz, C1), 143.69 (C9), 138.51 (t, *J* = 4.5 Hz, C3), 127.31 (C6), 121.70 (C8), 119.88 (C5), 118.23 (C7), 107.93 (C2).

Elemental Analysis (4_{z_nNa} H₂O, C₄₀H₂₆F₄N₄O₇) calculated C 64.0% H 3.5% N 7.5% found C 64.0% H 3.4% N 7.3%

ESI-MS m/z = calculated [M + H]⁺ 732.2; found 732.0; calculated [M + Na]⁺ 755.2; found 755.0

Figure S 22: ¹H NMR spectrum (500 MHz,1:1 CDCl₃:d₆-DMSO, 25°C) of H₂L⁴.

Figure S 23: ¹³C{¹H} NMR spectrum (126 MHz, 1:1 CDCl₃:d₆-DMSO, 25°C) of H_2L^4 .

Figure S 24: ¹⁹F{¹H} NMR (470 MHz, 1:1 CDCl₃:d₆-DMSO, 25°C) of H₂L⁴.

Figure S 25: Positive mode low-resolution ESI mass spectrum of 4_{ZnNa}.

Scheme S 6: Synthesis of 4_{ZnNa} from H_2L^4 and NMR assignment numbering for 4_{ZnNa} .

Synthesis of 4_{**z**nNa}**:** A solution of $Zn(OAc)_2 \cdot (H_2O)_2$ (33.3 mg, 151 µmol) and $CF_3C_6F_4CO_2Na$ (17.2 mg, 75 µmol) in MeOH (5 mL) was added to a solution of H_2L^4 (55.0 mg, 75 µmol) in 5 mL DCM (5mL). The resulting solution was left unperturbed for 5 min. Afterwards all volatiles were removed, *in vacuo*, yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the crude product was suspended in toluene (20 mL) which was afterwards removed under vacuum. This process was repeated, yielding **4**_{**z**nNa} 2H₂O as a orange powder (78.6 mg, 71 µmol, 95%).

¹**H NMR (500 MHz, d₆-DMSO)** δ 8.80 (s, 1H, H4), 7.90-8.01 (m, 2H, H13, H2), 7.59 (d, *J* = 8.0 Hz, 1H, H14), 7.17 (d, *J* = 8.0 Hz, 2H, H6, H8), 6.71 – 6.41 (m, 1H, H7).

¹⁹F NMR (377 MHz, d₆-DMSO) δ -60.90 (CF₃), -138.69 (ArF).

No ¹³C NMR could be obtained due to the low solubility of 4_{ZnNa} in all common organic solvents.

Elemental Analysis (4_{z_nNa} 2H₂O, C₄₈H₄₈F₇N₄NaO₁₀Zn₂) calculated C 52.1% H 2.6% N 5.1% found C 51.7% H 2.7% N 5.1%

HRESI-MS m/z = calculated [M - $CF_3C_6F_4CO_2Na$]⁺ 880.9763; found 880.9768.

Figure S 26: ¹H NMR spectrum (500 MHz, d₆-DMSO, 25°C) of 4_{ZnNa}.

Figure S 27: ¹⁹F {¹H} NMR (377 MHz, d₆-DMSO, 25°C) of 4_{ZnNa}.

Figure S 28: Positive mode high-resolution ESI mass spectrum of 4_{ZnNa}.

Figure S 29: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c vs. time (

Table S 1, run #4). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 4_{ZnNa} , 20 equiv. cyclohexane diol (CHD), 4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1744

cm⁻¹ (PCHC), 1089 cm⁻¹ (PCHO) and 1785 cm⁻¹ (c5c). The turn-over-frequency (TOF) was obtained from 5-15.0% conversion to PCHC.

Figure S 30: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO respectively) vs. time (**Table S 2**, run #4). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. **4**_{ZnNa}, 20 equiv. cyclohexane diol (CHD), 200 equiv. PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1730 cm⁻¹ (PCHC) and 1089 cm⁻¹ (PCHO). The turn-over-frequency was obtained from 0-60.0% PA conversion.

Section S6: Synthesis and Characterisation of H_2L^5 and 5_{ZnNa} and Polymerisation kinetics of 5_{ZnNa}

Scheme S 7: Synthesis of H₂L⁵ and NMR assignment numbering for H₂L⁵.

Synthesis of H₂**L**⁵: A solution of **A** (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL) was added to a solution of 2,2-dimethyl-1,3-diaminopropylene (28.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL). After the mixture was allowed to stand for 24h at room temperature during which a yellow powder precipitated, which was isolated by centrifugation, washed with Et₂O (1mL) and died under vacuum to yield H₂L⁵·H₂O as a yellow powder (71.0 mg, 0.11 mmol, 77%).

¹H NMR (400 MHz, CDCl₃) δ 13.94 (s, 1H, OH), 8.36 (s, 1H, H4), 7.02 (d, *J* = 7.7 Hz, 1H, H6), 6.97 (d, *J* = 7.8 Hz, 1H, H8), 6.77 (t, *J* = 7.5 Hz, 1H, H7), 3.49 (s, 2H, CH₂), 1.06 (s, 2H, CH₃).

¹³C NMR (126 MHz, CD_2CI_2) δ 166.29, 153.28, 145.15, 126.53, 121.61, 120.29, 118.32, 68.12, 36.55, 24.44.

Elemental Analysis $(H_2L_5 \cdot H_2O, C_{38}H_{42}N_4O_7)$ calculated C 68.5% H 6.4% N 8.4% found C 68.4% H 6.3% N 8.6%

HRESI-MS m/z = calculated [M + H]⁺ 649.3021, [M + Na]⁺ 671.2840. Found [M + H]⁺ 649.3018, [M + Na]⁺ 671.2937

Figure S 31: ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of H₂L⁵.

Figure S 32: ¹³C{¹H} NMR spectrum (126 MHz, d₆-DMSO, 25°C) of H_2L^5 .

Figure S 33: Positive mode high-resolution ESI mass spectrum of H_2L^5 .

Scheme S 8: Synthesis of 5_{ZnNa} and NMR assignment numbering for 5_{ZnNa} .

Synthesis of 5_{*Z*nNa}: A solution of Zn(OAc)₂·(H₂O)₂ (33.3 mg, 151 µmol, 2 equiv.) and CF₃C₆F₄CO₂Na (17.2 mg, 75 µmol, 1 equiv.) in MeOH (5 mL) was added to a solution of H₂L⁵ (55.0 mg, 75 µmol, 1 equiv.) in DCM (5mL). The resulting solution was left stirred for 5 min. Afterwards all volatiles were removed *in vacuo*, yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the crude product was suspended in toluene (20 mL) which was afterwards removed under vacuum. This process was repeated, yielding **5**_{*Z*nNa} as a yellow powder (74.6 mg, 71 µmol, 95%).

¹H NMR (500 MHz, d₄-Tetrachloroethane, 110°C) δ 9.34 (s, 1H, H3), 9.23 (d, *J* = 7.9 Hz, 1H, H13/H14), 8.78 (d, *J* = 7.4 Hz, 1H, H13/H14), 8.41 (s, 1H, H6/H8), 8.18 (s, 1H, H6/H8), 7.77 (s, 1H, H7), 4.95 (s, 2H, CH₂), 2.32 (s, 3H, CH₃).

Due to the fluxional nature of 5_{ZnNa} no ¹³C NMR spectrum could be obtained.

Elemental Analysis (5_{ZnNa} 3.5H₂O, C₄₆H₄₇F₃N₄NaO_{11.5}Zn₂) calculated C 52.6% H 4.5% N 5.3% found C 53.0% H 4.3% N 4.9%

¹⁹F NMR (377 MHz, d₄-Tetrachloroethane, 25°C) δ -62.86.

HRESI-MS m/z = calculated [M - $CF_3C_6F_4CO_2Na$]⁺ 707.1084; found 707.1022.

Figure S 34: ¹H NMR spectrum (500 MHz, d₂-TCE, 110°C) of **5**_{ZnNa}. Note that this is the temperature limit of the TCE which is why full symmetrisation couldn't be achieved.

Figure S 35: ¹⁹F{¹H} NMR (377 MHz, d₆-DMSO, 25°C) of 5_{znNa}.

Figure S 36: Positive mode high-resolution ESI mass spectrum of **5**_{ZnNa}. The data was collected on an Thermo Exactive High-Resolution Orbitrap FTMS.

Figure S 37: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c vs. time (

Table S 1, run #5). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 5_{ZnNa} , 20 equiv. cyclohexane diol (CHD), 4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1744 cm⁻¹ (PCHC), 1089 cm⁻¹ (PCHO) and 1785 cm⁻¹ (c5c). The turn-over-frequency (TOF) was obtained from 2-12.0% conversion to PCHC.

Figure S 38: Plot showing conversion of PA and CHO to PCHPE vs. time (**Table S**₂, run #5). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 5_{ZnNa} , 20 equiv. cyclohexane diol (CHD), 100 equiv. PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1730 cm⁻¹ (PCHC). The turn-over-frequency was obtained from 20-80.0% PA conversion.

Section S7: Synthesis and Characterisation of H_2L^6 and 6_{ZnNa} and Polymerisation kinetics of 6_{ZnNa}

Scheme S 9: Synthesis of H_2L^6 and NMR assignment numbering for H_2L^6 .

Synthesis of H₂L⁶: A solution of **A** (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL) was added to a solution of 1,2-ethylenediamine (16.8 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for 24h at room temperature

during which yellow crystals formed, which were isolated by decantation, washed with Et_2O (1mL) and dried under vacuum to yield $H_2L^{6}\cdot 0.5H_2O$ as a yellow crystalline powder (35.6 mg, 60 µmol, 45%).

¹H NMR (500 MHz, d₆-DMSO) δ 13.68 (s, 1H, OH), 8.55 (s, 1H, H2), 7.18 (d, *J* = 7.9 Hz, 1H, H4), 6.87 (d, *J* = 7.9 Hz, 1H, H6), 6.75 (t, *J* = 7.9 Hz, 1H, H5), 3.94 (s, 2H, CH₂).

¹³C NMR (126 MHz, d₆-DMSO) δ 166.27 (C2), 152.88 (C8), 144.35 (C7), 126.88 (C4), 122.22 (C6), 119.87 (C3), 117.45 (C5), 58.24 (C1).

Elemental Analysis (H₂L₆·0.5H₂O, C₃₂H₂₉N₈NaO_{6.5}) calculated C 67.0% H 5.1% N 9.8% found C 67.3% H 4.9% N 9.7%

HRESI-MS m/z = calculated [M + H]⁺ 565.2082, [M + Na]⁺ 587.1901. Found [M + H]⁺ 565.2071, [M + Na]⁺ 587.1887

Figure S 39: ¹H NMR spectrum (400 MHz, d_6 -DMSO, 25°C) of H_2L^6 .

Figure S 40: ¹³C{¹H} NMR spectrum (126 MHz, d₆-DMSO, 25°C) of H_2L^6 .

Figure S 41: Positive mode high-resolution ESI mass spectrum of H_2L^6 .

Scheme S 10: Synthesis of $6_{Z_nN_a}$ and NMR assignment numbering for $6_{Z_nN_a}$.

Synthesis of 6_{*z*_{nNa}}: A solution of Zn(OAc)₂·(H₂O)₂ (33.3 mg, 151 µmol, 2 equiv.) and CF₃C₆F₄CO₂Na (17.2 mg, 75 µmol, 1 equiv.) in MeOH (5 mL) was added to solid H₂L⁶ (42.4 mg, 75 µmol, 1 equiv.). The resulting suspension was stirred at 50°C for 2h during which a clear faint yellow solution formed. Afterwards all volatiles were removed *in vacuo*, yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the crude product was suspended in toluene (20 mL) which was afterwards removed under vacuum. This process was repeated, yielding **6**_{*z*_{nNa} 3H₂O as a faint yellow powder (69.7 mg, 73 µmol, 97%).}

¹H NMR (500 MHz, d₆-DMSO) δ 8.45 (s, 1H, H2), 8.06 (d, *J* = 7.8 Hz, 1H, H11), 7.68 (d, *J* = 7.9 Hz, 1H, H12), 7.05 (dd, *J* = 7.7, 1.7 Hz, 1H, H4), 6.96 (dd, *J* = 8.0, 1.7 Hz, 1H, H6), 6.41 (t, *J* = 7.8 Hz, 1H, H5), 3.89 (s, 2H, CH₂).

¹³**C NMR (126 MHz, d₆-DMSO)** δ 168.88 (C9), 168.76 (C2), 162.14 (C8), 148.14 (C7), 141.42 (C13), 130.59 (C10), 130.42 (C11), 129.25 (C4), 125.03 (C12), 124.78 (q, *J* = 272.2 Hz, C14), 120.94 (C3), 119.21 (C6), 111.29 (C5), 55.01 (C1).

Elemental Analysis (**6**_{ZnNa} 3H₂O, C₄₀H₃₄F₃N₄NaO₁₁Zn₂) calculated C 50.2% H 3.6% N 5.9% found C 50.3% H 3.4% N 5.7%

¹⁹F NMR (377 MHz, d₆-DMSO) δ -60.98.

HRESI-MS m/z = calculated [M - $CF_3C_6F_4CO_2Na$]⁺ 711.0171; found 707.0175.

Figure S 42: ¹H NMR spectrum (400 MHz, d₆-DMSO, 25°C) of 6_{ZnNa}.

Figure S 43: ¹³C{¹H} NMR spectrum (126 MHz, d₆-DMSO, 25°C) of 6_{ZnNa} .

Figure S 44: ¹⁹F {¹H} NMR (377 MHz, d₆-DMSO, 25°C) of 6_{ZnNa}.

Figure S 46: Plot showing conversion of PA and CHO to PCHPE vs. time (**Table S 2**, run #6). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 6_{znNa} , 20 equiv. cyclohexane diol (CHD), 200 equiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1730 cm⁻¹ (PCHC). The turn-over-frequency was obtained from 20-80.0% PA conversion.

Section S8: Synthesis, characterisation and polymerisation kinetics of 1_{MgNa}

Scheme S 11: Synthesis of 1_{MgNa} from H_2L^1 and NMR assignment numbering for 1_{MgNa}

Synthesis of 1_{MgNa}: A solution of Mg(OAc)₂·(H₂O)₄ (32.4 mg, 151 µmol, 2 equiv.) and CF₃C₆F₄CO₂Na (17.2 mg, 75 µmol, 1 equiv.) in MeOH (5 mL) was added to a solution of H₂L¹ (50.0 mg, 75 µmol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was stirred for 5 min. Afterwards all volatiles were removed *in vacuo*, yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the

crude product was suspended in toluene (20 mL) which was afterwards removed under vacuum. This process was repeated, yielding $\mathbf{1}_{MgNa}$ ·3H₂O as a orange powder (69.9 mg, 72 µmol, 96%).

¹H NMR (500 MHz, d₆-DMSO) δ 8.75 (s, 1H, H4), 7.87 (s, 0.5H, H13), 7.72 (dd, J = 6.1, 3.4 Hz, 1H, H2), 7.54 (s, 0.5H, H14), 7.39 (dd, J = 6.0, 3.3 Hz, 1H, H1), 7.23 (dd, J = 8.1, 1.8 Hz, 1H, H6), 7.10 (dd, J = 7.6, 1.9 Hz, 1H, H8), 6.50 (t, J = 7.7 Hz, 1H, H7).

¹³**C** NMR (126 MHz, d₆-DMSO) δ 172.76 (C11), 163.54 (C4), 161.31 (C5), 148.43 (C9), 142.62 (C3), 141.97 (C12), 129.99-129.57 (C6, C9, C13), 127.48 (C1), 124.33 (C14), 124.32 (q, J = 272.3 Hz, C16), 122.36 (C8), 120.46 (C15), 117.31 (C2), 111.40 (C7).

Elemental Analysis (1_{MgNa} ·3H₂O, C₄₈H₂₈F₃Mg₂N₄NaO₈) calculated C 59.3% H 3.5% N 5.8% found C 59.3% H 3.4% N 5.9%

¹⁹**F NMR (377 MHz,** d₆-DMSO) δ -60.97.

HRESI-MS m/z = calculated $[M - CF_3C_6F_4CO_2]^+$ 727.1289; found 727.1284.

Figure S 47: ¹H NMR spectrum (400 MHz, d₆-DMSO, 25°C) of 1_{MgNa}.

Figure S 48: ${}^{13}C{}^{1}H$ NMR spectrum (126 MHz, d₆-DMSO, 25°C) of 1_{MgNa} .

Figure S 49: $^{19}F\{^{1}H\}$ NMR (377 MHz, d_6-DMSO, 25°C) of $1_{MgNa.}$

Figure S 50: Positive mode high-resolution ESI mass spectrum of 1_{MgNa}

Table S 1, run #7). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 1_{MgNa} , 20 equiv. cyclohexane diol (CHD), 4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1744 cm⁻¹ (PCHC) and 1785 cm⁻¹ (c5c). The turn-over-frequency (TOF = 16 h⁻¹) was obtained from 1-8.0% conversion to PCHC.

Figure S 52: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO respectively) vs. time (**Table S 2**, run #7). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 1_{MgNa} , 20 equiv. cyclohexane diol (CHD), 200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1730 cm⁻¹ (PCHPE) and 1089 cm⁻¹ (PCHO). The turn-over-frequency was obtained from 20-80.0% PA conversion.

Figure S 53: Plots showing conversion of homopolymerisation of CHO (1 equiv. cat, 20 equiv. CHD, 4000 equiv. CHO, 100°C) with (left) $\mathbf{1}_{MgNa}$ and (right) $\mathbf{1}_{ZnNa}$ showing that overall CHO conversion is intrinsically pseudo equilibrium limited at different monomer conversions.

Section S9: Synthesis, characterisation and polymerisation kinetics of 1_{NiNa}

Scheme S 12: Synthesis of 1_{NiNa} from H_2L^1 and NMR assignment numbering for 1_{NiNa} .

Synthesis of 1_{MgNa}: A solution of Ni(OAc)₂·(H₂O)₄ (37.5 mg, 151 µmol, 2 equiv.) and CF₃C₆F₄CO₂Na (17.2 mg, 75 µmol) in MeOH (5 mL, 1 equiv.) was added to a solution of H₂L¹ (50.0 mg, 75 µmol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was stirred for 5 min. Afterwards all volatiles were removed *in vacuo*, yielding a semi-solid which was washed with Et₂O (100 mL). To remove the acetic acid by-product fully, the crude product was suspended in toluene (20 mL) which was afterwards removed under vacuum. This process was repeated, yielding **1**_{NiNa}·2H₂O as a orange powder (71.2 mg, 71 µmol, 94%).

¹H NMR (500 MHz, d₆-DMSO) δ 9.54 (s, 1H, H4), 8.26 (dd, *J* = 6.5, 3.4 Hz, 1H, H2), 8.08 (s, 0.5H, H13), 7.67 (s, 0.5H, H14), 7.55 – 7.48 (m, 2H, H6. H1), 7.45 (d, *J* = 7.4 Hz, 1H, H8), 6.80 (t, *J* = 7.9 Hz, 3H, H7).

No 13C spectrum could be obtained due to the low solubility of $\mathbf{1}_{NiNa}$ in all common organic solvents.

Elemental Analysis (1_{NiNa} ·2H₂O, C₄₈H₃₂F₃Ni₂N₄NaO₁₀) calculated C 57.4% H 3.0% N 5.6% found C 57.2% H 3.4% N 5.6%

¹⁹F NMR (377 MHz, DMSO) δ -60.99 (CF₃).

HRESI-MS m/z = calculated [M - $CF_3C_6F_4CO_2Na$]⁺ 795.0295; found 795.0295.

Figure S 54: ¹H NMR spectrum (400 MHz, d₆-DMSO, 25°C) of 1_{NiNa}.

Figure S 55: ¹⁹F{¹H} NMR (377 MHz, d₆-DMSO, 25°C) of 1_{NiNa}.

Figure S 56: Positive mode high-resolution ESI mass spectrum of 1_{NiNa}

Figure S 57: Plot showing conversion of PA and CHO to polymer (PCHPE) vs. time (**Table S 2**, run #8). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 1_{NiNa} , 20 equiv. cyclohexane diol (CHD), 200 eqiv PA, 4000 equiv. cyclohexane oxide (CHO) and 1 bar N₂ pressure at 100 °. Decrease in activity occurs together with precipitation of a solid.

Section S10: Synthesis, characterisation and polymerisation kinetics of 1_{AINa}

Scheme S 13: Synthesis of 1_{AINa} from H_2L^1 and NMR assignment numbering for 1_{AINa} .

Synthesis of 1_{AINa}: AIEt₃ (18.8 mg, 165 µmol, 2.2 equiv.) was added to a solution of H₂L¹ (50.0 mg, 75 µmol, 1 equiv.) in 5 mL THF (5mL). The resulting solution was stirred overnight at room temperature. Afterwards glacial acetic acid (14.9 mg, 248 µmol, 3.3 equiv.) was added and the resulting mixture was stirred for 5h during which a yellow solid precipitated which was isolated by centrifugation. The solid was dissolved in MeOH (5 mL) and NaOAc (6.2 mg, 75 µmol, 1 equiv.) was added. The resulting solution was added to Et₂O (100 mL) leading to the precipitation of a yellow solid. Precipitation from MeOH/Et₂O was repear another two times. Isolation by centrifugation and drying *in vacuo* yielded **1**_{AINa} as a yellow powder (31.5 mg, 35 µmol, 46% yield).

¹H NMR (500 MHz, d₄-MeOH) δ 9.15 (s, 1H, H4), 8.02 (dd, *J* = 6.1, 3.3 Hz, 1H, H2), 7.62 (dd, *J* = 6.1, 3.2 Hz, 1H, H1), 7.45-7.45 (m, 2H, H6, H8), 6.84 (t, *J* = 7.9 Hz, 1H, H7), 1.74 (s, 3H, H12).

¹³C NMR (126 MHz, d₄-MeOH) δ 178.97 (C11), 163.52 (C4), 158.16 (C10), 147.81 (C9), 139.92 (C3), 130.68 (C1), 130.22 (C8), 123.02 (C6), 122.59 (C5), 118.29 (C2), 117.01 (C7), 23.44 (C12).

No suitable elemental analysis could be obtained

HRESI-MS m/z = calculated [M - OAc]⁺ 851.1485; found 851.1488.

Figure S 58: ¹H NMR spectrum (500 MHz, d₄-MeOH, 25°C) of 1_{AINa}.

Figure S 59: ${}^{13}C{}^{1}H$ NMR spectrum (126 MHz, d₄-MeOH, 25°C) of 1_{AINa} .

Figure S 60: Positive mode high-resolution ESI mass spectrum of 1_{AINa}

Figure S 61: Plot showing conversion of PA and CHO to polymer (PCHPE) vs. time (**Table S 2**, run #9). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. $\mathbf{1}_{AINa}$, 20 equiv. cyclohexane diol (CHD), 200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 100 °. Decrease in activity occurs together with emergence of a colour change of yellow to deep red.

Section S11: Synthesis, characterisation and polymerisation kinetics of 1_{CoNa}

Scheme S2: Synthesis of 1_{CoNa} from 1_{co} and NMR assignment numbering for 1_{CoNa}.

Synthesis of 1_{CoNa}: **1**_{Co} (30.0 mg, 27 µmol, 1 equiv.) and NaOAc (2.3 mg, 27 µmol, 1 equiv.) are dissolved in MeOH (0.7 mL). After 1 min the solvent was removed under stream of nitrogen and the resulting solid was taken up in 0.7 mL d₆-DMSO and analysed by ¹H NMR spectroscopy. Due to the instability of **1**_{CoNa} no further analysis could be obtained.

Note that in order to employ $\mathbf{1}_{CoNa}$ in polymerisation the complex was prepared in the polymerisation tube in MeOH which was removed in vacuo prior to addition of CHO, CHD and CO₂.

¹H NMR (400 MHz, d_6 -DMSO): δ 8.63 (s, 4H, H3), 8.27 (dd, J = 6.2, 3.4 Hz, 4H, H2), 7.59 (dd, J = 6.2, 3.2 Hz, 4H, H1), 7.34 (dd, J = 8.1, 1.7 Hz, 4H, H6), 7.19 (dd, J = 7.7, 1.7 Hz, 4H, H8), 6.61 (t, J = 7.8 Hz, 4H, H7), 4.80 – 4.52 (t, J = 9.0H, 2H), 2.43 (d, J = 11.2 Hz, 4H, H_{Pip}), 1.70 – 0.75 (m, 25H, H_{Pip}/Me).

Figure S 62: ¹H NMR spectrum (400 MHz, d₆-DMSO, 25°C) of 1_{CoNa}.

Figure S 63: ¹H NMR spectrum (400 MHz, d₆-DMSO, 25°C) of 1_{CoNa}.

Figure S 64: Plot showing conversion of CHO to polymer (PCHC) and c5c vs. time (

Table S 1, run #10). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 1_{MgNa} , 20 equiv. cyclohexane diol (CHD), 4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C. The conversion data was obtained by monitoring the changes to absorptions at 1744 cm⁻¹ (PCHC) and 1785 cm⁻¹ (c5c). The turn-over-frequency (TOF) were obtained from 0-10% conversion to polymer.

Figure S 65: Plot showing conversion of PA and CHO to polymer (PCHPE) vs. time (**Table S 2**, run #10). Data are obtained using *in situ* ATR-IR spectroscopic monitoring of polymerizations conducted using 1 equiv. 1_{CoNa} , 20 equiv. cyclohexane diol (CHD), 200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N₂ pressure at 80°C (**Table S 2**, run #10). Change in activity (highlighted by dotted box) is inferred to be a consequence of Co(III) to Co(II) thermal reduction. The turn-over-frequency (TOF) were obtained from 0-30% and 40-90% PA conversion.

Figure S 66: Stacked ¹H NMR spectra (400 MHz, CDCl₃, 25°C) of aliquots removed prior and after ROCOP to ROP switch (corresponding to **Figure S 52**) showing ether linkage formation exclusively occurs after mechanistic switch.

Figure S 66: Stacked GPC traces of aliquots removed prior and after ROCOP to ROP switch (corresponding to **Figure S 52**) showing growth of formed polymer chains after mechanistic switch rather than generation of new chains. Furthermore polymer samples maintain composition through multiple precipitation from DCM/MeOH or DCM/pentane further confirming block connection.

Figure S 67: Example ROCOP mechanism for CO₂/epoxide copolymerisation.

Section S12 Bibliography

^[1] Akine, S.; Utsuno, F.; Piao, S.; Orita, H.; Tsuzuki, S.; Nabeshima, T. Synthesis, Ion Recognition Ability, and Metal-Assisted Aggregation Behavior of Dinuclear Metallohosts Having a Bis(Saloph) Macrocyclic Ligand. *Inorg. Chem.* **2016**, *55* (*2*), 810–821.

^[2] Sakata, Y.; Okada, M.; Tamiya, M.; Akine, S. Post-Metalation Modification of a Macrocyclic Dicobalt(III) Metallohost by Site-Selective Ligand Exchange for Guest Recognition Control. *Chem. Eur. J.* **2020**, *26* (*34*), 7595–7601

^[3] Plajer, A. J.; Williams, C. K. Heterotrimetallic Carbon Dioxide Copolymerization and Switchable Catalysts: Sodium Is the Key to High Activity and Unusual Selectivity. *Angew. Chem. Int. Ed.* **2021**, *60* (*24*), 13372–13379