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Section S1: Methods

Materials: Solvents and reagents were obtained from commercial sources and used
as received unless stated otherwise. Cyclohexene oxide was dried over calcium
hydride overnight and purified via fractional distillation prior to use and stored in an
inert atmosphere. Phthalic anhydride was extracted with dry benzene, recrystallised
from dry chloroform and sublimed at 100 °C and 0.05 bar. Commercial 1,2-
cyclohexenediol was recrystallized from dry chloroform and dried under dynamic
vacuum before use. 99.8% carbon dioxide supplied by BOC Ltd was dried by passing
it through two drying columns (VICI Metronics carbon dioxide purifier) prior to use. A,
H,L4 and 1¢, were synthesized according to procedures published by Akine and
coworkers.[":2]

NMR spectra were recorded on a Bruker Advance 200 QNP or Bruker Avance 500
MHz cryo spectrometer. All spectra were recorded with external standards.
Unambiguous assignments of NMR resonances were made on the basis of 2D NMR
experiments.

UV-visible spectra were collected on a Varian Cary 50 UV spectrometer.

Gel permeation chromatography analysis was carried out on a Shimadzu LC-20AD
instrument equipped with two mixed bed PSS SDV linear S columns in series, THF as
the eluent at a flow rate of 1mL/min and at 40 °C. Polymer molecular mass (M,) was
determined by comparison against narrow molecular mass polystyrene standards
which were used to calibrate the instrument. Each polymer sample was dissolved in
HPLC-grade THF (10 mg/mL) and filtered through a 0.20 um porous filter frit prior to
analysis.

High-resolution ESI mass spectra were obtained using a Thermofisher LTQ Orbitrap
XL, by the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Elemental analysis was obtained using a Perkin Elmer 240 Elemental Analyser, by
Dr Nigel Howard from the elemental analysis lab at the University of Cambridge.

General Polymerization protocols: A mixture of the catalyst (5.0 ymol, 1 equiv.), 1,2-
cyclohexenediol (11.7 mg. 100.0 ymol, 20 equiv.), phthalic anhydride (if used, 148.7
mg, 1.0 mmol, 200 equiv.) and cyclohexene oxide (2 mL, 20.0 mmol, 4000 equiv.) was
added to a Schlenk tube, under nitrogen. If carbon dioxide was applied, the reaction
was subjected to three vacuum/CO, cycles (pressure regulated at 1 bar CO,). If
carbon dioxide was not used, the Schlenk tube was connected to vacuum/nitrogen
line. The Schlenk tube was fitted with a DiComp probe for in situ-ATRIR spectroscopy
(REACTIR) and submerged into an oil bath that was preheated to the appropriate
temperature. At this point the REACTIR instrument was set to begin data-collection
(to). After the reaction was completed, the mixture was allowed to cool to room
temperature and the crude product composition was analysed by NMR spectroscopy



of an aliquot to determine the ratio of products (poly(cyclohexene carbonate) PCHC,
poly(cyclohexene oxide) PCHO, poly(cyclohexene-alt-phthalate) PCHPE and
cyclohexene carbonate c5c). The polymer was isolated by adding the concentrated
polymerisation mixture (ca 0.5 mL, achieved by removing excess CHO under a stream
of Nz) to 100 mL of acidified MeOH (10 uL concentrated HCI, per 100 mL MeOH)
resulting in the precipitation of the polymer.



Section S2: Summary of ROCOP results and comparison to previous reports

Cat.2 Polymer Carbonate: Polymer Polymer M, [kg/mol] (D)f

Selectivity Ether (%)° TON¢ TOF [h]¢

(%)°

120Na? 97 86:14 1960 478 5.61 (1.29)
27,Na 95 82:18 1440 416 4.65 (1.22)
3znNa 97 95:5 800 310 3.01 (1.19)
47.na 95 87:13 1956 1084 5.48 (1.18)
57nNa 91 78:22 1740 282 5.43 (1.23)
62nNa inactive - - - -
1mgNa 62 >99:1 314 16 n.d.
1aINa Decomp. - - - -
1NiNa Decomp. - - - -
1coNa >99 73:27 520 270 2.0 (1.15)

Table S 1: 2Copolymerization conditions: 0.025 mol% catalyst loading (1:4000), 20 equiv. 1,2-cyclohexane diol (CHD), 1 bar
CO,, CHO neat (9.99 M), 100°C (*80°C). Polymerizations were stopped once conversions versus time plots deviate from
linearity. PDetermined by comparison of the relative integrals, in the normalised 'H NMR spectrum (CDCls, 25°C), of resonances
due to polymer (& 4.65 ppm, 3.45 ppm) and cyclic carbonate (6 4.00 ppm).cDetermined by comparison of the relative integrals,
in the normalised the "H NMR spectrum, of resonances due to carbonate (5 4.65 ppm) and ether (5 3.45 ppm) linkages.
9Turnover number (TON), number of moles of CHO consumed per mole of catalyst. Turnover frequency (TOF) determined
from initial rates analysis by in situ ATR-IR spectroscopy (typically 5 — 15% conversion) as TON/time. ‘Determined by GPC (gel
permeation chromatography) measurements conducted in THF, using narrow MW polystyrene standards to calibrate the

instrument; B = M,/M,.. 9According to Reference [3].

Cat.? PE PCHO M, [kg/mol] (D)
TOF [h]* TON[h"]c

120na° 173 - -
270Na 120 208 2.26 (1.18)
3znNa 225 56 1.90 (1.17)
4znNa 92 120 2.05(1.16)
5znNa’ 6 - 1.05 (1.16)
6znNa 50 - 1.75 (1.15)
1mgNa 142 840 3.97 (1.19)
1NiNa Decomp. - -
1aiNa Decomp. - -
1coNa 136, 51 200 2.23 (1.17)

Table S 2:2Copolymerization conditions: 0.025 mol% catalyst loading (1:4000), 20 equiv. 1,2-cyclohexane diol (CHD), 200 equiv.
PA (100 equiv.), CHO neat (9.99 M), 100°C (*80°C). Polymerizations were stopped once CHO to PCHO conversions versus
time plots deviate from linearity after complete PA consumption. ®Turnover frequency (TOF) determined from rate analysis by in
situ ATR-IR spectroscopy (typically 20 — 80% PA conversion) as TON/time. °Turnover number (TON), number of moles of CHO
consumed per mole of catalyst, overall turnover determined by 'H NMR. ¢Determined by GPC (gel permeation chromatography)
measurements conducted in THF, using narrow MW polystyrene standards to calibrate the instrument; B = M,,/M,. ¢According to

Reference [3].
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Figure S 1: GPC traces of polymers produced in this study.
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Figure S 2: Selected high activity, under low carbon dioxide pressure (<3 atm), catalysts for
CO,/CHO ROCOP. Note that the activity values are quoted per initiating group in each case
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Figure S 3: High activity, PA/CHO ROCOP catalysts previously reported in the literature. Activity is

given per initiator and the loading is reported as per catalyst : PA : CHO



Section S3: Synthesis and Characterisation of H,L2 and 2,,y, and
Polymerisation kinetics of 2z,n,
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Scheme S 1: Synthesis of H,L2 from A and NMR assignment numbering for Zn,Na.

Synthesis of H,L2: A solution of A (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4
mL) was added to a solution of 4,5-dimethyl-phenylenediamine (37.6 mg, 0.28 mmol,
1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for one week at room
temperature during which orange crystals formed, which were isolated by decantation,
washed with Et,O (1mL) and died in vacuo to yield H,L2 1.5H,O as an orange
crystalline powder (32.3 mg, 43 pmol, 31%).

H NMR (400 MHz, CDCIs) 5 13.30 (s, 1H, OH), 8.59 (s, 1H, H4), 7.12 (dd, J = 7.9,
1.6 Hz, 1H, H6), 7.05 - 6.91 (m, 2H, H2, H8), 6.80 (t, J = 7.8 Hz, 1H, H7), 2.33 (s, 3H,
Me).

13C{'H} NMR (126 MHz, 1:1 d-DMSO:CDCl;) 5 161.73 (C4), 151.79 (C10), 143.80
(C9), 139.14 (C3), 136.37 (C1), 126.38 (C6), 121.02 (C8), 119.84 (C2), 119.34 (C5),
117.74 (C7), 18.98 (Me).

Elemental Analysis (H,L2? 1.5H,0, C44H39N4O- 5) calculated C 71.1% H 5.3% N
7.5% found C 71.0% H 5.0% N 7.4%

HRESI-MS mi/z = calculated [M + H]* 717.2708, [M + Na]* 739.2527. Found [M + H]J*
717.2709, [M + NaJ* 739.2522
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Figure S 5: '3C{'H} NMR spectrum (126 MHz,1:1 de-DMSO:CDCl3, 25°C) of H,L2.
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Figure S 6: Positive mode high-resolution ESI mass spectrum of H,L2.
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Scheme S 2: Synthesis of 2z,n2 from HoL2 and NMR assignment numbering for
2ZnNa-

Synthesis of 2;,y,: A solution of Zn(OAc),-(H,0), (33.3 mg, 151 ymol, 2 equiv.) and
CF3CsF4CO,Na (17.2 mg, 75 umol, 1 equiv.) in MeOH (5 mL) was added to a solution
of H,L2 (53.8 mg, 75 umol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was
left unperturbed for 5 min. Afterwards all volatiles were removed in vacuo yielding a
semi-solid which was washed with Et,O (100 mL). To remove the acetic acid by-
product fully, the crude product was suspended in toluene (20 mL) which was
afterwards removed under vacuum. This process was repeated, Yyielding
Zn;Na-2.5H,0 as an orange powder (80 mg, 73 umol, 96%).

H NMR (500 MHz, ds-DMSO) 5 8.81 (s, 1H, H4), 7.92 (s, 0.5H, H13), 7.62 (s, 0.5H,
H14), 7.57 (s, 1H, H2), 7.20 (d, J = 7.3 Hz, 1H, H6), 7.16 (d, J = 7.7 Hz, 1H, H8),
6.52 (t, J = 7.9 Hz, 1H, H7), 2.33 (s, 3H, Me).



13C{'H} NMR (126 MHz, d¢-DMSO) 5 168.36 (C11), 162.91 (C4), 162.30 (C3),
148.47 (C9), 140.94 (C12), 137.93 (C10), 136.21 (C1), 130.50 (C6), 130.12 (C13),
124.31 (g, J = 271 Hz, C16), 124.46 (C14), 120.84 (C15, C5), 120.59 (C8), 117.66
(C2), 111.81 (C7), 19.49 (Me).

19F{'H} NMR (470 MHz, dg-DMSO) & -61.01.

Elemental Analysis (ZZnNa 25H20, C52H41 F3 N4O1o.5Zn2) calculated C 56.8% H
3.8% N 5.1% found C 57.2% H 3.4% N 4.7%

HRESI-MS m/z = calculated [M - CF;CsF4,CO,Na]* 865.0766. Found 865.0773
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Figure S 7: "H NMR spectrum (500 MHz, dg-DMSO, 25°C) of 2z,na.
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Figure S 9: 19F{'H} NMR (470 MHz, d-DMSO, 25°C) of 2znxa.
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Figure S 10: Positive mode high-resolution ESI mass spectrum of 2z,a.
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Figure S 11: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c
vs. time (

Table S 1, run #2). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 3z.na, 20 equiv. cyclohexane diol (CHD),
4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1744
cm' (PCHC), 1089 cm' (PCHOQO) and 1785 cm' (c5c). The turn-over-frequency (TOF)
were obtained from 5-15.0% conversion to PCHC.
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Figure S 12: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO
respectively) vs. time (Table S 2, run #2). Data are obtained using in situ ATR-IR
spectroscopic monitoring of polymerizations conducted using 1 equiv. ZnyNa, 20
equiv. cyclohexane diol (CHD), 200 eqgiv PA, 4000 equiv. cyclohexene oxide (CHO)
and 1 bar N, pressure at 100 °C. The conversion data was obtained by monitoring the
changes to absorptions at 1730 cm-' (PCHC) and 1089 cm-! (PCHO). The turn-over-
frequency was obtained from 20-80.0% PA conversion.

Section S4: Synthesis and Characterisation of H,L3 and 32,5, and
Polymerisation kinetics of 3z,na
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Scheme S 3: Synthesis of H,L3 from A and NMR assignment numbering for H,L3

Synthesis of H,L3: A solution of A (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4
mL) was added to a solution of 4,5-dichloro-phenylenediamine (48.9 mg, 0.28 mmol,



1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for one week at room
temperature during which brown crystals formed, which were isolated by decantation,
washed with Et,0 (1mL) and died under vacuum to yield H,L3 as a brown crystalline
powder (28.5 mg, 35 umol, 25%).

'H NMR (400 MHz, CDCl3) 5 12.84 (s, 1H, OH), 8.58 (s, 1H, H4), 7.31 (s, 1H, H2),
7.15 (dd, J = 7.8, 1.6 Hz, 1H, H6), 7.04 (dd, J = 7.9, 1.6 Hz, 1H, H8), 6.83 (t, J = 7.9
Hz, 1H, H7).

13C{'H} NMR (126 MHz, CDCl;) 5 164.46 (C4), 152.22 (C10), 144.58 (C9), 142.24
(C3), 131.06 (C1), 127.31 (C2), 122.44 (C8), 120.52 (C6), 120.15 (C5), 118.59 (C7).

Elemental Analysis (H,L3 H,0O, C4H2CIlsN,O-) calculated C 58.8% H 3.2% N 6.9%
found C 58.9% H 3.0% N 7.2%

HRESI-MS m/z = calculated [M + H]* 821.0336; found 821.0322.
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Figure S 13: '"H NMR spectrum (500 MHz, CDCl5, 25°C) of H,L3.
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Figure S 14: 3C{'H} NMR spectrum (126 MHz, CDCl;, 25°C) of H,L3.
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Figure S 15: Positive mode high-resolution ESI mass spectrum of H,L3.



1 ; 0 T 0 2 equiv. Zn(OAc),+(H,0)
:@N OH OH N@:

2
Cl Cl 1 equiv. CF3C6H4C02N3 cl
cl N OH OH N Cl DCM/MeOH
| [ o | 25 °C, 5 min
H,L3

Scheme S 4: Synthesis of 3z,na from H,L3 and NMR assignment numbering for
3ZnNa-

Synthesis of 3z,na: A solution of Zn(OAc),-(H,0), (33.3 mg, 151 ymol, 2 equiv.) and
CF3;CsF4COzNa (17.2 mg, 75 umol, 1 equiv.) in MeOH (5 mL) was added to a solution
of H,L3 (60.0 mg, 75 umol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was
stirred for 5 min. Afterwards all volatiles were removed in vacuo yielding a semi-solid
which was washed with Et,O (100 mL). To remove the acetic acid by-product fully, the
crude product was suspended in toluene (20 mL) which was afterwards removed in
vacuo. This process was repeated, yielding 3z,na 5H20 as a red powder (87.5 mg, 71
pgmol, 95%).

H NMR (500 MHz, ds-DMSO) & 8.89 (s, 1H, H4), 8.12 (s, 1H, H2), 7.96 (s, 0.5H,

H13), 7.65 (s, 0.5H, H14), 7.21 (d, J = 8.0 Hz, 1H, H6), 7.17 (d, J = 7.9 Hz, 1H, H8),
6.54 (t, J=7.8 Hz, 1H, H7).

13C{'H} NMR (126 MHz, d¢-DMSO) & 167.88 (C11), 165.93 (C4), 163.40 (C3),
148.89 (C9), 140.85 (C10), 135.42 (C12), 131.91 (C6), 130.33 (C1), 129.85 (C13),
128.69, 125.01 (C14), 124.27 (m, C15,C5), 121.82 (C8), 119.71 (C2), 112.65 (C7).
19F{'H} NMR (470 MHz, d;-DMSO) & -61.01.

Elemental Analysis (3ZnNa 5H20, C48H34C|4F3N4 NaO13Zn2) calculated C 47.0% H
2.8% N 4.4% found C 47.0% H 2.5% N 4.4%

HRESI-MS m/z = calculated [M - CF3CsF4CO,Na]* 946.8560. Found 946.8564
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Figure S 16: "H NMR spectrum (500 MHz, de-DMSO, 25°C) of 3z,na.
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Figure S 20: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c
vs. time (

Table S 1, run #3). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 3z,na, 20 equiv. cyclohexane diol (CHD),
4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1744
cm' (PCHC), 1089 cm-' (PCHOQO) and 1785 cm' (c5c¢). The turn-over-frequency (TOF)
was obtained from 5-15.0% conversion to PCHC.
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Figure S 21: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO
respectively) vs. time (Table S 2, run #3). Data are obtained using in situ ATR-IR
spectroscopic monitoring of polymerizations conducted using 1 equiv. Zn;Na, 20
equiv. cyclohexane diol (CHD), 200 eqgiv PA, 4000 equiv. cyclohexene oxide (CHO)



and 1 bar N, pressure at 100 °C. The conversion data was obtained by monitoring the
changes to absorptions at 1730 cm-' (PCHC) and 1089 cm-! (PCHO). The turn-over-
frequency was obtained from 20-80.0% PA conversion.

Section S5: Synthesis and Characterisation of H,L* and 42,5, and
Polymerisation kinetics of 4z,na

1 equiv. H
F 4 5
F
| o |
CH3;CN F F
25°C, 7d
A

H,L*

Scheme S 5: Synthesis of H,L* and NMR assignment numbering for H,L4.

Synthesis of H,L2: A solution of A (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4
mL) was added to a solution of 4,5-dimethyl-phenylenediamine (39.8 mg, 0.28 mmol,
1 equiv.) in acetonitrile (4 mL). The mixture was allowed to stand for one week at room
temperature during which brown crystals formed, which were isolated by decantation,
washed with Et,O (1mL) and dried under vacuum to yield H,L* H,O as a brown
crystalline powder (29.4 mg, 39 umol, 28%).

H NMR (500 MHz, CDCl5) 5 8.80 (s, 1H, H4), 7.44 (t, J = 9.5 Hz, 1H, H2), 7.28 (dd,
J=17.7,1.6 Hz, 1H, H6), 6.95 (dd, J = 8.0, 1.6 Hz, 1H, H8), 6.82 (t, J = 7.9 Hz, 1H,
H7).

13C NMR (126 MHz, CDCl;) & 164.70 (d, J = 9.5 Hz, C4), 151.57 (C10), 148.76 (dd,
J=251.1, 15.5 Hz, C1), 143.69 (C9), 138.51 (t, J = 4.5 Hz, C3), 127.31 (C6), 121.70
(C8), 119.88 (C5), 118.23 (C7), 107.93 (C2).

Elemental Analysis (4z,na H2O, CyoH2sF4N4O7) calculated C 64.0% H 3.5% N 7.5%
found C 64.0% H 3.4% N 7.3%

ESI-MS m/z = calculated [M + H]* 732.2; found 732.0; calculated [M + Na]* 755.2;
found 755.0
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Figure S 22: '"H NMR spectrum (500 MHz,1:1 CDCl;:de-DMSO, 25°C) of H,L4.
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Figure S 23: '3C{'H} NMR spectrum (126 MHz, 1:1 CDCl;:dg-DMSO, 25°C) of H,L*4.
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Figure S 24: '9F{'H} NMR (470 MHz, 1:1 CDCls:ds-DMSO, 25°C) of H,L4.
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Figure S 25: Positive mode low-resolution ESI mass spectrum of 4z,na.
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Scheme S 6: Synthesis of 4z,y2 from HoL* and NMR assignment numbering for
4znNa.

Synthesis of 4z,n.: A solution of Zn(OAc),(H20), (33.3 mg, 151 pmol) and
CF3CeF4CO2Na (17.2 mg, 75 pmol) in MeOH (5 mL) was added to a solution of H,L#
(65.0 mg, 75 pmol) in 5 mL DCM (5mL). The resulting solution was left unperturbed
for 5 min. Afterwards all volatiles were removed, in vacuo, yielding a semi-solid which
was washed with Et,O (100 mL). To remove the acetic acid by-product fully, the crude
product was suspended in toluene (20 mL) which was afterwards removed under
vacuum. This process was repeated, yielding 4z,na 2H2O as a orange powder (78.6
mg, 71 ymol, 95%).

1H NMR (500 MHz, ds-DMSO) 5 8.80 (s, 1H, H4), 7.90-8.01 (m, 2H, H13, H2), 7.59
(d, J = 8.0 Hz, 1H, H14), 7.17 (d, J = 8.0 Hz, 2H, H6, H8), 6.71 — 6.41 (m, 1H, H7).
19F NMR (377 MHz, d¢-DMSO) 5 -60.90 (CF5), -138.69 (ArF).

No 3C NMR could be obtained due to the low solubility of 4z,na in all common
organic solvents.

Elemental Analysis (4z,na 2H20, C4gH4sF7N4sNaO4¢Zn;) calculated C 52.1% H 2.6%
N 5.1% found C 51.7% H 2.7% N 5.1%

HRESI-MS m/z = calculated [M - CF3;CgF4CO,Na]* 880.9763; found 880.9768.
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Figure S 26: '"H NMR spectrum (500 MHz, ds-DMSO, 25°C) of 4z.na.
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Figure S 27: '°F {'"H} NMR (377 MHz, d-DMSO, 25°C) of 4z,xa-
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Figure S 28: Positive mode high-resolution ESI mass spectrum of 4z,a.
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Figure S 29: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c

vs. time (

Table S 1, run #4). Data are obtained using in situ ATR-IR spectroscopic monitoring

of polymerizations conducted using

1 equiv. 4z,na, 20 equiv. cyclohexane diol (CHD),

4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1744



cm™ (PCHC), 1089 cm™' (PCHO) and 1785 cm-’

(c5c¢). The turn-over-frequency (TOF)
was obtained from 5-15.0% conversion to PCHC.
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Figure S 30: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO
respectively) vs. time (Table S 2, run #4). Data are obtained using in situ ATR-IR
spectroscopic monitoring of polymerizations conducted using 1 equiv. 4z,na , 20 equiv.
cyclohexane diol (CHD), 200 equiv. PA, 4000 equiv. cyclohexene oxide (CHO) and 1
bar N, pressure at 100 °C. The conversion data was obtained by monitoring the

changes to absorptions at 1730 cm-' (PCHC) and 1089 cm"

(PCHO). The turn-over-

frequency was obtained from 0-60.0% PA conversion.

Section S6: Synthesis and Characterisation of H,L5 and 5,5, and

Polymerisation kinetics of 5z,na,

1 equiv.
NH2

NH2

CH4CN
25 °C, 7d

peR e

oo

H,L®

Scheme S 7: Synthesis of H,L5 and NMR assignment numbering for H,L5.



Synthesis of H,L5: A solution of A (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4
mL) was added to a solution of 2,2-dimethyl-1,3-diaminopropylene (28.6 mg, 0.28
mmol, 1 equiv.) in acetonitrile (4 mL). After the mixture was allowed to stand for 24h
at room temperature during which a yellow powder precipitated, which was isolated by
centrifugation, washed with Et,O (1mL) and died under vacuum to yield H,L5-H,0 as
a yellow powder (71.0 mg, 0.11 mmol, 77%).

H NMR (400 MHz, CDCl;) 5 13.94 (s, 1H, OH), 8.36 (s, 1H, H4), 7.02 (d, J = 7.7 Hz,
1H, HB), 6.97 (d, J = 7.8 Hz, 1H, H8), 6.77 (t, J = 7.5 Hz, 1H, H7), 3.49 (s, 2H, CH,),
1.06 (s, 2H, CHs).

13C NMR (126 MHz, CD,Cl,) 6 166.29, 153.28, 145.15, 126.53, 121.61, 120.29,
118.32, 68.12, 36.55, 24.44.

Elemental Analysis (H,Ls-H,O, C33H42N4O7) calculated C 68.5% H 6.4% N 8.4%
found C 68.4% H 6.3% N 8.6%

HRESI-MS m/z = calculated [M + H]* 649.3021, [M + Na]* 671.2840. Found [M + HJ*
649.3018, [M + Na]* 671.2937

3 4  gsgdene 2 8
\ B/ PR !
p
I's ‘
| (
pu I/
f |
C H \ |
) /
H7
HS /:SEHB
4 |
IR
H,C-N OH OH N
e <
I\l OH OH IN
A° CH,
& 5 C\HZ
H2L H4 H8
OH 7
| HJr l“
Jx (W) R y) l A —
T g 2K £l g
4‘1.5 14‘1.01\"&.51‘3.0 1é.5 ‘2.01‘1.51‘101[‘).51(‘).0 9‘.5 d.O 8‘.5 8‘.0 7‘.5 7‘ 6.5 é.O 5‘.5 5‘.0 4‘.5 4‘.0 3‘.5 3‘.0 2‘.5 2‘.0 1‘.5 1‘.0 d.E
5 (ppm)

Figure S 31: '"H NMR spectrum (500 MHz, CDCls, 25°C) of H,L5.
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Figure S 32: '3C{'H} NMR spectrum (126 MHz, ds-DMSO, 25°C) of H,L5.
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Figure S 33: Positive mode high-resolution ESI mass spectrum of H,L5.
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Scheme S 8: Synthesis of 5z,y, and NMR assignment numbering for 5z,na-

Synthesis of 5z7,na: A solution of Zn(OAc),-(H,0), (33.3 mg, 151 ymol, 2 equiv.) and
CF3CsF4CO2Na (17.2 mg, 75 umol, 1 equiv.) in MeOH (5 mL) was added to a solution
of H,L% (55.0 mg, 75 umol, 1 equiv.) in DCM (5mL). The resulting solution was left
stirred for 5 min. Afterwards all volatiles were removed in vacuo, yielding a semi-solid
which was washed with Et,O (100 mL). To remove the acetic acid by-product fully, the
crude product was suspended in toluene (20 mL) which was afterwards removed
under vacuum. This process was repeated, yielding 5z,na2 as a yellow powder (74.6
mg, 71 umol, 95%).

1H NMR (500 MHz, d,-Tetrachloroethane, 110°C) & 9.34 (s, 1H, H3), 9.23 (d, J =
7.9 Hz, 1H, H13/H14), 8.78 (d, J = 7.4 Hz, 1H, H13/H14), 8.41 (s, 1H, H6/H8), 8.18
(s, 1H, H6/H8), 7.77 (s, 1H, H7), 4.95 (s, 2H, CH,), 2.32 (s, 3H, CHa).

Due to the fluxional nature of 5z,y2 N0 3C NMR spectrum could be obtained.
Elemental Analysis (5z,na 3.5H20, CysH47F3N4sNaO445Zn;) calculated C 52.6% H
4.5% N 5.3% found C 53.0% H 4.3% N 4.9%

9F NMR (377 MHz, d;-Tetrachloroethane, 25°C) & -62.86.

HRESI-MS m/z = calculated [M - CF3;CgF4CO,Na]* 707.1084; found 707.1022.
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Figure S 34: '"H NMR spectrum (500 MHz, d>-TCE, 110°C) of 5z,na. Note that this is
the temperature limit of the TCE which is why full symmetrisation couldn’t be achieved.
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Figure S 35: "°F{'H} NMR (377 MHz, ds-DMSO, 25°C) of 5znna.
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Figure S 36: Positive mode high-resolution ESI mass spectrum of 5z,y,. The data
was collected on an Thermo Exactive High-Resolution Orbitrap FTMS.

35
-~ to PCHC
4 [+ to PCHO
. +toche S
~2
< 95 | =
@)
aE s
O 50 4
=
()
‘n
o 15
>
[
(@]
O 10 B
5_ l‘. .."‘.r.‘""-."" V P Ry e
0 LE% ki T T T T T T T T 1
0 200 400 600 800 1000

Time (min)

Figure S 37: Plot showing conversion of CHO to polymer (PCHC and PCHO) and c5c
vs. time (

Table S 1, run #5). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 5z,na, 20 equiv. cyclohexane diol (CHD),
4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1744
cm! (PCHC), 1089 cm' (PCHO) and 1785 cm™" (c5¢). The turn-over-frequency (TOF)
was obtained from 2-12.0% conversion to PCHC.
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Figure S 38: Plot showing conversion of PA and CHO to PCHPE vs. time (Table S 2,
run #5). Data are obtained using in situ ATR-IR spectroscopic monitoring of
polymerizations conducted using 1 equiv. 5z,na , 20 equiv. cyclohexane diol (CHD),
100 equiv. PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N, pressure at 100
°C. The conversion data was obtained by monitoring the changes to absorptions at
1730 cm™ (PCHC). The turn-over-frequency was obtained from 20-80.0% PA
conversion.

Section S7: Synthesis and Characterisation of H,L¢ and 62,5, and
Polymerisation kinetics of 6z,na

H5
H44 5 H6
1 equiv. 6
[NHz H? 2N ™0 |
O OH OH O L
| 5 | NH, ‘szN OH OH Nj
\©) CH3CN \N OH OH N
A 25°C, 1d U i 0 i J
H,L®

Scheme S 9: Synthesis of H,L% and NMR assignment numbering for H,LS.

Synthesis of H,LS: A solution of A (71.6 mg, 0.28 mmol, 1 equiv.) in acetonitrile (4
mL) was added to a solution of 1,2-ethylenediamine (16.8 mg, 0.28 mmol, 1 equiv.) in
acetonitrile (4 mL). The mixture was allowed to stand for 24h at room temperature



during which yellow crystals formed, which were isolated by decantation, washed with
Et,O (1mL) and dried under vacuum to yield H,L%-0.5H,O as a yellow crystalline
powder (35.6 mg, 60 umol, 45%).

'H NMR (500 MHz, dg-DMSO) & 13.68 (s, 1H, OH), 8.55 (s, 1H, H2), 7.18 (d, J = 7.9
Hz, 1H, H4), 6.87 (d, J = 7.9 Hz, 1H, HB), .75 (t, J = 7.9 Hz, 1H, H5), 3.94 (s, 2H,
CH.,).

13C NMR (126 MHz, dg-DMSO) & 166.27 (C2), 152.88 (C8), 144.35 (C7), 126.88
(C4), 122.22 (C6), 119.87 (C3), 117.45 (C5), 58.24 (C1).

Elemental Analysis (H,Lg-0.5H,0, C3,H29NgNaOg 5) calculated C 67.0% H 5.1% N
9.8% found C 67.3% H 4.9% N 9.7%

HRESI-MS m/z = calculated [M + H]* 565.2082, [M + Na]* 587.1901. Found [M + HJ*
565.2071, [M + NaJ* 587.1887
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Figure S 39: '"H NMR spectrum (400 MHz, ds-DMSO, 25°C) of H,LS.
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Figure S 40: 3C{'H} NMR spectrum (126 MHz, ds-DMSO, 25°C) of H,LS.
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Scheme S 10: Synthesis of 6z,y, and NMR assignment numbering for 6z,ya.

Synthesis of 6z,nya: A solution of Zn(OAc),-(H,0), (33.3 mg, 151 ymol, 2 equiv.) and
CF3CeF4CO,Na (17.2 mg, 75 umol, 1 equiv.) in MeOH (5 mL) was added to solid H,LS
(42.4 mg, 75 ymol, 1 equiv.). The resulting suspension was stirred at 50°C for 2h
during which a clear faint yellow solution formed. Afterwards all volatiles were removed
in vacuo, yielding a semi-solid which was washed with Et,0O (100 mL). To remove the
acetic acid by-product fully, the crude product was suspended in toluene (20 mL)
which was afterwards removed under vacuum. This process was repeated, yielding
6znna 3H20 as a faint yellow powder (69.7 mg, 73 pmol, 97%).

H NMR (500 MHz, de-DMSO) 5 8.45 (s, 1H, H2), 8.06 (d, J = 7.8 Hz, 1H, H11), 7.68
(d, J = 7.9 Hz, 1H, H12), 7.05 (dd, J = 7.7, 1.7 Hz, 1H, H4), 6.96 (dd, J = 8.0, 1.7 Hz,
1H, H6), 6.41 (t, J = 7.8 Hz, 1H, H5), 3.89 (s, 2H, CH.,).

13C NMR (126 MHz, dg-DMSO) & 168.88 (C9), 168.76 (C2), 162.14 (C8), 148.14

(C7), 141.42 (C13), 130.59 (C10), 130.42 (C11), 129.25 (C4), 125.03 (C12), 124.78
(g, J = 272.2 Hz, C14), 120.94 (C3), 119.21 (C6), 111.29 (C5), 55.01 (C1).

Elemental Analysis (Gana 3H20, C40H34F3N4NaO11Zn2) calculated C 50.2% H 3.6%
N 5.9% found C 50.3% H 3.4% N 5.7%

19F NMR (377 MHz, d¢-DMSO) 5 -60.98.

HRESI-MS m/z = calculated [M - CF3CgF4CO,Na]* 711.0171; found 707.0175.



8.45

_-8.07
<805
_7.69
X768

2 H®
H44 5 HG
s ° DMSO
sz N 020
10 11
5 HZC \ /O\l ] 11H H,O
'\N o/ A 12
I o) | e
6 4 6znNa
1 12
|
s ? T bim. g h

R e e e B e B e e e e B B R e B e R
8.6 8.4 82 80 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 58 56 54 52 50 48 4.6 44 4.2 4.0[3.8 3.6 3.4 3|2 3.0 2.8 2.6 2.4 2.2
5 (ppm)

Figure S 42: '"H NMR spectrum (400 MHz, ds-DMSO, 25°C) of 6z.na-
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Figure S 43: 13C{'"H} NMR spectrum (126 MHz, dg-DMSO, 25°C) of 6z0na.
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Figure S 44: 19F {TH} NMR (377 MHz, de-DMSO, 25°C) of 6znna-
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Figure S 45: Positive mode high-resolution ESI mass spectrum of 6z,na
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Figure S 46: Plot showing conversion of PA and CHO to PCHPE vs. time (Table S 2,
run #6). Data are obtained using in situ ATR-IR spectroscopic monitoring of
polymerizations conducted using 1 equiv. 6z,na , 20 equiv. cyclohexane diol (CHD),
200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N, pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1730
cm' (PCHC). The turn-over-frequency was obtained from 20-80.0% PA conversion.

Section S8: Synthesis, characterisation and polymerisation kinetics of 1ygna

rl ; O ; 0 2 equiv. Zn(OAc),+(Ho0)4
N OH OH N@ 1 equiv. CF3CgH4CO2Na
[ I N OH OH N DCM/MeOH

| o | 25°C, 5 min

H,L!

Scheme S 11: Synthesis of 1ygna from HoL' and NMR assignment numbering for
1MgNa-

Synthesis of 1ygna: A solution of Mg(OAc),'(H20)4 (32.4 mg, 151 ymol, 2 equiv.) and
CF3;CsF4COzNa (17.2 mg, 75 umol, 1 equiv.) in MeOH (5 mL) was added to a solution
of HoL' (50.0 mg, 75 pmol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was
stirred for 5 min. Afterwards all volatiles were removed in vacuo, yielding a semi-solid
which was washed with Et,O (100 mL). To remove the acetic acid by-product fully, the



crude product was suspended in toluene (20 mL) which was afterwards removed
under vacuum. This process was repeated, yielding 1ugna-3H2O as a orange powder
(69.9 mqg, 72 ymol, 96%).

H NMR (500 MHz, de-DMSO) & 8.75 (s, 1H, H4), 7.87 (s, 0.5H, H13), 7.72 (dd, J =
6.1, 3.4 Hz, 1H, H2), 7.54 (s, 0.5H, H14), 7.39 (dd, J = 6.0, 3.3 Hz, 1H, H1), 7.23 (dd,
J=8.1,1.8 Hz, 1H, H6), 7.10 (dd, J = 7.6, 1.9 Hz, 1H, H8), 6.50 (t, J = 7.7 Hz, 1H,
H7).

13C NMR (126 MHz, de-DMSO) 5 172.76 (C11), 163.54 (C4), 161.31 (C5), 148.43
(C9), 142.62 (C3), 141.97 (C12), 129.99-129.57 (C6, C9, C13), 127.48 (C1), 124.33
(C14), 124.32 (q, J = 272.3 Hz, C16), 122.36 (C8), 120.46 (C15), 117.31 (C2), 111.40
(C7).

Elemental Analysis (1ugna-3H20, CagHosF3MgoNsNaOg) calculated C 59.3% H 3.5%
N 5.8% found C 59.3% H 3.4% N 5.9%
19F NMR (377 MHz, ds-DMSO) 5 -60.97.

HRESI-MS m/z = calculated [M - CF;CsF4CO,]* 727.1289; found 727.1284.
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Figure S 47: "H NMR spectrum (400 MHz, de-DMSO, 25°C) of 1ugna-
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Figure S 48: 3C{'H} NMR spectrum (126 MHz, ds-DMSO, 25°C) of 1mgna-
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Figure S 49: "®F{'"H} NMR (377 MHz, dg-DMSO, 25°C) of 1mgna-
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Figure S 50: Positive mode high-resolution ESI mass spectrum of 1ygna

Conversion CHO (%)

T T ¥ T ¥ T ¥ T ¥ T
0 200 400 600 800 1000
Time (min)

Figure S 51: Plot showing conversion of CHO to polymer (PCHC) and c5c vs. time (

Table S 1, run #7). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 1ugna, 20 equiv. cyclohexane diol (CHD),
4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1744
cm' (PCHC) and 1785 cm-' (c5c). The turn-over-frequency (TOF = 16 h') was
obtained from 1-8.0% conversion to PCHC.
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Figure S 52: Plot showing conversion of PA and CHO to polymer (PCHPE and PCHO
respectively) vs. time (Table S 2, run #7). Data are obtained using in situ ATR-IR
spectroscopic monitoring of polymerizations conducted using 1 equiv. 1ugna , 20 equiv.
cyclohexane diol (CHD), 200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1
bar N, pressure at 100 °C. The conversion data was obtained by monitoring the
changes to absorptions at 1730 cm' (PCHPE) and 1089 cm-' (PCHO). The turn-over-
frequency was obtained from 20-80.0% PA conversion.
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Figure S 53: Plots showing conversion of homopolymerisation of CHO (1 equiv. cat,
20 equiv. CHD, 4000 equiv. CHO, 100°C) with (left) 1mgna @and (right) 1zana Showing
that overall CHO conversion is intrinsically pseudo equilibrium limited at different
monomer conversions.



Section S9: Synthesis, characterisation and polymerisation kinetics of 1yina

| O | 2 equiv. Ni(OAc); (H20)4
N OH OH N]@ 1 equiv. CF3CgH4COyNa  H!
[ [ DCMMeOH
N OH OH N
| o | 25°C, 5 min

H,L!

Scheme S 12: Synthesis of 1yina from HoL' and NMR assignment numbering for
1NiNa-

Synthesis of 1ygna: A solution of Ni(OAc),(H20)4 (37.5 mg, 151 ymol, 2 equiv.) and
CF3CsF4CO2Na (17.2 mg, 75 umol) in MeOH (5 mL, 1 equiv.) was added to a solution
of HoL' (50.0 mg, 75 umol, 1 equiv.) in 5 mL DCM (5mL). The resulting solution was
stirred for 5 min. Afterwards all volatiles were removed in vacuo, yielding a semi-solid
which was washed with Et,O (100 mL). To remove the acetic acid by-product fully, the
crude product was suspended in toluene (20 mL) which was afterwards removed
under vacuum. This process was repeated, yielding 1nina2H20 as a orange powder
(71.2 mg, 71 umol, 94%).

H NMR (500 MHz, d¢-DMSO) 6 9.54 (s, 1H, H4), 8.26 (dd, J = 6.5, 3.4 Hz, 1H, H2),

8.08 (s, 0.5H, H13), 7.67 (s, 0.5H, H14), 7.55 — 7.48 (m, 2H, H6. H1), 7.45 (d, J = 7.4
Hz, 1H, H8), 6.80 (t, J = 7.9 Hz, 3H, H7).

No 13C spectrum could be obtained due to the low solubility of 1nina in all common
organic solvents.

Elemental Analysis (1NiNa'2H20’ C48H32F3Ni2N4NaO10) calculated C 57.4% H 3.0%
N 5.6% found C 57.2% H 3.4% N 5.6%

19F NMR (377 MHz, DMSO) 5 -60.99 (CF5).

HRESI-MS m/z = calculated [M - CF3CgF4CO,Na]* 795.0295; found 795.0295.
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Figure S 54: '"H NMR spectrum (400 MHz, de-DMSO, 25°C) of 1yiNa-
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Figure S 55: 19F{'H} NMR (377 MHz, de-DMSO, 25°C) of 1yina-
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Figure S 56: Positive mode high-resolution ESI mass spectrum of 1yina

Conversion PA (%)

30

N
[$)]
1

N
o
1

-
(8]
1

—
o
1

[8)]
1

T
100

T
200 300
Time (min)

T 1
400 500

Figure S 57: Plot showing conversion of PA and CHO to polymer (PCHPE) vs. time
(Table S 2, run #8). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 1yina , 20 equiv. cyclohexane diol (CHD),
200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N, pressure at 100 °.
Decrease in activity occurs together with precipitation of a solid.



Section S10: Synthesis, characterisation and polymerisation kinetics of 15na

by © Su N 1)2.2 equiv. AlEts, THF, 25 °C, 16h 1
. ° 3 \
@ :@ 2) 4 equiv. HOAc, THF, 25 °C, 16 h \AI/® NS @AI/ :@ 7/
N| OH OH |N 3) 1 equiv. NaOAc, MeOH, 25 °C, 5 min
ORet Yj ﬁj

H,L! 1AINa

Scheme S 13: Synthesis of 1ana from HoLT and NMR assignment numbering for
1AINa-

Synthesis of 15na: AlEt; (18.8 mg, 165 umol, 2.2 equiv.) was added to a solution of
H,L' (50.0 mg, 75 ymol, 1 equiv.) in 5 mL THF (5mL). The resulting solution was stirred
overnight at room temperature. Afterwards glacial acetic acid (14.9 mg, 248 umol, 3.3
equiv.) was added and the resulting mixture was stirred for 5h during which a yellow
solid precipitated which was isolated by centrifugation. The solid was dissolved in
MeOH (5 mL) and NaOAc (6.2 mg, 75 pmol, 1 equiv.) was added. The resulting
solution was added to Et,O (100 mL) leading to the precipitation of a yellow solid.
Precipitation from MeOH/Et,O was repear another two times. Isolation by
centrifugation and drying in vacuo yielded 1ana as a yellow powder (31.5 mg, 35 pmol,
46% yield).

H NMR (500 MHz, d;-MeOH) & 9.15 (s, 1H, H4), 8.02 (dd, J = 6.1, 3.3 Hz, 1H, H2),
7.62 (dd, J = 6.1, 3.2 Hz, 1H, H1), 7.45-7.45 (m, 2H, H6, H8), 6.84 (t, J = 7.9 Hz, 1H,
H7), 1.74 (s, 3H, H12).

13C NMR (126 MHz, d,-MeOH) & 178.97 (C11), 163.52 (C4), 158.16 (C10), 147.81
(C9), 139.92 (C3), 130.68 (C1), 130.22 (C8), 123.02 (C6), 122.59 (C5), 118.29 (C2),
117.01 (C7), 23.44 (C12).

No suitable elemental analysis could be obtained

HRESI-MS m/z = calculated [M - OAc]* 851.1485; found 851.1488.
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Figure S 58: '"H NMR spectrum (500 MHz, d4-MeOH, 25°C) of 1aNa-
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Figure S 59: '3C{'H} NMR spectrum (126 MHz, d4-MeOH, 25°C) of 1ana-
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Figure S 60: Positive mode high-resolution ESI mass spectrum of 1ana
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Figure S 61: Plot showing conversion of PA and CHO to polymer (PCHPE) vs. time
(Table S 2, run #9). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 1aina , 20 equiv. cyclohexane diol (CHD),
200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N, pressure at 100 °.

Decrease in activity occurs together with emergence of a colour change of yellow to
deep red.



Section S11: Synthesis, characterisation and polymerisation kinetics of 1¢ona
(o] lo) o Me

o )\ 12/1u1\ o o] )j\
| (,’ 1 equiv. NaOAc, Me™ =0 0™, Me
o Co MeOH, 5 min l \ c|
~— N/ \O O/ \N/\/ / \ / ‘ \ 7~ 0\ /\/

1C0 1 }HPip
CoNa
14
15

Scheme S2: Synthesis of 1¢ona from 1¢, and NMR assignment numbering for 1¢ona.

Synthesis of 1¢ona: 1co (30.0 mg, 27 umol, 1 equiv.) and NaOAc (2.3 mg, 27 pmol, 1
equiv.) are dissolved in MeOH (0.7 mL). After 1 min the solvent was removed under
stream of nitrogen and the resulting solid was taken up in 0.7 mL dg-DMSO and
analysed by "H NMR spectroscopy. Due to the instability of 1¢ona NO further analysis
could be obtained.

Note that in order to employ 1¢ona in polymerisation the complex was prepared in the
polymerisation tube in MeOH which was removed in vacuo prior to addition of CHO,
CHD and CO..

1H NMR (400 MHz, dg-DMSO): 5 8.63 (s, 4H, H3), 8.27 (dd, J = 6.2, 3.4 Hz, 4H, H2),
7.59 (dd, J = 6.2, 3.2 Hz, 4H, H1), 7.34 (dd, J = 8.1, 1.7 Hz, 4H, H6), 7.19 (dd, J = 7.7,
1.7 Hz, 4H, H8), 6.61 (t, J = 7.8 Hz, 4H, H7), 4.80 — 4.52 (t, J = 9.0H, 2H), 2.43 (d, J =
11.2 Hz, 4H, Hpyp), 1.70 — 0.75 (m, 25H, Hpip/Me).
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Figure S 62: "H NMR spectrum (400 MHz, de-DMSO, 25°C) of 1¢oNa-
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Figure S 63: 'H NMR spectrum (400 MHz, dg-DMSO, 25°C) of 1¢ona-

~—— to PCHO
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Figure S 64: Plot showing conversion of CHO to polymer (PCHC) and c5c vs. time (

Table S 1, run #10). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 1ugna, 20 equiv. cyclohexane diol (CHD),
4000 equiv. cyclohexene oxide (CHO) and 1 bar carbon dioxide pressure at 100 °C.
The conversion data was obtained by monitoring the changes to absorptions at 1744

cm™' (PCHC) and 1785 cm' (c5¢). The turn-over-frequency (TOF) were obtained from
0-10% conversion to polymer.
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Figure S 65: Plot showing conversion of PA and CHO to polymer (PCHPE) vs. time
(Table S 2, run #10). Data are obtained using in situ ATR-IR spectroscopic monitoring
of polymerizations conducted using 1 equiv. 1¢ona , 20 equiv. cyclohexane diol (CHD),
200 eqiv PA, 4000 equiv. cyclohexene oxide (CHO) and 1 bar N, pressure at 80°C
(Table S 2, run #10). Change in activity (highlighted by dotted box) is inferred to be a
consequence of Co(lll) to Co(ll) thermal reduction. The turn-over-frequency (TOF)

were obtained from 0-30% and 40-90% PA conversion.
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Figure S 66: Stacked '"H NMR spectra (400 MHz, CDCls;, 25°C) of aliquots removed
prior and after ROCOP to ROP switch (corresponding to Figure S 52) showing ether
linkage formation exclusively occurs after mechanistic switch.
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Figure S 66: Stacked GPC traces of aliquots removed prior and after ROCOP to ROP
switch (corresponding to Figure S 52) showing growth of formed polymer chains after
mechanistic switch rather than generation of new chains. Furthermore polymer
samples maintain composition through multiple precipitation from DCM/MeOH or

DCM/pentane further confirming block connection.
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Figure S 67: Example ROCOP mechanism for CO,/epoxide copolymerisation.
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