Supporting Information

Palladium-CatalyzedSequentialVinylC-HActivation/DualDecarboxylation:RegioselectiveSynthesisofPhenanthrenesandCyclohepta[1,2,3-de]naphthalenes

Guomin Jiang,[‡] Hao Ye,[‡] Lei Shi, Hong Dai,* and Xin-Xing Wu*

College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China

Email: wuxinxng@163.com

Table of Contents

1. General considerations	S2
2. Preparation of substrates	S2
3. Experiment procedure	S2-S3
4. Gram-scale reaction of 3aa	S3
5. Synthesis of phenacene-type compound A for OLEDs	S3-S4
6. Control experiments	S4
7. Spectra data	S4-S16
8. References	S16
9. NMR spectra	S17-S63

1. General considerations

All materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. Solvents were purified and dried according to standard methods prior to use. For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90) are used. ¹H NMR spectra were recorded on a Bruker advance III 400 MHz in CDCl₃ [¹H NMR: CD(H)Cl₃ (7.26 ppm)] and ¹³C NMR spectra were recorded on 101 MHz in CDCl₃ [¹³C NMR: CD(H)Cl₃ (77.00 ppm)]. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR is reported in terms of chemical shift (δ , ppm). High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II.

2. Preparation of substrates

Subatrates **1** were synthesized according to literatures.¹⁻⁵ α -oxocarboxylic acids **2** were prepared from the coresponding methyl ketones via oxidation with SeO₂ through the known literatures.⁶⁻⁹

3. Experiment procedure

1 (0.2 mmol), **2** (0.3 mmol), $Pd(OAc)_2$ (5 mol%), $P(2-furyl)_3$ (10 mol%), ^tBuOLi (0.6 mmol) and PivOH (20 mol %) were added to a sealed tube, DMA (2.0 mL) were added via syringe. The mixture was stirred at room temperature for 15 min firstly, and then was stirred in an oil bath at 120 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the reaction mixture was filtered and the filtrate diluted in ethyl acetate and washed with water. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified through silica gel chromatography (petroleum ether/EtOAc) to afford the coresponding products **3**.

1 (0.2 mmol), 2-(8-bromonaphthalen-1-yl)-2-oxoacetic acid **2'** (0.3 mmol), $Pd(OAc)_2$ (5 mol%), $P(2-furyl)_3$ (10 mol%), ^tBuOLi (0.6 mmol) and PivOH (20 mol %) were added to a sealed tube, DMA (2.0 mL) were added via syringe. The mixture was stirred at room temperature for 15 min firstly, and then was stirred in an oil bath at 120 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the reaction

mixture was filtered and the filtrate diluted in ethyl acetate and washed with water. The combined organic layers were dried over anhydrous Na_2SO_4 and evaporated under vacuum. The residue was purified through silica gel chromatography (petroleum ether/EtOAc) to afford the coresponding products **4**.

4. Gram-scale reaction of 3aa

1i (3.0 mmol, 0.92 g), **2i** (4.5 mmol, 1.18 g), Pd(OAc)₂ (5 mol%), P(2-furyl)₃ (10 mol%), ^{*t*}BuOLi (9.0 mmol) and PivOH (20 mol %) were added to a sealed tube, DMA (30 mL) were added via syringe. The mixture was stirred at room temperature for 15 min firstly, and then was stirred in an oil bath at 120 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the reaction mixture was filtered and the filtrate diluted in ethyl acetate and washed with water. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified through silica gel chromatography (petroleum ether/EtOAc = 50:1) to afford the coresponding products **3aa** in 66% yield.

5. Synthesis of Phenacene-type Compound A for OLEDs

To a mixture of **3aa** (57.6 mg, 0.2 mmol), (Bpin)₂ (60.6 mg. 0.24 mmol), Pd(PCy₃)₂Cl₂ (7.4 mg, 0.01 mmol) and KOAc (39 mg, 0.40 mmol) was added dioxane (2.0 mL) at room temperature under argon atmosphere. Then it was heated to 90 °C in an oil bath and stirred at this temperature for 5 h. After cooling to room temperature, water and CH₂Cl₂ were added to the mixture. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuo and the residue was purified by flash chromatography eluting with petroleum ether/ethyl acetate = 50:1 v/v to afford **5** (54 mg, 71% yield) as a white solid.

To a mixture of **5** (114 mg, 0.3 mmol), $Pd(PPh_3)_4$ (11.5 mg, 0.01 mmol), Na_2CO_3 (43 mg, 0.4 mmol) in a sealed tube was added 9-bromo-10-phenylanthracene (66.6 mg, 0.2 mmol) in 4.0 mL of toluene, 2.0 mL EtOH and 1.0 mL H₂O under argon atmosphere. The mixture was stirred at room temperature for 5 min and then reacted at 90 °C in an oil bath for further 14 h. After being cooled down to room temperature, the reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1 v/v) to afford phenacene-type Compound **A** (66 mg, 65% yield) as a white solid.

6. Control experiments

7. Spectra data

9-methylphenanthrene (3a): 27 mg; 70% yield; white solid; mp = 80-82 °C; Spectroscopic data matched reported literature data.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 8.68-8.62 (m, 1H), 8.59 (dd, J = 7.2, 2.3 Hz, 1H), 8.03-7.96 (m, 1H), 7.75 (dd, J = 7.3, 2.0 Hz, 1H), 7.64-7.57 (m, 2H), 7.53 (ddd, J = 6.4, 3.8, 1.9 Hz, 3H), 2.67 (d, J = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.4, 132.0, 132.0, 130.3, 129.6, 127.8, 126.7, 126.5, 126.5, 126.2, 125.8, 124.6, 123.0, 122.4, 20.0.

4,9-dimethylphenanthrene (3b): 26 mg; 63% yield; white solid; mp = 49-51 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.94-8.86 (m, 1H), 8.11-8.03 (m, 1H), 7.73-7.59 (m, 3H), 7.54 (d, *J* =

1.3 Hz, 1H), 7.46-7.39 (m, 2H), 3.11 (s, 3H), 2.69 (d, J = 1.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.1, 133.6, 133.3, 132.0, 131.8, 130.6, 129.5, 128.0, 127.7, 126.7, 125.9, 125.7, 125.1, 124.4, 27.3, 20.0. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₄Na 229.0988; found: 229.0987.

3,9-dimethylphenanthrene (3c): 30 mg; 72% yield; white solid; mp = 57-59 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.75-8.66 (m, 1H), 8.43 (s, 1H), 8.07-7.99 (m, 1H), 7.73-7.57 (m, 3H), 7.53 (s, 1H), 7.38 (dd, *J* = 8.1, 1.6 Hz, 1H), 2.70 (d, *J* = 1.1 Hz, 3H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.4, 132.2, 131.4, 130.1, 129.9, 129.7, 128.3, 127.7, 126.5, 126.3, 126.0, 124.6, 122.9, 122.2, 22.1, 20.0. HRMS (ESI) m/z: [M+K]⁺ calcd for C₁₆H₁₄K 245.0727; found: 245.0721.

1,9-dimethylphenanthrene (3d): 22 mg; 54% yield; white solid; mp = 67-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.75-8.67 (m, 1H), 8.52 (d, *J* = 8.3 Hz, 1H), 8.08-8.01 (m, 1H), 7.76 (s, 1H), 7.62 (hept, *J* = 5.1 Hz, 2H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 7.0 Hz, 1H), 2.73 (d, *J* = 12.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.0, 132.2, 131.6, 130.7, 130.6, 129.6, 127.7, 126.3, 126.2, 125.3, 124.6, 123.3, 122.8, 120.7, 20.5, 19.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₄Na 229.0988; found: 229.0987.

2,9-dimethylphenanthrene (3e): 27 mg; 66% yield; white solid; mp = 52-54 °C; Spectroscopic data matched reported literature data.^{11 1}**H NMR** (400 MHz, CDCl₃) δ 8.64 (dd, *J* = 7.6, 1.9 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 8.00 (dd, *J* = 7.4, 2.0 Hz, 1H), 7.64-7.51 (m, 3H), 7.46 (s, 1H), 7.38 (dd, *J* = 8.5, 1.8 Hz, 1H), 2.68 (s, 3H), 2.51 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.2, 132.4, 132.1, 131.7, 130.4, 127.5, 127.5, 127.4, 126.5, 126.1, 126.0, 124.6, 122.8, 122.3, 21.5, 20.0.

2-methoxy-9-methylphenanthrene (3f): 25 mg; 57% yield; white solid; mp = 96-98 °C; Spectroscopic data matched reported literature data.¹¹ ¹**H NMR** (400 MHz, CDCI₃) δ 8.60-8.53 (m, 1H), 8.49 (d, *J* = 8.9 Hz, 1H), 8.02-7.94 (m, 1H), 7.62-7.51 (m, 2H), 7.46 (s, 1H), 7.21-7.10 (m, 2H), 3.89 (d, *J* = 1.5 Hz, 3H), 2.68 (d, *J* = 1.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCI₃) δ 158.2, 133.3, 133.1, 131.0, 130.5, 126.3, 126.2, 125.4, 124.6, 124.0, 123.9, 122.4, 116.1, 107.9, 55.3, 20.0.

1-fluoro-9-methylphenanthrene (3g): 18 mg; 43% yield; white solid; mp = 61-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.69-8.62 (m, 1H), 8.38 (d, J = 8.3 Hz, 1H), 8.09-8.02 (m, 1H), 7.85 (s, 1H), 7.69-7.63 (m, 2H), 7.48 (td, J = 8.1, 5.7 Hz, 1H), 7.26-7.20 (m, 1H), 2.74 (d, J = 1.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (d, J = 250.1 Hz), 133.2 (d, J = 1.9 Hz), 132.1, 131.6(d, J = 4.4 Hz), 129.7, 127.0, 126.6, 125.6, (d, J = 8.6 Hz), 124.8, 123.4, 121.4 (d, J = 15.0 Hz), 118.2 (dd, J = 5.3, 3.7 Hz), 110.9 (d, J = 20.3 Hz), 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.20. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₁₁NaF 233.0737; found: 233.0736.

2-fluoro-9-methylphenanthrene (3h): 21 mg; 51% yield; white solid; mp = 86-88 °C; Spectroscopic data matched reported literature data.^{11 1}**H NMR** (400 MHz, CDCI₃) δ 8.59 (ddd, *J* = 11.6, 8.0, 3.6 Hz, 2H), 8.03 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.63 (pd, *J* = 7.1, 1.6 Hz, 2H), 7.48 (s, 1H), 7.41 (dd, *J* = 9.5, 2.8 Hz, 1H), 7.30 (td, *J* = 8.7, 2.7 Hz, 1H), 2.73-2.68 (m, 3H). ¹³**C NMR** (101 MHz, CDCI₃) δ 161.4 (d, *J* = 246.7 Hz), 134.0, 133.4 (d, *J* = 8.8 Hz), 131.5 (d, *J* = 1.4 Hz), 130.1, 126.6, 126.3, 126.2, 126.0, 124.8, 124.8, 124.7, 122.8, 114.6 (d, *J* = 23.7 Hz), 111.8 (d, *J* = 20.4 Hz), 20.0. ¹⁹**F NMR** (376 MHz, CDCI₃) δ -115.38.

2-chloro-9-methylphenanthrene (3i): 28 mg; 62% yield; white solid; mp = 88-90 °C; Spectroscopic data matched reported literature data.^{11 1}**H NMR** (400 MHz, CDCl₃) δ 8.66-8.59 (m, 1H), 8.53 (d, *J* = 8.8 Hz, 1H), 8.07-8.01 (m, 1H), 7.75 (d, *J* = 2.2 Hz, 1H), 7.65 (qd, *J* = 7.1, 3.4 Hz, 2H), 7.55-7.43 (m, 2H), 2.71 (s, 3H).¹³**C NMR** (101 MHz, CDCl₃) δ 134.0, 133.0, 132.3, 131.9, 129.9, 128.0, 126.8, 126.7, 126.6, 126.2, 125.6, 124.8, 124.1, 122.9, 20.1.

3-chloro-9-methylphenanthrene (3j) : 24 mg; 53% yield; white solid; mp = 59-61 °C; Spectroscopic data matched reported literature data.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 8.65-8.59 (m, 2H), 8.08-8.03 (m, 1H), 7.76-7.65 (m, 3H), 7.56-7.47 (m, 2H), 2.72 (d, *J* = 1.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.9, 132.3, 131.7, 130.7, 130.2, 129.4, 129.2, 127.2, 127.1, 126.5, 126.0, 124.7, 123.0, 122.2, 20.0.

2,3-dimethoxy-9-methylphenanthrene (3k): 34 mg; 67% yield; white solid; mp = 123-125 °C; Spectroscopic data matched reported literature data.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 8.3 Hz, 1H), 8.00 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.93 (s, 1H), 7.64-7.53 (m, 2H), 7.44 (s, 1H), 7.11 (s, 1H), 4.07 (s, 3H), 3.99 (s, 3H), 2.68 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 148.6, 131.2, 130.6, 129.8, 127.0, 125.8, 125.7, 125.4, 124.7, 123.9, 122.4, 107.6, 103.1, 55.9, 55.8, 19.8.

2,3-difluoro-9-methylphenanthrene (3I): 22 mg; 48% yield; white solid; mp = 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52-8.45 (m, 1H), 8.34 (dd, *J* = 12.3, 7.9 Hz, 1H), 8.09-7.99 (m, 1H), 7.73-7.62 (m, 2H), 7.56-7.42 (m, 2H), 2.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9 (d, *J* = 253.9 Hz), 149.6 (d, *J* = 250.3 Hz), 133.3, 133.2, 131.7, 131.7, 129.5, 129.5, 129.0, 128.9, 126.9, 126.6, 126.5, 125.3, 125.3, 125.3, 125.3, 124.9, 123.0, 114.2(dd, *J* = 16.3, 1.4 Hz), 110.2 (dd, *J* = 17.8, 1.6 Hz), 20.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.36 (dd,

J = 75.2, 21.4 Hz, 2F). **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₁₀F₂NNa 251.0643; found: 251.0631.

6-methylchrysene (3m): 38 mg; 79% yield; white solid; mp = 82-84 °C; Spectroscopic data matched reported literature data.^{11 1}**H NMR** (400 MHz, $CDCI_3$) δ 9.16-9.09 (m, 1H), 9.05 (dt, *J* = 7.4, 1.4 Hz, 1H), 8.15 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.98 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.73 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.70-7.61 (m, 4H), 7.61-7.54 (m, 1H), 2.78 (s, 3H).¹³**C NMR** (101 MHz, $CDCI_3$) δ 133.2, 133.0, 133.0, 130.7, 130.4, 130.2, 128.5, 128.3, 127.8, 127.5, 127.1, 126.4, 126.3, 126.0, 125.8, 125.6, 125.4, 124.4, 19.7.

2,10-dimethylphenanthrene (3n): 30 mg; 73% yield; white solid; mp = 86-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, *J* = 8.6, 2.6 Hz, 2H), 7.86-7.73 (m, 2H), 7.65-7.41 (m, 4H), 2.70 (d, *J* = 1.1 Hz, 3H), 2.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 132.2, 132.2, 131.6, 129.7, 128.1, 127.9, 127.7, 126.7, 126.1, 125.7, 124.4, 122.9, 122.2, 21.8, 20.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₄Na 229.0988; found: 229.0979.

2-fluoro-10-methylphenanthrene (3o): 25 mg; 60% yield; white solid; mp = 84-86 °C; Spectroscopic data matched reported literature data.^{12 1}H NMR (400 MHz, CDCl₃) δ 8.61 (dd, *J* = 9.1, 5.7 Hz, 1H), 8.55-8.47 (m, 1H), 7.76 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.65-7.49 (m, 4H), 7.40-7.31 (m, 1H), 2.62 (d, *J* = 1.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, *J* = 246.5 Hz), 160.2, 133.7 (d, *J* = 7.8 Hz), 131.7 (d, *J* = 3.9 Hz), 131.4 (d, *J* = 1.3 Hz), 129.3, 127.9 (d, *J* = 10.1 Hz), 126.9 (d, *J* = 2.0 Hz), 126.3 (d, *J* = 21.1 Hz), 125.2 (d, *J* = 8.8 Hz), 122.2, 114.9 (d, *J* = 23.6 Hz), 109.3 (d, *J* = 21.1 Hz), 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.26.

3-fluoro-10-methylphenanthrene (3p): 23 mg; 55% yield; white solid; mp = 83-85 °C; Spectroscopic data matched reported literature data.^{12 1}H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 6.1, 3.4 Hz, 1H), 8.28 (dd, *J* = 11.2, 2.6 Hz, 1H), 7.98 (dd, *J* = 9.0, 5.9 Hz, 1H), 7.77 (dd, *J* = 6.0, 3.3 Hz, 1H), 7.56 (dt, *J* = 6.3, 3.5 Hz, 2H), 7.49 (s, 1H), 7.38-7.31 (m, 1H), 2.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, *J* = 246.0 Hz), 132.4, 132.2, 132.1, 132.1, 129.1, 128.8, 127.9, 127.2, 126.8 (d, *J* = 8.9 Hz), 125.9, 125.9, 125.8, 122.6, 115.2 (d, *J* = 23.4 Hz), 108.10 (d, *J* = 22.0 Hz), 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.51.

2-chloro-10-methylphenanthrene (3q): 29 mg; 64% yield; white solid; mp = 56-59 °C; Spectroscopic data matched reported literature data.^{12 1}H NMR (400 MHz, CDCl3) δ 8.51 (dd, *J* = 14.6, 7.6 Hz, 2H), 7.94 (d, *J* = 2.2 Hz, 1H), 7.79-7.71 (m, 1H), 7.59-7.50 (m, 4H), 2.62 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 133.2, 132.4, 131.8, 131.5, 129.1, 128.6, 127.9, 127.8, 126.8, 126.5, 126.2, 124.5, 124.0, 122.3, 19.8.

3-chloro-10-methylphenanthrene (3r): 30 mg; 67% yield; yellow oil; white solid; mp = 71-73 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 2.1 Hz, 1H), 8.52-8.44 (m, 1H), 7.89 (d, *J* = 8.8 Hz, 1H), 7.79-7.71 (m, 1H), 7.59-7.44 (m, 4H), 2.64 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.3, 131.9, 131.6, 130.3, 128.6, 127.8, 127.1, 127.0, 126.8, 126.1, 126.0, 122.6, 122.5, 19.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₁₁ClNa 249.0441; found: 249.0452.

10-methyl-2-(trifluoromethyl)phenanthrene (3s): 24 mg; 47% yield; white solid; mp = 95-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.7 Hz, 1H), 8.57 (dd, *J* = 6.2, 3.4 Hz, 1H), 8.25 (s, 1H), 7.79 (dt, *J* = 9.6, 2.6 Hz, 2H), 7.65-7.53 (m, 3H), 2.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5 (d, *J* = 33.9 Hz), 132.4, 131.5, 128.8, 128.3, 127.9 (d, *J* = 2.0 Hz), 127.6, 126.3, 125.9 (t, *J* = 273.0 Hz), 123.8, 122.8, 122.0, 121.9, 19.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.76. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₁F₃Na 283.0705; found: 283.0713.

9-butylphenanthrene (3t): 35 mg, 75% yield, white solid; mp = 69-71 °C; Spectroscopic data matched reported literature data.^{13 1}**H NMR** (400 MHz, CDCl₃) δ 8.77-8.69 (m, 1H), 8.64 (d, *J* = 7.7 Hz, 1H), 8.16-8.07 (m, 1H), 7.86-7.78 (m, 1H), 7.73-7.49 (m, 5H), 3.11 (t, *J* = 7.8 Hz, 2H), 1.80 (t, *J* = 7.8 Hz, 2H), 1.54-1.47 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.9, 131.9, 131.3, 130.7, 129.6, 128.0, 126.5, 126.4, 126.0, 125.9, 125.8, 124.5, 123.2, 122.4, 33.2, 32.4, 22.9, 14.0.

9-phenylphenanthrene (3u): 39 mg; 77% yield; yellow solid; mp = 94-96 °C; Spectroscopic data matched reported literature data.^{11 1}**H NMR** (400 MHz, CDCl₃) δ 8.77 (d, *J* = 8.3 Hz, 1H), 8.72 (d, *J* = 8.2 Hz, 1H), 7.90 (ddd, *J* = 10.6, 7.9, 1.5 Hz, 2H), 7.70-7.59 (m, 4H), 7.57-7.43 (m, 6H).¹³**C NMR** (101 MHz, CDCl₃) δ 140.8, 138.7, 131.5, 131.1, 130.6, 130.0, 129.9, 128.6, 128.3, 127.5, 127.3, 126.9, 126.8, 126.6, 126.5, 126.4, 122.9, 122.5.

1-methylphenanthrene (3v): 14 mg; 36% yield; white solid; mp = 103-105 °C; Spectroscopic data matched reported literature data.^{14 1}**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.2 Hz, 1H), 8.56 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 9.2 Hz, 1H), 7.88 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.76 (d, *J* = 9.1 Hz, 1H), 7.66-7.50 (m, 3H), 7.43 (d, *J* = 7.1 Hz, 1H), 2.74 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 134.8, 131.6, 130.8, 130.6, 130.3, 128.5, 127.7, 126.7, 126.5, 126.4, 126.1, 122.9, 122.8, 120.8, 19.9.

ethyl 10-methylphenanthrene-9-carboxylate (3w): 33 mg; 63% yield; white solid; mp = 74-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (ddd, *J* = 11.9, 7.7, 1.8 Hz, 2H), 8.16-8.08 (m, 1H), 7.78-7.51 (m, 5H), 4.58 (q, *J* = 7.1 Hz, 2H), 2.70 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 170.4, 130.9, 130.4, 130.4, 129.6, 129.4, 128.1, 127.2, 127.1, 127.0, 126.4, 125.2, 125.1, 122.9, 122.7, 61.5, 17.1, 14.4. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₆NaO₂ 287.1043; found: 287.1043.

10-methylphenanthrene-9-carbonitrile (3x): 25 mg; 57% yield; white solid; mp = 166-168 °C; Spectroscopic data matched reported literature data.¹⁵ ¹**H NMR** (400 MHz, CDCl₃) δ 8.61-8.50 (m, 2H), 8.21-8.11 (m, 1H), 8.01 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.76-7.59 (m, 4H), 2.90 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.0, 131.1, 129.8, 129.2, 128.9, 128.7, 127.9, 127.4, 127.3, 125.8, 125.6, 123.0, 122.6, 117.5, 109.1, 18.8.

triphenylene (3y): 37 mg; 81% yield; white solid; mp = 166-168 °C; Spectroscopic data matched reported literature data.¹⁶ ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 6.2, 3.4 Hz, 6H), 7.62 (dd, *J* = 6.3, 3.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 129.7, 127.2, 123.3.

phenanthro[9,10-b]thiophene (3z): 30 mg; 64% yield; white solid; mp = 152-155 °C; Spectroscopic data matched reported literature data.^{16 1}H NMR (400 MHz, CDCl₃) δ 8.63 (ddd, J = 9.5, 4.3, 2.4 Hz, 2H), 8.29-8.23 (m, 1H), 8.14-8.06 (m, 1H), 7.90 (d, J = 5.3 Hz, 1H), 7.59 (ddd, J = 12.4, 6.3, 3.4 Hz, 4H), 7.50 (d, J = 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 135.0, 129.0, 128.8, 128.6, 128.3, 127.2, 127.0, 126.3, 126.0, 124.9, 124.2, 124.2, 123.5, 123.4, 123.2.

2-chloro-9-phenylphenanthrene (3aa): 570 mg; 66% yield (with 3.0 mmol **1i** as the substrate); white solid; mp = 72-73 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59-8.52 (m, 2H), 7.86 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.59-7.52 (m, 2H), 7.49-7.38 (m,

7H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.4, 139.0, 132.4, 131.2, 130.9, 129.9, 129.7, 129.6, 128.3, 127.5, 127.2, 127.0, 126.9, 126.7, 126.6, 122.9, 122.2. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₃NaCl 311.0598; found: 311.0568.

8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4a): 23 mg; 49% yield; white solid; mp = 61-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 7.8, 1.6 Hz, 1H), 7.54 (dd, J = 8.2, 1.3 Hz, 1H), 7.49-7.41 (m, 3H), 7.37-7.27 (m, 3H), 7.17-7.09 (m, 2H), 6.59 (t, J = 1.2 Hz, 1H), 2.36 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 139.1, 138.7, 138.1, 135.0, 134.8, 134.7, 134.6, 134.3, 129.7, 128.7, 128.4, 127.7, 127.5, 126.2, 126.2, 125.6, 24.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₄Na 265.0988; found: 265.0982.

11-chloro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4b): 23 mg; 42% yield; white solid; mp = 72-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 7.1, 2.3 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.47-7.42 (m, 2H), 7.38-7.29 (m, 2H), 7.24 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.14 (d, *J* = 7.1 Hz, 1H), 7.10 (d, *J* = 2.3 Hz, 1H), 6.56 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 137.8, 137.7, 137.3, 135.2, 135.0, 134.7, 134.3, 133.9, 133.7, 128.8, 128.7, 128.3, 127.5, 127.3, 126.4, 126.3, 125.7, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{19}H_{14}$ Cl 277.0779; found: 277.0777.

10-chloro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4c): 24 mg; 44% yield; white solid; mp = 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, *J* = 6.4, 2.9 Hz, 1H), 7.58-7.52 (m, 1H), 7.45-7.36 (m, 3H), 7.34-7.25 (m, 2H), 7.13 (d, *J* = 7.1 Hz, 1H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.58 (s, 1H), 2.30 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 139.2, 138.0, 137.8, 136.0, 135.9, 134.6, 134.3, 133.8, 133.3, 129.3, 128.9, 128.6, 128.0, 126.5, 126.3, 126.1, 125.7, 24.5. 26.4, 126.3, 125.7, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₄Cl 277.0779; found: 277.0769.

8,10-dimethylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4d): 25 mg; 50% yield; white solid; mp = 44-46 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.49-7.39 (m, 2H), 7.32-7.24 (m, 2H), 7.18-7.11 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.58 (s, 1H), 2.38-2.33 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 138.4, 138.0, 137.9, 137.2, 135.1, 134.8, 134.7, 134.7, 134.3, 130.5, 128.3, 128.2, 127.4, 127.0, 126.2, 126.2, 125.5, 24.7 21.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₆Na 279.1144; found: 279.1139.

10-fluoro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4e): 20 mg; 38% yield; white solid; mp = 47-49 °C; ¹H NMR (400 MHz, CDCI₃) δ 7.63 (dd, *J* = 6.9, 2.5 Hz, 1H), 7.56 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.46-7.39 (m, 2H), 7.31 (dd, *J* = 8.1, 7.1 Hz, 1H), 7.18 -7.10 (m, 2H), 7.08-7.00 (m, 2H), 6.60 (s, 1H), 2.32 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 162.5 (d, *J* = 247.5 Hz), 140.8 (d, *J* = 7.7 Hz), 138.2, 137.8, 136.8, 136.5 (d, *J* = 8.1 Hz), 135.8, 134.6, 134.3, 133.4 (d, *J* = 2.0 Hz), 128.8, 128.6, 127.7, 126.6, 126.3, 125.7, 116.2 (d, *J* = 20.9 Hz), 112.8 (d, *J* = 22.6 Hz), 24.5. ¹⁹F NMR (376 MHz, CDCI₃) δ -116.07. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₄NaF 287.0893; found: 287.0890.

8,12-dimethylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4f): 13 mg; 26% yield; white solid; mp = 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.46-7.31 (m, 3H), 7.29-7.16 (m, 4H), 6.57 (s, 1H), 2.39 (d, *J* = 1.4 Hz, 3H), 1.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 139.4, 139.1, 138.6, 134.9, 134.7, 134.3, 133.7, 132.5, 132.4, 128.2, 127.2, 127.0, 125.5, 125.4, 124.7, 123.0, 24.5, 23.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₆Na 279.1144; found: 279.1140.

8-butylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4g): 30 mg; 53% yield; white solid; mp = 58-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.58-7.42 (m, 4H), 7.31 (ddt, *J* = 10.3, 7.6, 4.0 Hz, 3H), 7.16 (d, *J* = 7.1 Hz, 1H), 7.10 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.57 (s, 1H), 2.73 (t, *J* = 7.7 Hz, 2H), 1.61-1.55 (m, 2H), 1.39 (q, *J* = 7.5 Hz, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 139.7, 139.2, 138.4, 137.7, 135.0, 135.0, 134.1, 134.1, 129.5, 128.6, 128.4, 127.6, 127.4, 126.2, 126.1, 125.6, 37.5, 31.4, 22.6, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₂₀Na 307.1457; found: 307.1452.

8-phenylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4h): 34 mg; 56% yield; white solid; mp = 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.51 (m, 3H), 7.48-7.40 (m, 3H), 7.39-7.33 (m, 2H), 7.32-7.23 (m, 3H), 7.22-7.17 (m, 1H), 7.13 (dd, J = 7.9, 1.4 Hz, 1H), 7.07 (td, J = 7.5, 1.4 Hz, 1H), 6.96 (dd, J = 7.9, 1.5 Hz, 1H), 6.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 141.8, 141.6, 139.0, 138.3, 138.3, 136.3, 134.6, 134.4, 134.4, 130.2, 129.9, 129.6, 128.9, 128.5, 128.4, 127.8, 127.1, 127.0, 126.9, 126.3, 125.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₁₆Na 327.1144; found: 327.1145.

benzo[3,4]naphtho[1',8':5,6,7]cyclohepta[1,2-b]thiophene (4i): 22 mg; 38% yield; white solid; mp = 69-71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.64 (m, 4H), 7.61-7.56 (m, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.42-7.30 (m, 5H), 7.19-7.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 139.9, 137.9, 137.1, 136.1, 134.6, 134.3, 134.1, 131.2, 129.0, 129.0, 128.6, 128.4, 127.8, 127.6, 127.1, 126.2, 125.6, 124.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₂NaS: 307.0552; found: 307.0560.

8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene-7-carbonitrile (4j): 18 mg; 33% yield; white solid; mp = 98-100 °C; ¹H NMR (400 MHz, CDCl3) δ 7.75-7.63 (m, 3H), 7.58 (d, J = 7.2 Hz, 1H), 7.50 (d, J = 7.8 Hz, 2H), 7.40 (q, J = 7.3 Hz, 2H), 7.36-7.29 (m, 1H), 6.99 (d, J = 7.8 Hz, 1H), 2.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 141.6, 139.2, 137.1, 137.0, 134.5, 133.5, 131.2, 129.9, 128.9, 128.2, 128.0, 127.9, 127.9, 127.5, 126.6, 125.6, 119.5, 117.0, 24.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₃NaN 290.0940; found: 290.0939.

ethyl 8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene-7-carboxylate (4k): 23 mg; 37% yield; white solid; mp = 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.1, 1.3 Hz, 1H), 7.60 (ddd, J = 7.3, 4.7, 1.3 Hz, 2H), 7.54-7.43 (m, 2H), 7.35-7.26 (m, 3H), 7.23 (dd, J = 7.2, 1.3 Hz, 1H), 7.03-6.95 (m, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 140.8, 139.8, 138.7, 137.7, 137.3, 134.2, 133.9, 133.6, 131.2, 129.5, 127.7, 127.4, 127.4, 127.2, 126.4, 126.3, 125.2, 61.1, 22.3, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₁₈NaO₂ 337.1199; found: 337.1201.

4,4,5,5-tetramethyl-2-(9-phenylphenanthren-2-yl)-1,3,2-dioxaborolane (5): 40 mg; 79% yield; white solid; mp = 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.92 (d, *J* = 8.3 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.95-7.81 (m, 2H), 7.69-7.61 (m, 2H), 7.56-7.38 (m, 6H), 1.41 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 139.9, 133.5, 132.1, 131.1, 130.9, 130.0, 130.0, 129.2, 128.3, 127.8, 127.4, 127.4, 126.8, 126.5, 126.4, 123.2, 83.9, 24.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₂₅BNaO₂ 403.1840; found: 403.1842.

9-phenyl-2-(10-phenylanthracen-9-yl)phenanthrene (Phenacene-type compound A): 63 mg; 62% yield; white solid; mp = 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.72-8.65 (m, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.98 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.86 (s, 1H), 7.79-7.72 (m, 5H), 7.65-7.59 (m, 4H), 7.59-7.47 (m, 8H), 7.38-7.26 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 139.2, 139.1, 137.4, 137.4, 137.2, 131.4, 131.3, 130.8, 130.6, 130.2, 130.2, 130.1, 130.0, 129.9, 128.7, 128.5, 128.4, 127.5, 127.5, 127.3, 127.0, 126.7, 126.6, 125.4, 125.2, 125.1, 123.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₄₀H₂₆Na 529.1927; found: 529.1928.

8. References

(1) a) Tripathi, C. B.; Mukherjee, S. Angew. Chem. Int. Ed. 2013, 52, 8450.

(2) Huang, Q.; Larock, R. C. J. Org. Chem. 2003, 68, 7342;

(3) Yao, T.; Zhang, H.; Zhao, Y. Org. Lett. 2016, 18, 2532;

(4) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem. Int. Ed. 2014, 53, 4181.

(5) Lou, Z.; Zhang, S.; Chen, C.; Pang, X.; Li, M.; Wen, L. *Adv. Synth. Catal.* **2014**, *356*, 153.

(6) Laha, J.; Hunjan, M.; Hegde, S.; Gupta A. Org. Lett. 2020, 22, 1442.

(7) Zhang, H.; Xiao, Q.; Qi, X.-K.; Gao, X.-W.; Tong, Q.-X.; Zhong, J.-J. *Chem. Commun.* **2020**, 56, 12530.

(8) Tian, D.; Li, C.; Gu, G.; Peng, H.; Zhang, X.; Tang, W. *Angew. Chem., Int. Ed.* **2018**, *57*, 7176.

(9) Guillemard, L.; Colobert, F.; Wencel-Delord, J. Adv. Synth. Catal. 2018, 360, 4184.

(10) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. *Angew. Chem., Int. Ed.* **2012**, *51*, 5714.

(11) McAtee, C. C.; Riehl, P. S.; Schindler, C. S. J. Am. Chem. Soc. 2017, 139, 2960.

(12) Shu, C.; Li, L.; Chen, C.-B.; Shen, H.-C.; Ye, L.-W. Chem. - Asian J. 2014, 9, 1525.

(13) Piontek, A.; Ochedzan-Siodlak, W.; Bisz, E.; Szostak, M. Adv. Synth. Catal. 2019, 361, 2329.

(14) Fu, W. C.; Wang, Z.; Chan, W. T. K.; Lin, Z.; Kwong, F. Y. *Angew. Chem., Int. Ed.* **2017**, *56*, 7166.

(15) Yao, T.; Zhang, H.; Zhao, Y. Org. Lett. 2016, 18, 2532.

(16) Yang, Y.; Zhou, B.; Zhu, X.; Deng, G.; Liang, Y.; Yang, Y. Org. Lett. 2018, 20, 5402.

9. NMR spectra

9-methylphenanthrene (3a):

(¹³C NMR, CDCl₃, 101 MHz)

132.421 132.421 132.035 130.332 130.332 130.332 126.693 126.563 126.663 126.563 126.563 126.563 126.563 122.413 122.413	77.317 77.000 76.683	
	\checkmark	

20210618WXX-BR-1-C.1.fid

— 19.974

4,9-dimethylphenanthrene (3b):

4,9-dimethylphenanthrene (3b):

(¹³C NMR, CDCl₃, 101 MHz)

133.570 133.570 133.570 133.570 133.570 133.570 133.570 125.517 125.562 125.56	₹77.317 77.000 76.683	— 27.318 — 19.965
---	-----------------------------	----------------------

20210618WXX-BR-100-C.1.fid

210 200 180 170 160 150 140 130 190 120 110 100 f1 (ppm) 70 60 50 40 30 20 -10 80 10 90 0

3,9-dimethylphenanthrene (3c):

(¹H NMR, CDCI₃, 400 MHz)

20 210 200 190 180 170 160 150 140 130 120 80 70 60 30 10 0 -10 110 100 f1 (ppm) 90 50 40

2,9-dimethylphenanthrene (3e):

2,9-dimethylphenanthrene (3e):

(¹³C NMR, CDCI₃, 101 MHz)

$\begin{array}{c} 136.222\\ 132.1397\\ 132.137\\ 132.133\\ 133.1303\\ 127.533\\ 127.533\\ 126.092\\ 126.092\\ 126.092\\ 126.092\\ 124.560\\ 122.330\\ 122.330\end{array}$	77.319 77.000 76.683
---	----------------------------

20210705WXX-BR-108-C.1.fid

1-fluoro-9-methylphenanthrene (3g):

1-fluoro-9-methylphenanthrene (3g):

(¹⁹F NMR, CDCl₃, 376 MHz)

— -123.195

20210705WXX-BR-110-C.3.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2-fluoro-9-methylphenanthrene (3h):

(¹⁹F NMR, CDCl₃, 376 MHz)

20210619WXX-BR-102.2.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3-chloro-9-methylphenanthrene (3j) :

110 100 90 f1 (ppm) 210 200 190 180 170 160 150 140 130 120

2,3-dimethoxy-9-methylphenanthrene (3k):

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

2,3-difluoro-9-methylphenanthrene (3I):

(¹⁹F NMR, CDCl₃, 376 MHz)

-138.227 -138.284 138.426 -138.484

20210619WXX-BR-103.2.fid

110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -1(11 (ppm)

6-methylchrysene (3m):

2,10-dimethylphenanthrene (3n):

20210707WXX-BR-68.3.fid

2-fluoro-10-methylphenanthrene (3o):

(¹⁹F NMR, CDCl₃, 376 MHz)

20210709FC0019BR-74.2.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3-fluoro-10-methylphenanthrene (3p):

(¹⁹F NMR, CDCl₃, 376 MHz)

20210707WXX-BR-69.4.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2-chloro-10-methylphenanthrene (3q):

2-chloro-10-methylphenanthrene (3q):

_f 133.172

(¹³C NMR, CDCI₃, 101 MHz)

32.436 31.786 31.786 29.107 27.831 27.831 26.448 26.488 26.488 26.161 22.33 28.535 28.535 22.294 22.294	7,001 5,684 5,684
	22
	\sim

20210709FC0019BR-72.2.fid

S39

10-methyl-2-(trifluoromethyl)phenanthrene (3s):

10-methyl-2-(trifluoromethyl)phenanthrene (3s):

(¹³C NMR, CDCl₃, 101 MHz)

132.603 132.603 132.2567 131.451 131.451 138.826 128.826 128.826 128.826 128.013 127.933 127.933 127.933 127.933 127.933 127.933 127.933 127.933 127.933 127.933 127.93 12	77.317 77.000 76.683	
V	\checkmark	

20210709FC0019BR-73.1.fid

10-methyl-2-(trifluoromethyl)phenanthrene (3s):

(¹⁹F NMR, CDCl₃, 376 MHz)

20210709FC0019BR-73.2.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

9-butylphenanthrene (3t):

9-phenylphenanthrene (3u):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S43

10-methylphenanthrene-9-carbonitrile (3x):

10-methylphenanthrene-9-carbonitrile (3x):

(¹³C NMR, CDCI₃, 101 MHz)

141.998 131.122 129.152 129.152 128.882 128.882 128.882 127.388 127.388 127.384 127.384 127.364 127.364 122.902 125.617 122.902 122.902 122.902 117.474 109.058	77.320 77.002 76.683
	- V

20210714FC0006BR-76.3.fid

S47

2-chloro-9-phenylphenanthrene (3aa):

(¹³C NMR, CDCI₃, 101 MHz)

140.349	138.998	132.440	131.243	130.901	129.913	129.714	129.563	128.298	127.449	127.227	127.026	126.898	126.673	126.636	122.851	122.172	77.318	77.001	76.683
_	_	_		_				- L				_				_	L		

20210903WXX-BR-85.3.fid

11-chloro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4b):

(¹³C NMR, CDCI₃, 101 MHz)

112.245 1137.582 1137.582 1137.582 1135.7726 1135.7726 1135.7726 1135.726 1135.726 1135.727 1137.557 1127.557 1	$\underbrace{+77.317}{76.682}$	— 24.601
---	--------------------------------	----------

20210715WXX-BR-152.2.fid

10-chloro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4c):

(¹³C NMR, CDCl₃, 101 MHz)

1140.276 1140.276 1137.990 1135.942 1135.042 1135.942 1134.568 1134.568 1134.568 1134.568 1134.568 1134.568 1134.568 1135.568 1126.564 1126.564	₹77.317 77.000 76.683	
--	-----------------------------	--

20210719WXX-BR-154.1.fid

(¹³C NMR, CDCI₃, 101 MHz)

133,059 137,3975 137,3975 137,3975 137,3049 133,5049 134,775 134,774 134,774 134,774 134,774 134,742 134,774 134,774 134,774 134,774 134,775 135,775 145,7755 145,7755 145,77555 145,775555555555555555555555555555555	$\left\{ \begin{array}{c} 77.317 \\ 77.001 \\ 76.683 \end{array} \right.$	— 24.663 — 21.032
--	---	----------------------

20210715WXX-BR-150.1.fid

10-fluoro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4e):

10-fluoro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4e):

(¹³C NMR, CDCI₃, 101 MHz)

163.733 161.283 140.722 140.722 140.722 146.723 135.819 135.819 135.819 135.819 135.819 135.819 135.825 135.432 135.432 135.432 135.432 135.655 133.432 135.655 133.432 135.655 135.755 135.75	77.317 77.000 76.683	24.466
L'ILLING AND A P	\checkmark	ï

20210719WXX-BR-155.2.fid

10-fluoro-8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4e):

(¹⁹F NMR, CDCl₃, 376 MHz)

20210719WXX-BR-155.3.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

8,12-dimethylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4f):

(¹³C NMR, CDCl₃, 101 MHz)

139,645 139,421 139,421 139,426 134,740 134,740 132,5486 133,548 132,5486 12,5486 132,548661	$\left\{ \begin{array}{c} 77.316\\ 76.999\\ 76.681 \end{array} \right.$	~ 24.481 ~ 23.125
--	---	----------------------

20210715WXX-BR-153.2.fid

8-butylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4g):

(¹H NMR, CDCI₃, 400 MHz)

133.045 133.045 133.045 133.045 133.045 133.045 133.045 134.115 134.115 134.115 134.115 134.115 134.115 134.115 134.115 135.649 127.557 128.645 127.557 128.657 128.5577 128.5577 128.5577 128.5577 128.5577 128.5577 128.5577 128.5	$\left\{ 77.317 \\ 77.000 \\ 76.682 \\ ight\}$		— 31.393	22.596	— 13.958	
--	---	--	----------	--------	----------	--

20210719WXX-BR-156.2.fid

8-phenylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene (4h):

(¹³C NMR, CDCI₃, 101 MHz)

144.430	141.548	139.017	138.337	138.258	136.268	134.602	134.442	134.386	130.242	129.870	129.610	128.852	128.514	128.346	127.800	127.095	127.029	126.848	126.289	125.583			11.5.11	000.77	/6.684
_	_			_		_					- L	,	_ ر		_	_	_	_	_	_			<u>د</u>	1	٠

20211103WXX-BR-158-C.2.fid

benzo[3,4]naphtho[1',8':5,6,7]cyclohepta[1,2-b]thiophene (4i):

(¹³C NMR, CDCl₃, 101 MHz)

142.816 139.873	137.860	136.118	134.616 134.320	134.082 131.200	129.002 128.948	128.598 128.412	127.820 127.572	127.059	125.629	124.819	77.318 77.000 76.683
<u> </u>	-	-			$\sim \sim \sim$	11		_			

20211103WXX-BR-157-PM.2.fid

8-methylbenzo[4,5]cyclohepta[1,2,3-de]naphthalene-7-carbonitrile (4j):

(¹³C NMR, CDCl₃, 101 MHz)

(¹³C NMR, CDCI₃, 101 MHz)

— 170.142	140.824 138.6924 138.6924 137.708 137.708 133.632 133.632 133.632 133.632 133.632 133.632 133.632 133.632 133.632 133.632 133.632 133.632 126.245 127.732 127.	$ \underbrace{\int_{76.681}^{77.317} 77.000}_{76.681} - 61.050 $	— 22.276 — 14.011
-----------	---	--	----------------------

20210903WXX-BR-160.3.fid

4,4,5,5-tetramethyl-2-(9-phenylphenanthren-2-yl)-1,3,2-dioxaborolane (5):

4,4,5,5-tetramethyl-2-(9-phenylphenanthren-2-yl)-1,3,2-dioxaborolane (5):

(¹³C NMR, CDCl₃, 101 MHz)

140.684 132.062 132.062 132.062 132.062 132.095 132.091 122.09 122.414 122.414 122.414 126.402 126.402 126.402 126.402	$-\frac{83.941}{77.319}$ 77.319 76.683	— 24.936
--	--	----------

9-phenyl-2-(10-phenylanthracen-9-yl)phenanthrene (Phenacene-type compound A): (¹³C NMR, CDCl₃, 101 MHz)

140.784	139.206	139.055	137.397	137.372	137.190	131.444	131.328	130.834	130.552	130.219	130.160	130.084	129.978	129.930	128.735	128.445	128.382	127.514	127.463	127.315	127.041	126.745	126.571	125.376	125.195	125.082	123.084	77.317 77.000 76.682
1.0	1.1	- 1. I	- A.	- E.																								

S63