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Derivation of transport equations.
In the system of coordinates fixed to the membrane matrix, we consider the local flux of an ion 
as a linear combination of electro-diffusion1 (movement relative to the center of mass) and 
advection (movement with the center of mass).

 (S1)𝑗𝑖 = ―
𝐷𝑖

𝑅𝑇𝑐𝑖∇𝜇(𝑒)
𝑖 + 𝑐𝑖𝑣

where  is the local flux of ion “i”,  is the ion diffusion coefficient,  is the universal gas 𝑗𝑖 𝐷𝑖 𝑅
constant,  is the absolute temperature,  is the local ion concentration,  is the ion 𝑇 𝑐𝑖 𝜇(𝑒)

𝑖

electrochemical potential,  is the local fluid velocity.𝑣

The fluid movement can be a combination of pressure-driven flow and (electro)osmosis and is 
controlled by external perturbations (for example, a hydrostatic pressure difference) as well as 
by ion distribution inside pores. Within the scope of standard space-charge model used in this 
study, the flow dynamics is described by Stokes equation including a body force, , arising due 𝑓
to space charges near pore surfaces and induced transmembrane electric fields.

 (S2)𝜂∇2𝑣 = ∇𝑝 ― 𝑓

where  is the dynamic viscosity,  is the hydrostatic pressure inside the pore. This body force  𝜂 𝑝
is equal to the negative gradient of electrostatic potential times local electric space-charge 
density, which can be expressed through local ion concentrations

 (S3)𝑓 = ―𝐹∇𝜑∑
𝑖𝑍𝑖𝑐𝑖

where the summation extends over all the ions. By using this definition of electrochemical 
potential

1 Although no external voltage is applied in this study, there are spontaneously-arising electric fields 
inside the membrane nanopores.
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 (S4)∇𝜇(𝑒)
𝑖 ≡ ∇𝜇(𝑐)

𝑖 +𝐹𝑍𝑖𝜑

we can express the gradient of electrostatic potential via gradients of electrochemical and 
chemical potentials to obtain for the body force

 (S5)𝑓 = ― ∑
𝑖𝑐𝑖(∇𝜇(𝑒)

𝑖 ― ∇𝜇(𝑐)
𝑖 ) ≡ ― ∑

𝑖𝑐𝑖∇𝜇(𝑒)
𝑖 + ∇Π

where  is the local osmotic pressure inside pores. Consequently, Stokes equation Π ≡ ∑
𝑖𝑐𝑖𝜇(𝑐)

𝑖

Eq(S2) can be transformed this way

 (S6)𝜂∇2𝑣 = ∇(𝑝 ― Π) + ∑
𝑖𝑐𝑖∇𝜇(𝑒)

𝑖

The first term is proportional to the negative gradient of solvent chemical potential defined as

 (S7)𝜇𝑠𝑜𝑙𝑣 ≡ 𝑉𝑠𝑜𝑙(𝑝 ― Π)

where  is the partial molar volume of solvent. Eq(S6) is convenient for a local-equilibrium 𝑉𝑠𝑜𝑙

analysis because the gradients of (electro)chemical potentials can be considered to be the 
same as in a virtual bulk electrolyte solution that could be in thermodynamic equilibrium with 
a given cross-section inside a pore. Assuming that the pores are sufficiently small, these 
gradients are independent of the position inside the pore. The gradient of chemical potential 
of solvent in the virtual solution is also the same as in the pore. Additionally, in this study we 
assume that the partial molar volume of solvent in the pores is the same as in the virtual 
solution (no changes in the solvent properties in nanopores), so its partitioning coefficient is 
equal to one, and

 (S8)∇(𝑝 ― Π) = ∇(𝑝 ― Π)

where the properties without bar correspond to the virtual solution. The local ion 
concentrations inside pores can be related to the concentrations in the virtual solution, , via 𝑐𝑖

ion partitioning coefficients, ,Γ𝑖

 (S9)𝑐𝑖 = 𝑐𝑖Γ𝑖

Thus, the Stokes equation can be written down in this form where its right-hand side contains 
only gradients in the virtual solution.

 (S10)𝜂∇2𝑣 = ∇(𝑝 ― Π) + ∑𝑛
𝑖 = 1Γ𝑖𝑐𝑖∇𝜇(𝑒)

𝑖

Following 1 we introduce a linear functional operator,  giving a solution to this equation𝐹[]

 (S11)𝜂∇2𝑣 = ― 𝑔

where  is an arbitrary function of coordinate inside the pore. Given that neither the gradients 𝑔
nor the ion concentrations in the virtual solution depend on this coordinate, they can be taken 
out of the operator sign, so

 (S12)𝑣 = ― 𝐹[1] ∙ ∇(𝑝 ― Π) ― ∑𝑛
𝑖 = 1𝐹[𝛤𝑖] ∙ 𝑐𝑖 ∙ ∇𝜇(𝑒)

𝑖

The form of operator  depends on the pore geometry. In this study, in agreement with the 𝐹[]
experimental part using track-etched membranes, we will further consider long straight 
cylindrical pores of equal size. In this case, all the flows are 1D, so we will further drop the 
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vector signs. Besides, the ion distribution coefficients, , depend only on the radial coordinate 𝛤𝑖

inside the pore. The operator can be shown to have this form 2

 (S13)𝐹[Γ𝑖] = ―
𝑟2

𝑝

𝜂 [𝑙𝑛(𝜌)∫𝜌
0𝑑𝜌´𝜌´Γ𝑖(𝜌´) + ∫1

𝜌𝑑𝜌´𝜌´𝑙𝑛(𝜌´)Γ𝑖(𝜌´)]
where  is the pore radius,  is the dimensionless radial coordinate. For a given ion 𝑟𝑝 𝜌 ≡ 𝑟 𝑟𝑝

(after multiplication by the negative gradient of the corresponding electrochemical potential), 
this gives the “iono-osmotic” velocity profile. For the solvent ( ), we obtain the well-Γ𝑠𝑜𝑙𝑣 = 1
known parabolic profile

 (S14)𝐹[1] =
𝑟2

𝑝

4𝜂(1 ― 𝜌2)

To obtain observable ion fluxes, we should substitute Eq(S12) into Eq(S1) (applying the concept 
of local equilibrium to the first term and to the ion concentrations in the second) and average 
over the pore cross-section. As a result, for solutions of single salts (two ions), we obtain

 (S15)― 𝐽1 = 𝑐1 ∙ [〈Γ1𝐹[1]〉∇𝑝 + 𝑐1〈Γ1𝐹[Γ1 ― 1]〉∇𝜇(𝑒)
1 + 𝑐2〈Γ1𝐹[Γ2 ― 1]〉∇𝜇(𝑒)

2 +
〈𝐷1Γ1〉

𝑅𝑇 ∇𝜇(𝑒)
1 ]

 (S16)― 𝐽2 = 𝑐2 ∙ [〈Γ2𝐹[1]〉∇𝑝 + 𝑐2〈Γ2𝐹[Γ2 ― 1]〉∇𝜇(𝑒)
2 + 𝑐1〈Γ2𝐹[Γ1 ― 1]〉∇𝜇(𝑒)

1 +
〈𝐷2Γ2〉

𝑅𝑇 ∇𝜇(𝑒)
2 ]

where , the brackets, , mean averaging over the pore cross-section, that is integration 𝐽𝑖 ≡ 〈𝑗𝑖〉 〈〉
over the radial coordinate times , and scaling on the area of pore cross-section. The solvent 2𝜋
flux (considered to be equal to the volume flux in the approximation of dilute solutions) is 
obtained via averaging of Eq(S12).

 (S17)― 𝐽𝑣 = 〈𝐹[1]〉∇𝑝 + 𝑐1〈𝐹[Γ1 ― 1]〉∇𝜇(𝑒)
1 + 𝑐2〈𝐹[Γ2 ― 1]〉∇𝜇(𝑒)

2

For the cylindrical capillary model,

 (S18)〈Γ𝑖𝐹[Γ𝑗]〉 ≡ ―
2𝑟2

𝑝

𝜂 ∫1
0𝑑𝜌𝜌Γ𝑖(𝜌)[𝑙𝑛(𝜌)∫𝜌

0𝑑𝜌´𝜌´𝛤𝑗(𝜌´) + ∫1
𝜌𝑑𝜌´𝜌´𝑙𝑛(𝜌´)𝛤𝑗(𝜌´)]

Now, we will transform Eqs(S15,S16) to have electric-current density and transmembrane 
volume flow singled out explicitly. This will enable us to define membrane transport processes 
(in particular, salt diffusion flux) at zero current and volume flow as occurs in the 
measurements of osmotic pressure. For this, we express the gradient of virtual hydrostatic 
pressure via the volume flux and gradients of electrochemical potentials by using Eq(19) and 
substitute to Eqs(S15,S16). After some identical transformation, we obtain

 (S19)𝐽1 = ―𝑐1 ∙ [ 1
𝑅𝑇(𝑃1∇𝜇(𝑒)

1 +
𝜔
𝜈1

∇𝜇(𝑒)
2 ) ― 𝐽𝑣𝜏1]

 (S20)𝐽2 = ― 𝑐2 ∙ [ 1
𝑅𝑇(𝑃2∇𝜇(𝑒)

2 +
𝜔
𝜈2

∇𝜇(𝑒)
1 ) ― 𝐽𝑣𝜏2]

 (S21)∇𝑝 = ―
𝐽𝑣

〈𝐹[1]〉 + 𝑐1(1 ― 𝜏1)∇𝜇(𝑒)
1 + 𝑐2(1 ― 𝜏2)∇𝜇(𝑒)

2

where we have denoted

 (S22)𝑃𝑖 ≡ 〈𝐷𝑖Γ𝑖〉 + 𝑅𝑇𝑐𝑖〈𝐹[1]〉(〈Γ𝑖𝐹[Γ𝑖]〉
〈𝐹[1]〉 ― 𝜏2

𝑖 )
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 (S23)𝜔 ≡ 𝑅𝑇𝜈1𝜈2𝑐〈𝐹[1]〉 ∙ (〈Γ1𝐹[Γ2]〉
〈𝐹[1]〉 ― 𝜏1𝜏2)

 (S24)𝜏𝑖 ≡
〈Γ𝑖𝐹[1]〉
〈𝐹[1]〉

 is the electrolyte concentration, ,  are ion stoichiometric coefficients, they satisfy 𝑐 𝑐𝑖 ≡ 𝜈𝑖𝑐 𝜈𝑖

electroneutrality condition, . The ion transmission coefficients, , quantify the 𝑍1𝜈1 + 𝑍2𝜈2 = 0 𝜏𝑖

extent to which ions are convectively entrained by the volume flow2. Notably, they are larger 
than one for counterions whose partitioning coefficients exceed unity. In principle, these 
coefficients can be affected by steric hindrance3 but this is not significant in nanopores whose 
size is much larger than the ion size (the focus of this study). Based on the same 
considerations, we also neglect the effect of steric hindrance on the ion diffusion and consider 
ion diffusion coefficients in nanopores constant and equal to those in bulk electrolyte solution.

Electrochemical potentials of ions are difficult to control. Therefore, it is convenient to 
transform Eqs(S19-S21) in a form containing more manageable quantities such as electrostatic-
potential and salt-concentration gradients as well as electric-current density and salt flux. The 
electric-current density is defined this way

 (S25)𝐼 ≡ 𝑍1𝐽1 + 𝑍2𝐽2

The definition of salt flux is less trivial because at non-zero electric currents changes in the salt 
concentration in reservoirs separated by a membrane are affected by the ion generation or 
consumption at electrodes (or by ion fluxes through other membranes like in electrodialysis). 
In our particular experimental conditions, the electric-current density is zero, so this issue does 
not arise. We use this symmetrical definition of salt flux

 (S26)𝐽𝑠 ≡
1
2(𝐽1 𝜈1 + 𝐽2 𝜈2)

This expression for the gradients of electrochemical potential3

 (S27)∇𝜇(𝑒)
1,2 ≡ 𝑅𝑇

∇𝑐
𝑐 + 𝐹𝑍1,2∇𝜑

is substituted to Eqs(S19-S21) and ion fluxes are expressed via current density and salt flux. 
After some identical transformations, we obtain:

 (S28)𝐽𝑣(1
𝜒 +

𝜌2
𝑒𝑘

𝑔 ) = ― ∇𝑝 +
𝜌𝑒𝑘

𝑔 𝐼 + 𝑅𝑇(𝜈1 + 𝜈2)(1 ― Τ𝑠) ∙ ∇𝑐

 𝐽𝑠 = ―𝑃𝑠∇𝑐 +
𝐼 ∙ (𝑡1 ― 𝑡2)
2𝐹(𝑍1𝜈1) + 𝐽𝑣𝑐Τ𝑠

(S29)

 (S30)―∇𝜑 =
𝐼 ― 𝜌𝑒𝑘 ∙ 𝐽𝑣

𝑔 +
𝑅𝑇
𝐹 (𝑡1

𝑍1
+

𝑡2

𝑍2)∇𝑐
𝑐

 (S31)𝜒 ≡ 〈𝐹[1]〉 =
𝑟2

𝑝

8𝜂

2 It is important to note that the ion convective flux in the pore is scaled on the ion concentration in the 
virtual solution.
3 From now on, we assume the solution to be ideal.
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 is the hydraulic permeability at zero voltage gradient. Eq(S28) shows that the more easily 𝜒
measurable hydraulic permeability at zero electric current is equal to

 (S32)𝜒 ∗ ≡
𝜒

1 + 𝜒 ∙
𝜌2

𝑒𝑘
𝑔

 (S33)𝜌𝑒𝑘 ≡ 𝐹(𝑍1𝜈1) ∙ 𝑐 ∙ (𝜏1 ― 𝜏2)

is the electrokinetic charge density (the proportionality coefficient between electric-current 
density and volume flux under streaming-current conditions, i.e. )∇𝑐 = 0, ∇𝜑 = 0

 (S34)𝑔 ≡
𝐹2

𝑅𝑇(𝑍1𝜈1)𝑐[𝑍1(𝑃1 ―
𝜔
𝜈2) ― 𝑍2(𝑃2 ―

𝜔
𝜈1)]

is the electric conductivity at zero transmembrane volume flow,

 (S35)𝑃𝑠 ≡
(𝑍1 ― 𝑍2)(𝑃1𝑃2 ―

𝜔2

𝜈1𝜈2)
𝑍1(𝑃1 ―

𝜔
𝜈2) ― 𝑍2(𝑃2 ―

𝜔
𝜈1)

is the salt diffusion permeability at zero transmembrane volume flow,

 (S36)Τ𝑠 ≡ 𝜏1𝑡2 + 𝜏2𝑡1

is the salt transmission coefficient (one minus salt reflection coefficient),

 (S37)𝑡1 ≡
𝑍1(𝑃1 ―

𝜔
𝜈2)

𝑍1(𝑃1 ―
𝜔
𝜈2) ― 𝑍2(𝑃2 ―

𝜔
𝜈1)

is the transport number of ion “1” at zero transmembrane volume flow.

 (S38)𝑡2 ≡ 1 ― 𝑡1

by definition. The coefficients in Eqs(S28-S37) are given by Eqs(S22-S24). By putting  from 𝐼 = 0
Eqs(S28, S29), we obtain the starting Eqs(1,2) of the main text.

Numerical procedures
Non-linearized Poisson-Boltzmann equation was solved numerically by using 6th-order Runge-
Kutta routine. Electrostatic potential on the capillary axis was iterated until the boundary 
condition for the potential derivative at the capillary wall (Eq(16)) was satisfied. The integrals 
from Eqs(8-10,12) were calculated numerically by using the method of trapezoids. The overall 
numerical error was less than 0.1%. Numerical procedures were implemented using Delphi 
2017.01 software.

Contribution of volume transfer to salt diffusion
In experiments, salt diffusion permeability was estimated from the rate of change of salt 
concentration difference between the source and the receiving compartments. In our 
experiments, the relative concentration-difference changes were rather small (mostly because 
the measurements were performed at relatively small concentration differences, so the 
receiving concentration could not be very low and rather small relatively changes in the 
concentration had to be detected), so the accuracy of salt-flux estimates is not very high. 
Accordingly, it is difficult to differentiate between the rate of salt flux occurring at initial stages 



S6

of experiment (where the osmotic flow is still non-zero, see Fig.1a) and at the later stages 
where the salt diffusion occurs at practically zero transmembrane volume flow. Nonetheless, 
the theoretical model developed above affords estimates of the possible contribution of 
volume transfer to salt diffusion (and demonstration that it is moderate, see below). While 
defining the diffusion permeability at non-zero volume flow we should account for the 
concentration changes due to solvent transfer from the receiving compartment. This means 
that we should consider the so-called salt chemical flux defined as

 (S39)𝐽(𝑐ℎ)
𝑠 ≡ 𝐽𝑠 ―𝑐𝐽𝑣

and quantifying the rate of salt-concentration changes in the compartment receiving salt flux. 
In our experiments, the contribution of volume transfer to the salt diffusion is largest at the 
early stages where the transmembrane pressure difference is still very low, so for 
overestimates we can assume it to be equal to zero. By putting ,  in Eq(S28) and by ∇𝑝 = 0 𝐼 = 0
substituting the resulting expression for the osmotic volume flux to Eqs(S29, S39), we obtain

 (S40)𝐽(𝑐ℎ)
𝑠 = ― [𝑃𝑠 + 𝑅𝑇𝑐(𝜈1 + 𝜈2)𝜒 ∗ 𝜎2

𝑠]∇𝑐

Accordingly, the “initial” salt diffusion permeability (at zero hydrostatic-pressure difference) is 
related to the “zero-flow” permeability this way.

 (S41)𝑃𝑠|∆𝑃 = 0 = 𝑃𝑠|𝐽𝑣 = 0 + 𝑅𝑇(𝜈1 + 𝜈2)𝑐𝜒 ∗ 𝜎2
𝑠

Since all the factors in the second term in the right-hand side of Eq(48) are positive, due to 
volume transfer, salt diffusion permeability always increases.

At non-zero transmembrane volume flows, the increased rate of salt-concentration changes in 
the salt-receiving compartment is due to the (partial) salt rejection accompanying the osmotic 
flow leaving this compartment. Since both the rate of osmosis and the salt rejection are 
proportional to the salt reflection coefficient, the correction is quadratic in it. As we can see 
from Eq(S41), the osmotic correction to the membrane diffusion permeability can be expected 
to be noticeable just for the investigated “intermediate” nanoporous charged membranes 
because such membranes can have relatively large hydraulic permeabilities along with not too 
small salt reflection coefficients at not too low salt concentrations. True, the effect is still 
limited because “large” salt-reflection coefficients ( ) occur only in quite dilute solutions 𝜎𝑠 ≈ 1
(note the proportionality of the correction to the virtual salt concentration). Fig.S1 shows the 
results of some calculations of this correction for parameter combinations corresponding to 
the membranes and conditions described in the experimental section. The values of surface-
charge density are close to those fitted to the experimental data.

a) b)

Fig.S1. Relative correction to salt permeability due to volume transfer (theoretical)
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In very dilute solutions and at larger surface-charge densities, the correction is significant 
(especially, in the case of KCl). However, in the investigated membranes the surface-charge 
density noticeably decreases with the salt concentration (see the main text). Thus for instance, 
at average KCl concentration of 1.5 mM the surface-charge density is about -5.7 mC/m2. 
Fig.S1a) shows that the relative osmotic correction in this case is below 10%. At the higher 
average concentration of 3 mM KCl, the fitted surface-charge density is about -9.5 mC/m2. In 
this case, the correction is around 15%. For LiCl, the corrections are smaller. We should also 
keep in mind that Fig.S1 shows the largest corrections occurring at strictly vanishing 
hydrostatic-pressure difference while in our experiments this condition is fulfilled only at very 
early stages, while the system progressively approaches the mode of zero volume flow with 
time. Given the relatively low accuracy of determination of rate of change of salt concentration 
(see above) we will neglect this relatively small correction and use the zero-flow diffusion 
permeability (Eq(37)) for the fitting of experimental data.

Hydraulic permeability and pore size
For the interpretation of osmotic pressure and diffusion permeance in terms of capillary space-
charge model, we need to know the pore size. Given that the membranes have identical 
straight cylindrical pores this seems to be easy to obtain from the membrane hydraulic 
permeability by using Hagen-Poiseuille equation. Keeping in mind the salt-concentration 
dependence of hydraulic permeability (due to the so-called electro-viscosity, see Eq(S28)) at 
first glance it appears logical to make this measurement using electrolyte solutions of 
concentrations corresponding to those employed in the other measurements. However, this 
seemingly simple measurement is actually non-trivial in interpretation primarily due to a salt 
rejection and the corresponding buildup of osmotic-pressure difference. In terms of trans-
membrane volume flow vs applied hydrostatic pressure, this leads to a characteristic 
dependence having an initial and a subsequent linear parts, the extension of the latter crossing 
the pressure axis at a non-zero positive pressure (see, for example, Fig.2 of ref.3). 
Determination of the genuine hydraulic permeance requires reaching well into this second 
linear part (to be able to determine its slope). For solutions of concentrations used in the 
principal measurements (1-4 mM), the corresponding pressures cannot be reached in our 
setup. Besides, such interpretation requires a careful control of stirring conditions, which is 
also not feasible in stirred test cells. Therefore, for the measurements of hydraulic 
permeability, we opted for the use of pure water. True, the contribution of electro-viscosity 
correction in this case can be different from solutions of finite electrolyte concentrations. 
However, given the strong (fourth-power) dependence of hydraulic permeability on the pore 
size and the limited magnitude of electro-viscous phenomenon (max. ca.25% in KCl and ca.40% 
in LiCl solutions1) the associated error in the determination of the pore size can only be 
moderate. Besides, below we will see that surface-charge density in the investigated 
membranes noticeably decreases with electrolyte concentration. If we extrapolate this trend 
to very dilute solutions, the electro-viscosity correction (controlled in very dilute solutions by 
the surface-charge density1) can be expected to be negligible, and the especially simple 
Eq(S31) to be applicable for the determination of pore size.

Membrane irradiation and etching procedures
The angle distribution of pore orientation with respect to the membrane surface originates 
from the irradiation mode illustrated by Fig.S2. The film circumflexes a horizontal cylindrical 
shaft 4 cm in radius. The ion beam, homogeneously spread in both vertical and horizontal 
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directions, impinges the film through a window 4 cm high. With such geometry, all orientations 
within the angle range from -30 to +30 degrees are equally likely.

Due to the pore “non-perpendicularity” the pore crossing occurred only at some punctual 
positions along the pore length. Such events give rise to some deviations from the model 
geometry but the most important parameter, namely, the pore size is only slightly affected. An 
alternative scenario of track-etched membrane with parallel pores would be a much worse 
model system. The pores in TEMs are distributed over the surface stochastically. Some of the 
pores form double, triple and so on clusters. Several clusters are seen in Fig. 1 (right). When 
the pore channels are parallel, each cluster is a channel with a larger (compared to singles) 
cross-section. The number of such clusters can be calculated4. At a pore density of 8E13 m-2, 
there are plenty of multiples in a sample 2 cm in diameter. The multiples strongly affect the 
membrane selectivity. The angle distribution of pore axes (± 30 degrees) reduces the number 
of multiples by several orders of magnitude.

The membranes were produced in the following way. PET film 10 um thick was irradiated with 
1 MeV/u Xe ions, then treated with soft UV radiation to sensitize tracks and etched in 0.5 M 
NaOH at 80C for 6.2 min. Under such conditions, the track cores etched though for the time 
shorter than 1 min. The rest of time (1-6 min) corresponds to a slow widening of pores. Since 
the total etching time is at least 6 times longer than the breakthrough time, the pore channels 
should be cylindrical. No narrowing of the channels in the middle of the film is seen in the SEM 
images of cross sections of the membrane (Fig. 1, left).

Fig.S2. Schematic of film irradiation
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Experimental setup

Fig.S3 Schematic of experimental setup

To avoid leaks of solution in the left-hand compartment we used a magnetic stirrer (even a tiny 
leak affects the results). The right-hand compartment is open and, therefore, it was possible to 
use a “pony mixer”, which is more effective and easier to control.

Interpretation of diffusion measurements
The maximum rise of solution level in the measuring capillary in our measurements did not 
exceed ca.35 cm. Given the inner diameter of the capillary equal to 1 mm, the corresponding 
change of volume was about 3 ml, that is ca.1% of the compartment volumes. Therefore, in 
the following, we will neglect the contribution of volume transfer to the changes of solute 
concentrations. In this approximation, from the material balances we can obtain:

 (S42)― 𝑉1
𝑑𝑐1

𝑑𝑡 = 𝑃 ∙ 𝐴 ∙ (𝑐1 ― 𝑐2)

 (S43)𝑉2
𝑑𝑐2

𝑑𝑡 = 𝑃 ∙ 𝐴 ∙ (𝑐1 ― 𝑐2)

 (S44)𝑉1𝑐1 + 𝑉2𝑐2 = 𝑄

where  is a constant total amount of salt,  is the membrane diffusion permeance,  is the 𝑄 𝑃 𝐴
membrane area,  and  are the compartment volumes (assumed to be constant), 𝑉1, 𝑉2 𝑐1, 𝑐2

and (time-dependent) solute concentrations in them. By introducing average compartment 

volume, , and the relative deviation from the average, , Eqs(S42,S43) can 𝑉 ≡
𝑉1 + 𝑉2

2 ∆𝑉 ≡
𝑉1 ― 𝑉2

2
be transformed to

 (S45)―
𝑑
𝑑𝑡[𝑉(𝑐1 ― 𝑐2) + ∆𝑉(𝑐1 + 𝑐2)] = 2𝑃 ∙ 𝐴 ∙ (𝑐1 ― 𝑐2)

Eq(S44) can be used to express the time derivative of the sum of concentrations via time 
derivative of their difference, so solving the simple resulting ODE we obtain

 (S46)𝑙𝑛(∆𝑐(𝑡)
∆𝑐(0)) = ―

2𝑃𝐴

𝑉 ― (∆𝑉 𝑉)2 ∙ 𝑡
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One can see that the correction due to different compartment volumes is quadratic in , (∆𝑉 𝑉)
so for our volumes (250 ml and 300 ml) it is about 0.8% and can be neglected.
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