Fluorophosphate Upconversion Luminescent

Glass-Ceramics Containing Ba₂LaF₇:Er³⁺ Nanocrystals: An

Advanced Solid-State Nuclear Magnetic Resonance Study

Tongyao Zhao,^{a, b} Lili Hu,^a Jinjun Ren*, a, b

 ^a Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
 ^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China Email: renjinjunsiom@163.com

Fig. S1 (a) The measured DSC curves of xBaF₂-(90-x) NaPO₃-10LaF₃ (x=15, 20, 25, 30, 35 glass samples; (b) The measured XRD patterns of x=35 glass and glass ceramics with heating temperature of 325°C and 400°C, respectively.

Fig. S2 ¹⁹F{³¹P} REDOR dephasing curves of x = 15, 25, and 35 glasses. The REDOR dephasing curves were acquired by integrating the whole spectra.

Fig. S3 ²³Na TQ MAS spectrum of x=25 glass.

Fig. S4 The measured XRD patterns of the heated glasses with heating temperature of 350°C for 5 hours.

	90°pulse/µs	spinning rate/kHz	v ₀ /MHz	recycle delays/s	Reference compound ^c
³¹ P MAS	2.5	12	202.5	80 a/10 b	NH ₄ H ₂ PO ₄
¹⁹ F MAS	2.1	25	470.5	40/5	AlF ₃

Table S1. The parameters of ³¹P and ¹⁹F magic angle spinning (MAS) NMR experiments.

^a Relaxation time for glass samples.

 $^{\rm b}$ Relaxation time for the samples doped with ${\rm Er^{3+}}.$

^c The chemical shifts are 1.12ppm (NH₄H₂PO₄) and -172.5ppm (AlF₃).

REDOR	v ₀ (S) ^a /MHz	$ u_0(I) \ ^b$ /MHz	v °/kHz	$T_1^{d/s}$	pulse length (S)/µs	pulse length (I) /µs
$^{19}F\{^{31}P\}$	470.5	202.5	25	20	4.2	4.2
$^{31}P\{^{19}F\}$	202.5	470.5	25	40	4.2	4.2
$^{31}P\{^{23}Na\}$	202.5	132.3	12	40	9.0	9.0
$^{23}Na\{^{31}P\}$	132.3	202.5	12	0.5	9.0	9.0
$^{19}F\{^{23}Na\}$	470.5	132.3	25	20	4.2	4.2
$^{23}Na\{^{19}F\}$	132.3	470.5	25	0.5	4.2	4.2

Table S2. Experimental parameters used in the REDOR NMR experiments

^a S-spin resonance frequency.

^b I-spin resonance frequency.

^c Spinning rate.

^d Relaxation time.

Samples	<i>Tg</i> /°C (±5°C)
35Ba	291
30Ba	292
25Ba	296
20Ba	298
15Ba	304

Table S3 . The glass transition temperature values of selected glass samples.

samples	P species	position/ppm (±0.5)	Width/ppm (±0.5)	fraction% (±10)
	Q ⁰ _{0La}	4.6	7.7	3.0
15Da	Q^1_{0La}	-0.4	7.6	9.9
ТэВа	Q^1_{1La}	-4.4	8.8	48.6
	Q ²	-17.7	9.4	38.5
	Q^0_{0La}	4.6	7.1	4.5
20Da	$Q^1{}_{0La}$	-0.4	7.7	13.6
20Ba	Q^1_{1La}	-4.4	8.5	49.8
	Q ²	-17.3	9.3	32.1
	Q^0_{0La}	4.6	6.6	5.3
26D-	Q^1_{0La}	-0.4	7.5	15.3
25Ва	Q^1_{1La}	-4.4	8.2	54.0
	Q ²	-16.9	9.1	25.4
	Q^0_{0La}	4.6	6.6	7.5
200-	Q^1_{0La}	-0.4	7.7	18.8
30Ba	Q^1_{1La}	-4.4	8.2	53.4
	Q ²	-16.7	8.6	20.3
	Q^0_{0La}	4.6	6.2	6.5
25Da	Q^1_{0La}	-0.4	8.0	18.8
55Da	$Q^1{}_{1La} \\$	-4.4	8.0	58.3
	Q ²	-16.4	8.6	16.4
	Q^0_{0La}	4.6	6.9	6.8
35Ba heated	Q^1_{0La}	-1.5	7.3	40.2
	Q^1_{1La}	-4.4	8.7	28.4
	Q ²	-16.2	9.2	24.6

Table S4. Deconvolution parameters of the ³¹P MAS NMR spectra of the glasses and glass ceramics.

composition	N ^P _{P-O-P} ^a (±10%)	N _{F-P} ^b (±15%)	N_{loss} (±10%)	N ^F _{P-O-P} ^c (±20%)	N ^p _{P-O-P} / N ^F _{P-O-P}
15Ba	24.2	14.1	38.1	33.1	0.73
20Ba	25.3	11.6	48.9	36.1	0.70
25Ba	26.0	15.1	46.6	38.6	0.68
30Ba	26.2	12.0	56.7	40.5	0.65
35Ba	24.7	12.3	60	42.3	0.58

Table S5 Quantity of F bonding to P (N_{F-P}), number of the broken P-O-P bond (N^{F}_{P-O-P}) calculated according to N_{F-P} and the loss of F, and number of broken P-O-P bond (N^{P}_{P-O-P}) calculated according to the deconvolution of ³¹P spectra.

^a $N^{P}_{P-O-P} = N_{P} \times (Q^{0}+0.5Q^{1})$, where N_{P} is nominal total mole content of P atoms, Q^{n} represents the fraction of the phosphorus species obtained by the deconvolution of ³¹P spectra.

 ${}^{b}N_{F-P} = N_{F} \times F_{F-P}$, where N_F is residual mole content of F atoms; F_{F-P} is the fraction of P-F species obtained from the deconvolution of ${}^{19}F$ spectra.

 c $N^{F}_{P\text{-}O\text{-}P}$ =0.5N_{loss}+ $N_{F\text{-}P}$, where N_{loss} represents the mole quantity of the loss F.

19F MAS	F species	position/p pm (±0.5)	Width/pp m (±0.5)	CSA/ppm (±5)	η _{cs} (±0.01)	Fraction/% (±10)	R _F (±0.2)
	F-P	-73.8	10.9	-89	0.03	64.4	0.04
15Ba	La-F-Ba	-28.6	57.1	-65	0.03	22.8	0.08
	Ba-FNa	-65.0	13.0	-76	0.09	12.8	0.09
20Ba	F-P	-73.6	10.5	-90	0.03	54.9	0.04
	La-F-Ba	-31.1	61.3	-60	0.03	33.7	0.10
	Ba-FNa	-65.0	11.4	-74	0.09	11.4	0.06
	F-P	-73.5	11.1	-92	0.03	45.2	0.05
25Ba	La-F-Ba	-32.7	64.8	-67	0.03	44.0	0.18
	Ba-FNa	-65.0	12.4	-75	0.09	10.8	0.07

Table S6. Deconvolution parameters of the ^{19}F MAS NMR spectra of all the glasses and the calculated $R_{\rm F}$ values.

	F-P	-73.2	10.9	-91	0.03	35.9	0.04
30Ba	La-F-Ba	-31.0	63.9	-58	0.03	50.1	0.19
	Ba-FNa	-65.0	13.0	-73	0.09	14.0	0.08
	F-P	-72.7	11.4	-93	0.03	30.7	0.04
35Ba	La-F-Ba	-24.7	53.1	-50	0.03	47.8	0.19
	Ba-FNa	-65.0	16.7	-76	0.09	21.5	0.12

Table S7. Dipolar second moment M_2 (F-F) values of glasses

samples	$M_2/10^6 \text{ rad}^2/\text{s}^2(\pm 10\%)$
35Ba	436.1
30Ba	364.2
25Ba	282.4
20Ba	214.9
15Ba	136.6