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1 Computational details

1.1 The Frenkel excition model

  Proteins are composed of peptide bonds and amino acid residues (Figure 1a). The absorption of 
partially delocalized peptide bonds of the backbone contributes to the response of the protein electronic 
circular dichroism (CD) spectrum in the 190–250 nm region. The electronic excitation of the peptide 
bonds is easily affected by fluctuations in the surrounding environment (amino acid residues) and can be 
described effectively by the Frenkel exciton model 1-3.

    (1)𝐻 = ∑
𝑚𝑎𝜀𝑚𝑎𝐵 †

𝑚𝑎𝐵𝑚𝑎 + ∑𝑚 ≠ 𝑛
𝑚𝑎,𝑛𝑏𝐽𝑚𝑎,𝑛𝑏𝐵 †

𝑚𝑎𝐵𝑛𝑏

where a and b represent two excited state transitions in peptide bonds, which are n→π* transition around 
220 nm and π→π* transitions around 190 nm (Figure 1b). And ma denotes the a electronic transition of 

the m-th peptide bond.  is the creation Pauli operator which promotes the peptide bond m from the 𝐵 †
𝑚𝑎

ground state into the excited state a, and the  is the corresponding annihilation operator.  is the 𝐵𝑚𝑎 𝜀𝑚𝑎
electronic excitation energy, and  is the electronic coupling between excited states.  can be 𝐽𝑚𝑎,𝑛𝑏 𝜀𝑚𝑎

written as:

    (2)𝜀𝑚𝑎 = 𝜀0,𝑚𝑎 + ∑
𝑘

1
4𝜋𝜀𝜀0

∬𝑑𝒓𝑚𝑑𝒓𝑘([𝜌𝑇,𝑚𝑎(𝒓𝑚) ― 𝜌𝐺,𝑚(𝒓𝑚)] ∙ 𝜌𝐺,𝑘(𝒓𝑘)
|𝒓𝑚 ― 𝒓𝑘| )

ε0,ma is the excitation energy of the isolated peptide bond, and the second term is the electrostatic 
interaction between the peptide bond and the surrounding environment. ρT,ma and ρG,m denote the charge 
density of the a th excited state and ground state of the peptide bond m, respectively. ρG,k represents the 
ground state charge density of the amino acid residue k, and k runs over all amino acid residues. r is the 
spatial coordinate. In addition,  in Eq. (1) can be written as:𝐽𝑚𝑎,𝑛𝑏

   (3)𝐽𝑚𝑎,𝑛𝑏 =
1

4𝜋𝜀𝜀0
∬𝑑𝒓𝑚𝑑𝒓𝑛

𝜌𝑇,𝑚𝑎(𝒓𝑚)𝜌𝑇,𝑛𝑏(𝒓𝑛)
|𝒓𝑚 ― 𝒓𝑛|

In order to simplify the calculation of the two-electron integral in Eq. (2) and Eq. (3), the dipole 
approximation can be applied to deal with the electronic interaction 4-5. By the dipole approximation, the 
excitation energy  of the peptide bonds can be described as:𝜀𝑚𝑎

  (4)𝜀𝑚𝑎 = 𝜀0,𝑚𝑎 + ∑
𝑘

1
4𝜋𝜀𝜀0(𝝁𝑇,𝑚𝑎 ∙ 𝝁𝐺,𝑘

|𝐫𝑚𝑘|3 ― 3
(𝝁𝑇,𝑚𝑎 ∙ 𝐫𝑚𝑘)(𝝁𝐺,𝑘 ∙ 𝐫𝑚𝑘)

|𝐫𝑚𝑘|5 )
the second part in Eq. (4) is the interaction between μT,ma and μG,k, which are the transition dipole moment 
of the peptide bond and the ground state dipole moment of the surrounding amino acid residues k, 
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respectively. Also based on the dipole approximation, the resonance coupling  between excited 𝐽𝑚𝑎,𝑛𝑏

states can be described as:

   (5)𝐽𝑚𝑎,𝑛𝑏 = ∑𝑚 ≠ 𝑛
𝑚,n

1
4𝜋𝜀𝜀0(𝝁𝑇,𝑚𝑎 ∙ 𝝁𝑇,𝑛𝑏

|𝒓𝑚𝑛|3 ― 3
(𝝁𝑇,𝑚𝑎 ∙ 𝒓𝑚𝑛)(𝝁𝑇,𝑛𝑏 ∙ 𝒓𝑚𝑛)

|𝒓𝑚𝑛|5 )
According to Eq. (4) and Eq. (5), excitation energy ε0 and electric transition dipole moment μT of all 

peptide bonds, and the ground state μG of all amino acid residues need to be calculated to construct the 
Hamiltonian of a protein by dipole approximation. In addition, the simulated CD spectrum requires the 
magnetic transition dipole moment μM of peptide bond to provide the information about rotor strength. 

1.2 The calculation of rotor strength. 

Rotor strength is defined as the imaginary part of the scalar product of the electric and magnetic 
transition dipole moments of an electronic transition 6. 

R = |μM|·|μT|·cos θ

Therefore the transition electric and magnetic dipole moments of peptide bonds should be provided to 
SPECTRON 7 to calculate the rotatory strength of the CD spectrum.

1.3 The machine learning protocol

1.3.1 Data collection

We downloaded 1000 different types of protein PDB files from the RCSB Protein Data Bank 
(http://www.rcsb.org) 8. These PDB files contain 8 kinds of common proteins: fibrous protein, globular 
protein, keratin, collagen, chaperone, myoglobin, hemoglobin and denaturation. This ensures the diversity 
of data. We split the PDB files into peptide bonds and amino acid residues, and then we extracted 50 
peptide bonds and 200 amino acid residues (20 kinds of amino acid residues, 10 for each residue) from 
each protein randomly. A total of 50,000 peptide bonds and 200,000 amino acid residues (20 kinds of 
amino acid residues, 10,000 for each residue) are used for training. Density functional theory (DFT) and 
time-dependent density functional theory (TDDFT) calculations are used to collect the data about peptide 
bonds and residues. 

DFT calculations at B3LYP/6-311++G** level are used to obtain the ground state dipole moment of 
residues. B3LYP/6-311++G** is employed, because it is a reliable method when doing ground state 
calculations 9-11. For peptide bonds, we use the TDDFT method at the PBE0/cc-pVDZ level to calculate 
the excitation energy, electric and magnetic transition dipole moment of the peptide bonds. The functional 
PBE0 has been recommended for TDDFT calculation of excitation energies of different molecules 12-13 
and it has been employed in previous TDDFT study of NMA 14. And the calculation using PBE0 is cost-
effective, which is friendly to our calculation for peptide bonds with 50,000 sets of data. The lowest 10 
excitation states are calculated. We have carried out the phase correction 15 with Multiwfn code 16 to solve 

http://www.rcsb.org
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the related mutation problem of structure and properties caused by the random phase of the wave function. 
NOSYMM keyword is used to avoid structural reorientation and polarizable continuum models (PCM) 
with water ad solvent is required for all the calculations. All the DFT/TDDFT simulation are performed 
in Gaussian 16 package 17.

1.3.2 ML Model Training

For the prediction of ε0 of peptide bond and μG of amino acid residue, we select 80% of the data for 
training set and 20% for test set randomly. In order to avoid that the different range of raw input values 
may undermine the robustness NN results, all the input data are normalized to the dimensionless data in 

range 0 to 1: , where  are the input data,  and  are minimum and maximum 𝑥𝑛 =
𝑥𝑖 ― 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 ― 𝑥𝑚𝑖𝑛
𝑥𝑖 𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

values of all the input data, and  are the normalized data.𝑥𝑛

The neural network (NN) architecture based on Tensorflow framework 18 has one input layer, three 
hidden layers (32, 64, and 128 neurons, respectively) and one output layer. The rectified linear unit (ReLU) 
19 is used as the activation function to resist the disappearance of the gradient and reduce the influence of 
noise to a certain extent. L2 regularization is employed to combat the overfitting that occurs during the 
training process 20. L2 regularization can makes the NN tend to learn a smaller weight value w. And a 
smaller weight value indicates that the complexity of the network is lower, and the fitting of the data is 
just suitable (also known as Occam's razor). We also use the Adam optimizer 21, which is most commonly 
used in machine learning and usually works well in comprehensive situations. The learning rate is set to 
0.001.

For the prediction of μT/μM of peptide bond, the EANN model with our newly-developed embedded 
density descriptors are employed, as discussed below.

The Pearson coefficient (r) and the mean relative error (MRE) are used to evaluate the robustness of 
our ML model. The pearson coefficient is calculated by a module of Python called Numpy. And the mean 
relative error is defined as follows:

    MRE =
100%

𝑛 ∑𝑛
𝑖 = 1|𝐴𝑖 ― 𝑃𝑖

𝐴𝑖 |

where  is the actual value and  is the predicted value of molecule i, respectively. n is the molecular 𝐴𝑖 𝑃𝑖

number.

1.3.3 ML Prediction of CD spectra

  Based on the trained ML model, the corresponding ε0, μT and μM of peptide bond and μG of amino acid 
residue can be obtained by inputting the geometric information contained in the PDB file of a new protein. 
With these predicted parameters,  and  can be calculated using Eq. (4) and Eq. (5). Then they 𝜀𝑚𝑎 𝐽𝑚𝑎,𝑛𝑏

can construct the exciton Hamiltonian. μT and μM can provide rotor strength for CD spectrum. The 
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SPECTRON 7 program is used to diagonalize the Hamiltonian and finally output the CD spectrum of the 
selected protein.

1.4 Descriptors of electric and magnetic transition dipole moment

The prediction for μT and μM is challenging because they are vectors involving multiple coordinate 
dependent components, which are covariant with system rotation. For the prediction of μT and μM, we 
select some machine learning algorithm and molecular descriptors, which are gradient boosting regression 
(GBR) 22 with coulomb matrix (CM) 23 and atom-centered symmetry functions (ACSF) 24, and the 
embedded atom neural network (EANN) 25 with embedded density descriptors 26.

The coulomb matrix (CM) is used to describe a central atom and its surrounding environment. For a 
central atom k, its CM can be expressed as:

    𝑀𝑖𝑗(𝑘) = {1
2𝑍2.4

𝑖 ∙ 𝑓2
𝑖𝑘         𝑖 = 𝑗

𝑍𝑖𝑍𝑗

||𝑅𝑖 ― 𝑅𝑖||           𝑖 ≠ 𝑗

where i, j, and k are the labels of the atom. Z is the nuclear charge, and R is the Cartesian coordinates in 
Euclidean spaces.  is a long-range correction function:𝑓𝑖𝑗

 𝑓𝑖𝑗 = {            1                         ||𝑅𝑖 ― 𝑅𝑖|| ≤  𝑟 ― ∆𝑟
1
2(1 + cos (𝜋

 ||𝑅𝑖 ― 𝑅𝑖|| ― 𝑟 + ∆𝑟
∆𝑟 ))   𝑟 ― ∆𝑟 <   ||𝑅𝑖 ― 𝑅𝑖|| ≤  𝑟 ― ∆𝑟

0                               ||𝑅𝑖 ― 𝑅𝑖|| > 𝑟

  The atom-centered symmetry functions (ACSF) uses a series of radial functions and angle functions to 
represent the environment around the central atom. For atom i, there are three radial symmetric functions:

    𝐺1
𝑖 = ∑

𝑗𝑓𝑐(𝑅𝑖𝑗)

    𝐺2
𝑖 = ∑

𝑗 𝑒
―𝜂(𝑅𝑖𝑗 ― 𝑅𝑠)2

 ∙ 𝑓𝑐(𝑅𝑖𝑗)

    𝐺3
𝑖 = ∑

𝑗 cos (𝑘 𝑅𝑖𝑗)  ∙ 𝑓𝑐(𝑅𝑖𝑗)

where  is the distance between atom i and j, and  is the cutoff function function:𝑅𝑖𝑗 𝑓𝑐(𝑅𝑖𝑗)

𝑓𝑐(𝑅𝑖𝑗) = {0.5 ∙ [cos (𝜋𝑅𝑖𝑗

𝑅𝑐 ) + 1]   𝑅𝑖𝑗 ≤ 𝑅𝑐

0                    𝑅𝑖𝑗 > 𝑅𝑐
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where  is the cutoff radius. It can be seen that  is the simple sum of all the cutoff functions;  is 𝑅𝑐 𝐺1
𝑖 𝐺2

𝑖

the sum of the product of the Gaussian function and the cutoff function. η and R control the peak width 
and shift of the Gaussian function, respectively.  is the sum of the product of a damped cosine function 𝐺3

𝑖

and a radial function. The ACSF also includes two angle functions:

𝐺4
𝑖 = 21 ― 𝜉

𝑎𝑙𝑙

∑
𝑗,𝑘 ≠ 𝑖

(1 + 𝜆𝑐𝑜𝑠𝜃𝑖𝑗𝑘)𝜉    ∙  𝑒 ―𝜂(𝑅2
𝑖𝑗 + 𝑅2

𝑖𝑘 + 𝑅2
𝑗𝑘)2

∙ 𝑓𝑐(𝑅𝑖𝑗) ∙ 𝑓𝑐(𝑅𝑖𝑘) ∙ 𝑓𝑐(𝑅𝑗𝑘)

𝐺5
𝑖 = 21 ― 𝜉

𝑎𝑙𝑙

∑
𝑗,𝑘 ≠ 𝑖

(1 + 𝜆𝑐𝑜𝑠𝜃𝑖𝑗𝑘)𝜉    ∙  𝑒 ―𝜂(𝑅2
𝑖𝑗 + 𝑅2

𝑖𝑘)2

∙ 𝑓𝑐(𝑅𝑖𝑗) ∙ 𝑓𝑐(𝑅𝑖𝑘)

 and  include the same angle part, but the radial part included is different.  is a parameter used 𝐺4
𝑖 𝐺5

𝑖 𝜉
to modify the distribution of angles centered of atom i. All the parameters described above are decided 
from best performing parameters reported by Marquetand et al 27.

   The embedded atom neural network (EANN) reported in our previous works is a great approach to 
describe the transition dipole moments in an efficient way. Starting from the commonly used Gaussian-
type orbitals (GTOs) and combined with empirical embedded atom method, the new density-like 
descriptors can be described as:

𝝆𝑖
𝐿,𝛼,𝑟𝑠 =

𝑙𝑥 + 𝑙𝑦 + 𝑙𝑧 = 𝐿

∑
𝑙𝑥,𝑙𝑦,𝑙𝑧

𝐿!
𝑙𝑥!𝑙𝑦!𝑙𝑧!(

𝑛𝑎𝑡𝑜𝑚

∑
𝑗 = 1

𝑐𝑗𝜑𝛼,𝑟𝑠
𝑙𝑥𝑙𝑦,𝑙𝑧

(𝑟𝑖𝑗))

2

where  represents the Cartesian coordinates of the atom i relative to atom j, and the  is the 𝑟𝑖𝑗 𝜑𝛼,𝑟𝑠
𝑙𝑥𝑙𝑦,𝑙𝑧

(𝑟𝑖𝑗)

GTOs centered at each atom,  is an element-dependent weight which can be optimized in the training 𝑐𝑗

process. The prefactor consisted of the factorials , ,  and L can transform the description of  𝑙𝑥 𝑙𝑦 𝑙𝑧 𝝆𝑖
𝐿,𝛼,𝑟𝑠

to an angular basis as Takahashi et al. realized.  means the number of neighboring atoms close to 𝑛𝑎𝑡𝑜𝑚

the center atom with a sphere with a cutoff radius.

In order to verify the symmetry invariance of the descriptor, we define . 𝑓(𝑟𝑖𝑗) = exp ( ― 𝛼|𝑟𝑖𝑗 ― 𝑟𝑠|2)

According to multinomial theorem,  can be derived as:𝝆𝑖
𝐿,𝛼,𝑟𝑠

𝝆𝑖
𝐿,𝛼,𝑟𝑠 = ∑

𝑗,𝑘 ≠ 𝑖
𝑐𝑗𝑓(𝑟𝑖𝑗)𝑐𝑘𝑓(𝑟𝑖𝑘)𝑟𝐿

𝑖𝑗𝑟𝐿
𝑖𝑘(cos 𝜃𝑖𝑗𝑘)𝐿

Apparently, this density-like descriptors is invariant with respect to the overall translation and rotation, 
and permutation of identical atoms. And we also can see these density-like descriptors are constructed 
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relying on Cartesian coordinates only. 

Electric and magnetic transition dipole moments subject to the three dimensional rotation group SO(3) 
meanwhile the Cartesian coordinate vector is naturally compatible with SO(3) symmetry when the 
molecule is rotated. Therefore, EANN constructs the desired tensor by multiplying virtual NN outputs 
with atomic coordinate vectors, while keeping structural descriptors symmetry invariant. Therefore, 
electric or magnetic transition dipole moment μT is defined as:

where N is the atom number and  is the two different outputs of the same 𝝁𝑗
𝑇 =

𝑁

∑
𝑖 = 1

𝑞𝑗
𝑖𝒓𝑖   (𝑗 = 1,2) 𝑞𝑗

𝑖

atomic NN using the density-like descriptors. The cross product of  and  will be perpendicular to 𝝁1
𝑇 𝝁2

𝑇

the plane defined by them:

𝝁3
𝑇 =

𝑁

∑
𝑖 = 1

𝑞3
𝑖 (𝝁1

𝑇 × 𝝁2
𝑇)

where  is the third output of the same atomic NN. Then the sum of these three vectors 𝑞3
𝑖 𝝁𝑁𝑁

𝑇 = 𝝁1
𝑇 + 𝝁2

𝑇
 can describe the transition electric and magnetic dipole moment successfully because it is not + 𝝁3

𝑇

restricted in the molecular plane with the correct rotational covariance.

1.5 The Spearman rank correlation coefficients 

Spearman rank correlation coefficients quantitatively determine the monotonic relationship between 
two variables which was widely used measure for the agreement between the predicted and experimental 
spectra 28-31. And it is defined as:

ρ = 1 ―
6∑

𝑖𝑑
2
𝑖

𝑛 ∙ (𝑛2 ― 1)

where n is the number of elements in each vector,  is the difference between the ranks of  𝑑𝑖 𝑥𝑖
(absorption intensities of experiment/DFT simulated spectra) and  (absorption intensities of predicted 𝑦𝑖

spectra) in their respective data set. 

1.6 Molecular dynamic simulations

  Molecular dynamics (MD) simulations are performed for proteins in Figure 4a (PDB ID: 1HRC, 2PAB, 
2RHE, 5DFR) using the GROMACS code 32. Periodic boundary conditions with OPLS-AA force field 
and TIP3P water are employed to proteins. Particle-mesh Edwald is used to deal with long-range 
electrostatic interactions and short-range coulomb interactions are truncated at 1.2 nm. 50000 cycles 
energy minimization are carried out for each protein. After NVT equilibration with an integration timestep 
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of 2 fs ran for 0.5 ns at 300K, the 2 ns MD simulations are performed at 300K and 1 atm in NPT ensemble. 
In this process, 1000 configurations were extracted at 2 fs intervals to calculate the CD spectrum. The 
MD conformations of Figure 4b (S1, S25, S50, S75, S100) are retrieved from our previous reported work 
about Trp-cage 33. The sequence of the Trp-cage is "NLYIQWLKDGG PSSGRPPPS", and the extended 
conformation is built as an initial structure. Based on this initial structure, 50 trajectories with different 
initial conditions were simulated. These trajectories covered 10 μs of the protein folding simulations. 100 
state points along the folding pathway were selected by clustering method. And they are labeled as S1, 
S2, ..., S100.

2 Supplementary Figures

2.1 ML prediction of the excitation energies of peptide bonds and the ground state dipole moments 

of twenty residues

Figure S1. (a) Data distribution of the TDDFT calculated excitation energies of peptide bonds. (b) 
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Correlation plots of the TDDFT and ML predicted excitation energies of peptide bonds. (c) Pearson 
correlation coefficients (r) and the mean relative error (MRE) of twenty residues.
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Figure S2. (a) The learning curve for predicting the excitation energies of NMA of the n → π* transition. 
(b) The learning curve for predicting the excitation energies of NMA of the π → π* transition. (c-e) The 
learning curves for predicting the ground state dipole moments of CYS in the x, y, z direction. 

Figure S3. Comparison of results of ML prediction for peptide bond excitation energies with internal 

coordinates, coulomb matrix (CM), BOB (Bag of bonds) and atom-centred symmetry functions (ACSF) 

as molecular descriptors.
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2.2 ML prediction of electric and magnetic transition dipole moments using CM and ACSF 

Figure S4. (a) Data distribution of the TDDFT calculated electric transition dipole moments of peptide 
bonds. (b) Correlation plots of the TDDFT and ML predicted electric transition dipole moments of the 
n→π* and π → π* transition using CM with GBR. (c) Same as (b) but using ACSF.
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Figure S5. (a) Data distribution of the TDDFT calculated magnetic transition dipole moments of peptide 
bonds. (b) Correlation plots of the TDDFT and ML predicted magnetic transition dipole moments of the 
n→π* and π → π* transition using CM with GBR. (c) Same as (b) but using ACSF.
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2.3 Proteins of interest in this study

Figure S6. Protein structures (labeled by their respective PDB code) in the main text.
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2.4 The comparison of DFT and ML simulated CD spectra

Figure S7. DFT (black curves) and ML (red curves) simulated CD spectra of different types of proteins 
(i.e., different fractions of α-helix and β-sheet) based on Frenkel exciton model. The ε0, μT, μM, and μG 
are first calculated with the DFT/ML methods. These parameters then construct an exciton Hamiltonian 
which is further diagonalized to get protein CD spectra. The electric and magnetic transition dipole 
moments of the peptide bonds constructing the CD in this figure are predicted by EANN.

Figure S8. DFT (black curves) and ML (red curves) simulated CD spectra of the protein (PDB ID: 1HA4) 
based on the Frenkel exciton model. The broadening factor is set to (a) 1000 and (b) 750. (c) All the non-
diagonal terms are set to zero and the simulated spectra are based on diagonal terms from DFT calculation 
and ML model, respectively. And the broadening factor is set to 750.
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Figure S9. DFT (black curves) and ML (red curves) simulated CD spectra of different types proteins (i.e., 
different fractions of α-helix and β-sheet) based on Frenkel exciton model. The method is same as Fig. S6 
but the electric and magnetic transition dipole moments of the peptide bonds constructing the CD in this 
figure are predicted by GBR with CM.
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2.5 More experimental and ML predicted CD spectra of different types proteins

Figure S10. Experimental (black curves) and ML predicted (red curves) CD spectra of different types 
proteins (i.e., different fractions of α-helix and β-sheet). Intensity is scaled to have the same maximum 
intensity for each panel.
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2.6 ML predicted IR spectra of four different types proteins based on 1000 MD configurations

Figure S11. ML predicted IR spectra of four different types proteins (i.e., different fractions of α-helix 
and β-sheet). The ML predictions are based on 1000 MD configurations.
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3 Supplementary Tables

Table S1. Comparison of the CD spectra simulated by DFT and the ML model based on Frenkel exciton 
model in terms of spearman rank correlation (ρ) and time ratio. This time is the total time for calculating 
the parameters required to construct the Hamiltonian.

Protein PDB ID Secondary class Number of atoms ρ Time ratio 
(DFT/ML)

BrD4 5H21 α 1216 0.94 4214
Gamma S-Crystallin 1HA4 β 1558 0.97 3099
DigA16 1LNM α+β 1340 0.86 2728.5
Thaumatin 1THW α+β 1667 0.70 3589.5
Lysozyme 193L α+β 1156 0.73 2177.5
TNFalpha 3L9J α+β 2453 0.89 4782.5
Phosphoglycerate kinase 3PGK α+β 3191 0.75 6878.5
ATPase 1T5S α+β 7746 0.76 11002.7

Table S2. The averaged secondary structure contents of mini Trp-cage along its folding process. Each 
state is based on 100 MD conformations.
      Content

State
Coil/% β-Turn/% α-helix/% 310-helices/%

S1 99.1 0.9 0.0 0.0
S25 73.0 25.0 0.0 0.0
S50 49.7 38.5 8.2 3.7
S75 48.9 29.9 19.7 1.6
S100 37.6 16.6 37.1 8.7
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