Supporting Information

Exploring the Structure and Performance of Cd-Chalcogenide Photocatalysts in Selective Trifluoromethylations

Krishnamoorthy Muralirajan,^{‡a} Rajesh Kancherla,^{‡a} Jeremy A. Bau,^a Mayur Rahul Taksande,^a Muhammad Qureshi,^{a,b} Kazuhiro Takanabe,^c Magnus Rueping ^a*

^a KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

^b SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States.

^c Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

[‡]These authors contributed equally

*Corresponding author: magnus.rueping@kaust.edu.sa

Table of Contents

General information

Physical characterization of CdSe/CdO

Photographs of the photochemical reaction setups

General procedure A: for trifluoromethylation of (hetero)arenes

General procedure B: for trifluoromethylation of N-arylacrylamides

General procedure C: for trifluoromethylation of vinylic acids

Radical trapping experiments

On-off experiments

Quantum yield measurement

General procedure for scale-up reaction

General procedure for recycling process

Kinetic profile of CdSe and CdO

Selenium oxide experiment

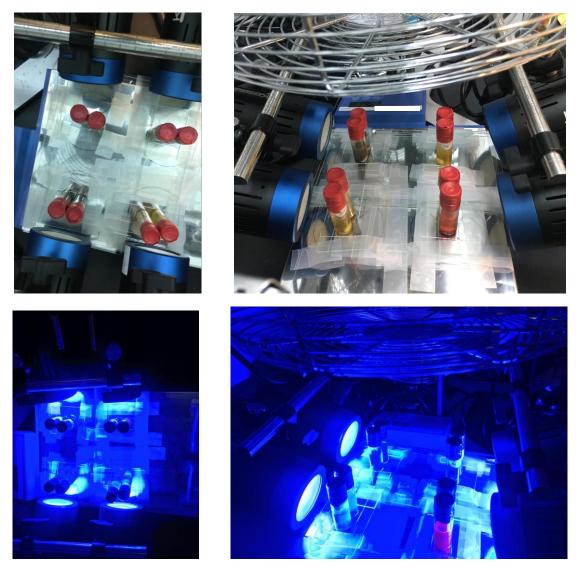
Characterization data

References

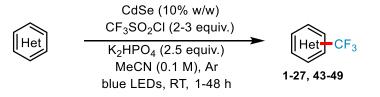
NMR spectra

General Information:

Unless otherwise stated, all reactions were carried out under an argon atmosphere in screw cap reaction tubes. All the reagents and solvents were bought from Sigma Aldrich, TCI and Alfa Aesar in a sure-seal bottle and were used as received. Cadmium catalysts were obtained from Sigma Aldrich. For column chromatography, silica gel (100–200 mesh) from Aldrich was used. A gradient elution using *n*-hexane, diethyl ether, DCM and Ethyl Acetate were performed based on Merck aluminum TLC sheets (silica gel 60 F_{254}) and were visualized under UV light (254 nm) or by staining with aqueous potassium permanganate solutions or vanillin alcoholic solution. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath at 25-30 °C.

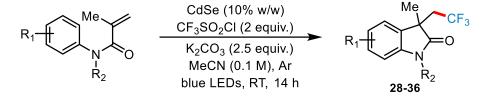

All isolated compounds are characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR spectroscopy, and gas chromatography-mass spectra (GC-MS). Copies of the ¹H NMR, ¹³C NMR and ¹⁹F NMR can be found in the supporting information. ¹H NMR spectra were recorded in deuterated solvents on Bruker Avance-II spectrometers at 400 or 500 MHz, with residual protic solvent as the internal standard (CDCl₃ referenced at 7.26 ppm, and DMSO as referenced at 2.50 ppm, respectively). ¹³C NMR spectra were recorded in deuterated solvents on Bruker Avance-II spectrometers at 101 or 125 MHz, with the central peak of the deuterated solvent as the internal standard (CDCl₃ referenced at 77.16 ppm, and DMSO as referenced at 39.51 ppm, respectively). ¹⁹F NMR spectra were recorded in deuterated solvents on Bruker Avance-II at 377 MHz. Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (J) are given in Hertz (Hz) rounded to the nearest 0.1 Hz. The ¹H NMR spectra are reported as δ /ppm downfield from tetramethylsilane (multiplicity, number of protons, assignment, coupling constant J/Hz). The ¹³C NMR spectra are reported as δ /ppm and were obtained with ¹H decoupling and if coupled to fluorine, multiplicity and coupling constant (Hz). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), b (broad), d (doublet), t (triplet), q = quartet, dd = doublet of doublets and dt = doublet of triplets, m (multiplet); coupling constants (J) are in Hertz (Hz). All GCMS analyses were done by Agilent 7890A GC system connected with 5975C inert XL EI/CI MSD (with triple axis detector).

Physical Characterization of CdSe/CdO

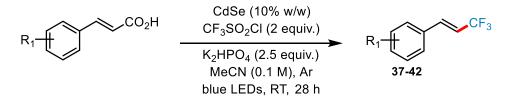

UV-visible spectra were acquired using a JASCO V-670 spectrophotometer with integrating sphere. The Kubelka-Munk function was used to process the data. A Kratos Axis Supra spectrophotometer with monochromatic Al K α X-ray source (hv = 1486.6 eV) with operating power 300 W, multi-channel plate, and delay line detector was used to collect XPS. The vacuum of the chamber was ~10⁻⁹ mbar. All spectra were recorded using an aperture slot of 300 µm x 700 µm. Survey spectra were collected using a pass energy of 160 eV and a step size of 1 eV. A pass energy of 20 eV and a step size of 0.1 eV were used for the high-resolution spectra. All binding energies were referenced to the C 1s binding energy of 284.8 eV. Diffraction was carried out using a Bruker D8 ADVANCE X-ray diffractometer at 40 mA/40 kV using Cu K α (λ = 0.154 nm)

operating conditions. SEM was performed using a Nova NANO SEM 630 (FEI) at an accelerating voltage of 5 kV and working distance of 5 mm. FT-IR spectra were recorded on a Nicolet 6700 FT-IR (ATR) spectrometer and are reported in wavenumbers (cm⁻¹).

Photographs of the photochemical reaction setups

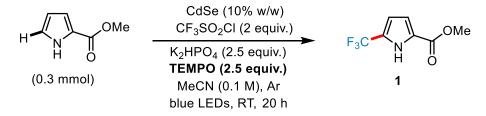


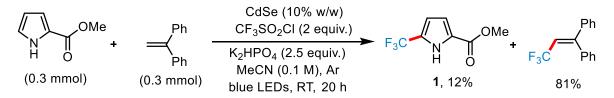
General procedure A for trifluoromethylation of (hetero)arenes


A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with (hetero)arenes (0.3 mmol, 1 equiv.), CdSe (10% w/w) and K₂HPO₄ (130.5 mg, 0.75 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (0.1 M, 3.0 mL) and triflyl chloride (64-96 μ L, 0.6-0.9 mmol, 2-3 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 1-48 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After completion, the reaction mixture was quenched with water and then extracted with diethyl ether or DCM (3 x 10 mL). The organic layer was collected, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography using silica gel (100-200 mesh size) and diethyl ether/petroleum ether or DCM/petroleum ether as the eluent. (w/w = weight by weight ratio with respect to limiting reagent).

General procedure B for trifluoromethylation of N-arylacrylamides

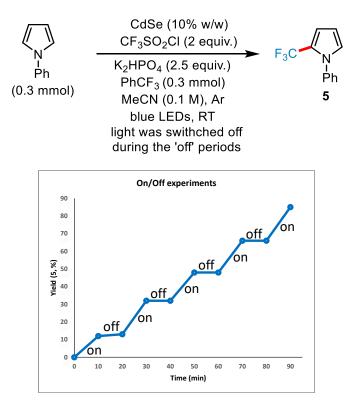
A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with *N*-arylacrylamides (0.3 mmol, 1 equiv.), CdSe (10% w/w) and K₂CO₃ (103.5 mg, 0.75 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (0.1 M, 3.0 mL) and triflyl chloride (64 μ L, 0.6 mmol, 2 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 14 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After completion, the reaction mixture was quenched via exposure to air. The reaction mixture was diluted with DCM and filtered through a small bed of Celite and concentrated *in vacuo*. The residue was purified by column chromatography using silica gel (100-200 mesh size) and EtOAc/petroleum ether as the eluent. (w/w = weight by weight ratio with respect to limiting reagent).

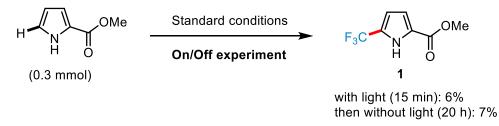

General procedure C for trifluoromethylation of vinylic acids

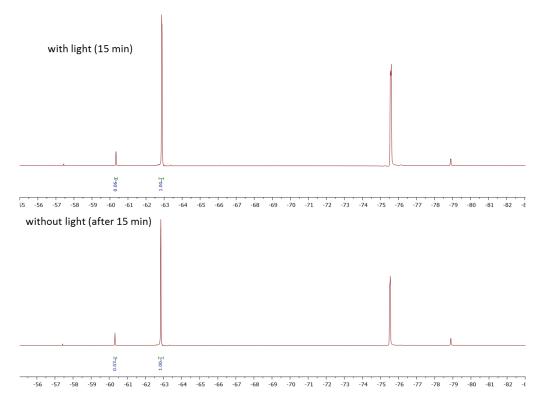

A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with α , β -unsaturated acid (0.3 mmol, 1 equiv.), CdSe (10% w/w) and K₂HPO₄ (130.5 mg, 0.6 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and

backfilled with argon (3 times). Then, dry MeCN (0.1 M, 3.0 mL) and triflyl chloride (96 μ L, 0.9 mmol, 3 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 28 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After 28 hours, the reaction mixture was treated with the saturated solution of NaHCO₃ and then extracted with diethyl ether (3 x 10 mL). The organic layer was collected, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography using silica gel (100-200 mesh size) and DCM/petroleum ether or EtOAc/petroleum ether as the eluent. (w/w = weight by weight ratio with respect to limiting reagent).

Radical trapping experiments

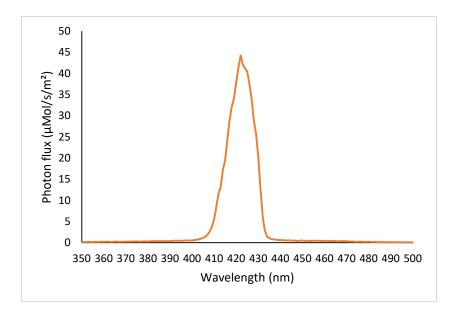

A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with methyl 2-pyrrolecarboxylate (37.5 mg, 0.3 mmol), CdSe (3.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol) and TEMPO (117.2 mg, 0.75 mmol). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (0.1 M, 3.0 mL) and triflyl chloride (64 μ L, 0.6 mmol, 2 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 20 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After 20 h, the reaction was quenched via exposure to air. The GCMS and ¹⁹F NMR analysis of the crude reaction mixture did not show the formation of product **1**.


A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with methyl 2-pyrrolecarboxylate (37.5 mg, 0.3 mmol), CdSe (3.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol) and 1,1-diphenylethylene (54 mg, 0.3 mmol). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (0.1 M, 3.0 mL) and triflyl chloride (64 μ L, 0.6 mmol) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 20 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After 20 h, the reaction mixture was quenched with water and then extracted with diethyl ether (3 x 10 mL). The organic layer was collected, dried over anhydrous Na₂SO₄, and


concentrated *in vacuo*. The residue was purified by column chromatography using silica gel (100-200 mesh size) and diethyl ether/petroleum ether as the eluent. Yields were determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard.

On-off experiments

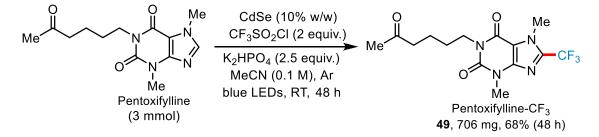
To exclude the possibility of a radical chain process in the reaction, light on-off experiments were carried following the general procedure, with 1-phenyl-1*H*-pyrrole (42.9 mg, 0.3 mmol), CdSe (4.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), triflyl chloride (64 μ L, 0.6 mmol) and trifluoromethylbenzene (37 μ L, 0.3 mmol). The light was kept off during the off-periods and the yields of the reaction were determined by ¹⁹F NMR analysis. No reaction was observed during the light off-cycles which confirms that the reaction is not proceeding by radical chain propagation mechanism.



The above reaction was performed according to the general procedure A. The yield of the reaction was determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard.

Quantum yield measurement

The quantum yield was measured according to a published procedure.^{1,2} The photon flux was measured using the AvaSpec-3648 spectrometer, AvaLight DHS calibration light source, and FC-UV200-2 fiber-optic cable and the Apparent Quantum Efficiency (AQE) measurement was conducted with a 420 ±5 nm bandpass filter. Photon flux of this spectrophotometer was determined as 3.51348×10^{-7} Einstein/sec using calibrated light source.



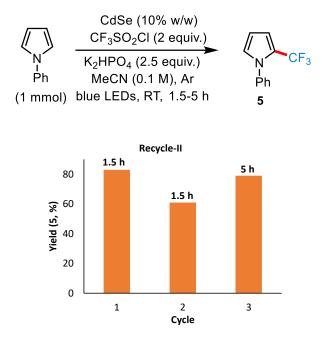
A clean, quartz screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with methyl 2-pyrrolecarboxylate (37.5 mg, 0.3 mmol), CdSe (3.7 mg, 10% w/w), and K₂HPO₄ (130.5 mg, 0.75 mmol). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (0.1 M, 3.0 mL) and triflyl chloride (64 μ L, 0.6 mmol) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred and irradiated at 420 ±5 nm for 900 s with fan cooling. After irradiation, the reaction was quenched with air and yield was determined by ¹⁹F NMR analysis using trifluoromethylbenzene as an internal standard. Finally, the amount of **1** was measured as 5.7×10^{-5} mol.

$$\phi = \frac{\text{moles of product}}{\text{moles of absorbed photons}} = \frac{\text{moles of product}}{\text{flux • t • f}}$$


$$\phi (420 \pm 5 \text{ nm}) = \frac{5.7 \times 10^{-5} \text{ mol}}{3.51348 \times 10^{-7} \text{ Einstein/s} \times 900 \text{ s} \times 1} = 0.18$$

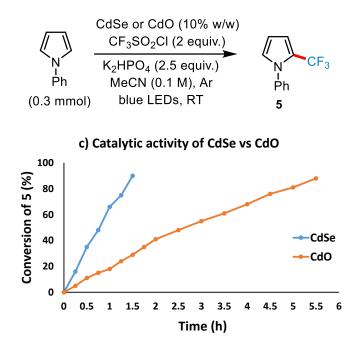
General procedure for high mmol scale reaction

A clean, oven-dried 50 mL screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with pentoxifylline (834 mg, 3 mmol, 1 equiv.), CdSe (83.4 mg, 10% w/w) and K₂HPO₄ (1.30 g, 7.5 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (30 mL) and triflyl chloride (639 μ L, 6 mmol, 2 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 48 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After completion, the reaction mixture was quenched with EA and transferred to a centrifuge tube, and centrifuged (6000 rpm for 10 min) until the solid precipitates. Then, the solid was washed with EA (4 × 15 mL) and centrifuged in order to get complete reaction mixture. The combined organic liquids were collected, and concentrated *in vacuo*. The residue was purified by column chromatography using silica gel (100-200 mesh size) and EA/petroleum ether as the eluent. Finally, the CdSe in the centrifuge tube was washed three times (in the following sequence, 3 × water, 3 × EtOH), and the recovered photocatalyst was dried at 125 °C for 12 h. The yield of product **49** is 706 mg (68%) and recovered catalyst is 74.6 mg.

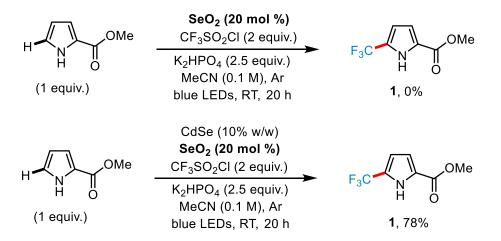

General procedure for recycling process-I

A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with *N*,*N*-dimethyluracil (140 mg, 1 mmol, 1 equiv.), CdSe (14 mg, 10% w/w) and K₂HPO₄ (435 mg, 2.5 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (10 mL) and triflyl chloride (213 μ L, 2 mmol, 2 equiv.) were added by syringe and the vial was sealed with parafilm under argon

atmosphere. The reaction mixture was stirred at room temperature for 48 h under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After completion, yield was determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard. The reaction mixture was quenched with EA and transferred to a centrifuge tube, and centrifuged (6000 rpm for 5 min) until the solid precipitates. Then, the solid was washed with EA (2×5 mL) and centrifuged in order to remove the complete organic compounds. Finally, the solid was washed with brine solution (2×5 mL) and EtOH (3×5 mL) and centrifuged (6000 rpm for 5 min) until the recovered photocatalyst was dried at 125 °C for 12 h and used for next catalytic cycle.


General procedure for recycling process-II

A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with 1-phenyl-1*H*-pyrrole (143 mg, 1 mmol, 1 equiv.), CdSe (14.3 mg, 10% w/w) and K₂HPO₄ (435 mg, 2.5 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (10 mL) and triflyl chloride (213 μ L, 2 mmol, 2 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature for 1.5 h (cycle-1 and cycle-2) under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. After completion, yield was determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard. The reaction mixture was quenched with EA and transferred to a centrifuge tube, and centrifuged (6000 rpm for 5 min) until the solid precipitates. Then, the solid was washed with EA (2 × 5 mL) and centrifuged in order to remove the complete organic compounds. Finally, the solid was washed with brine solution (2 × 5 mL) and EtOH (3 × 5 mL) and centrifuged (6000 rpm for 5 min) until the recovered


photocatalyst was dried at 125 °C for 12 h and used for next catalytic cycle. The third cycle reaction mixture was carried out for 5 h to get high conversion.

Kinetic profile of CdSe and CdO

A clean, oven-dried screw cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with 1-phenyl-1*H*-pyrrole (42.9 mg, 0.3 mmol, 1 equiv.), CdSe (4.3 mg, 10% w/w) or CdO (4.3 mg, 10% w/w) and K₂HPO₄ (130.5 mg, 0.75 mmol, 2.5 equiv.). The reaction tube was capped with a rubber septum, evacuated and backfilled with argon (3 times). Then, dry MeCN (3 mL) and triflyl chloride (64 μ L, 0.6 mmol, 2 equiv.) were added by syringe and the vial was sealed with parafilm under argon atmosphere. The reaction mixture was stirred at room temperature under irradiation with 34 W blue LEDs (3 cm away from blue LEDs) with fan cooling. Every 15 min time interval, the yield of the reaction was determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard.

Role of selenium oxide:

Based on the reaction performed with catalytic amount of selenium(IV) oxide in our reaction condition, we observed that selenium oxide does not play any role. The reactions yields were determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard.

Characterization Data:

Methyl 5-(trifluoromethyl)-1*H*-pyrrole-2-carboxylate (1)

The title compound was synthesized according to the general procedure A employing CdSe (3.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), methyl 1*H*-pyrrole-2-carboxylate (37.5 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 20 h. The product was purified by column chromatography (silica gel, gradient 1 to 10% diethyl ether/petroleum ether). Yield = 70% (40.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 6.90 – 6.86 (m, 1H), 6.60 – 6.58 (m, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.65, 125.24, 125.04 (q, *J*_{C-F} = 40.4 Hz), 120.56 (q, *J*_{C-F} = 268.6 Hz), 115.12, 111.0 (d, *J*_{C-F} = 3.0 Hz), 52.29. ¹⁹F NMR (377 MHz, CDCl₃) δ – 60.43. GCMS (EI) *m*/*z* calcd. for C₇H₆F₃NO₂ [M⁺] 193.0, found 193.0, 174.0, 162.0, 154.0, 142.0, 133.0, 123.0, 114.0, 107.0, 88.0, 69.0. The analytical data correspond with those reported in the literature.³

5-(Trifluoromethyl)-1*H*-pyrrole-2-carbaldehyde (2)

The title compound was synthesized according to the general procedure A employing CdSe (2.8 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1*H*-pyrrole-2-carbaldehyde (28.5 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 10 h. The product was purified by column chromatography (silica gel, gradient 1 to 10% diethyl ether/petroleum ether). Yield = 68% (33.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 9.65 (s, 1H), 7.02 – 6.95 (m, 1H), 6.76 – 6.63 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 180.65, 133.97, 127.42 (q, *J*_{C-F} = 40.2 Hz), 120.39 (q, *J*_{C-F} = 268.2 Hz), 120.12, 111.44 (q, *J*_{C-F} = 2.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 60.92. GCMS (EI) *m*/*z* calcd. for C₆H₄F₃NO [M⁺] 163.0, found 163.0, 142.0, 114.0, 107.0, 88.0, 75.0, 69.0, 64.0. The analytical data correspond with those reported in the literature.⁴

5-(Trifluoromethyl)-1*H*-pyrrole-2-carbonitrile (3)

The title compound was synthesized according to the general procedure A employing CdSe (2.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1*H*-pyrrole-2-carbonitrile (27.6 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 10 h. The product was purified by column chromatography (silica gel, gradient 1 to 10% diethyl ether/petroleum ether). Yield = 74% (35.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 6.93 – 6.82 (m, 1H), 6.72 – 6.53 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 125.71 (q, $J_{C-F} = 40.9$ Hz), 120.29, 119.85 (q, $J_{C-F} = 268.0$ Hz), 112.84, 110.88 (q, $J_{C-F} = 3.0$ Hz), 103.90. ¹⁹F NMR (377 MHz, CDCl₃) δ – 60.56. GCMS (EI) *m*/*z* calcd. for C₆H₃F₃N₂ [M⁺] 160.0, found 160.0, 140.0, 110.0, 89.0, 69.0, 64.0, 57.0, 52.0, 37.0.

tert-Butyl 2-(trifluoromethyl)-1H-pyrrole-1-carboxylate (4)

F₃C The title compound was synthesized according to the general procedure A employing CdSe (5.0 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), *tert*-butyl 1*H*-pyrrole-1-carboxylate (50.1 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 3 h. The product was purified by column chromatography (silica gel, gradient 1 to 10% diethyl ether/petroleum ether). Yield = 90% (63.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 3.3, 1.9 Hz, 1H), 6.73 (dd, J = 3.6, 1.9 Hz, 1H), 6.19 (t, J = 3.5 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.57, 125.93 (d, $J_{C-F} = 2.3$ Hz), 121.89 (q, $J_{C-F} = 40.2$ Hz), 120.68 (q, $J_{C-F} = 266.3$ Hz), 117.93 (q, $J_{C-F} = 4.5$ Hz), 109.76, 85.78, 27.85. ¹⁹F NMR (377 MHz, CDCl₃) δ – 58.31. GCMS (EI) m/z calcd. for C₁₀H₁₂F₃NO₂ [M⁺] 235.1, found 235.0, 220.0, 200.0, 176.0, 162.0, 142.0, 135.0, 114.0, 107.0, 88.0, 69.0, 57.1. The analytical data correspond with those reported in the literature.³

1-Phenyl-2-(trifluoromethyl)-1*H*-pyrrole (5)

The title compound was synthesized according to the general procedure A employing CdSe (4.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1-phenyl-1*H*-pyrrole (42.9 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 1.5 h. The product was purified by column chromatography (silica gel, gradient 1 to 10% diethyl ether/petroleum ether). Yield = 81% (51.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 3H), 7.39-7.37 (m, 2H), 6.89 (t, J = 2.4 Hz, 1H), 6.74 – 6.73 (m, 1H), 6.28 (t, J = 3.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.24, 129.12, 128.62, 127.38 (q, $J_{C-F} = 3.0$ Hz), 126.64, 122.35 (q, $J_{C-F} = 38.4$ Hz), 121.33 (q, $J_{C-F} = 267.6$ Hz), 112.86 (q, $J_{C-F} = 3.0$ Hz), 108.36. ¹⁹F NMR (377 MHz, CDCl₃) δ – 55.87. GCMS (EI) m/z calcd. for C₁₁H₈F₃N [M⁺] 211.0, found 211.1, 191.1, 172.1, 164.1, 158.0, 142.1, 133.1, 115.1, 105.6, 88.0, 77.1, 51.1. The analytical data correspond with those reported in the literature.⁵

1-Benzyl-2-(trifluoromethyl)-1*H*-pyrrole (6)

The title compound was synthesized according to the general procedure A employing CdSe (4.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1-benzyl-1*H*-pyrrole (47.1 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 1 h. The product was purified by column chromatography (silica gel, gradient 1 to 10% diethyl ether/petroleum ether). Yield = 72% (48.6 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.47 – 7.34 (m, 3H), 7.18 (d, J = 7.1 Hz, 2H), 6.78 (t, J = 2.3 Hz, 1H), 6.70 (d, J = 3.7 Hz, 1H), 6.24 (t, J = 3.3 Hz, 1H), 5.24 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.07, 128.88, 128.02, 127.15, 126.09 (q, $J_{C-F} = 2.3$ Hz), 121.71 (q, $J_{C-F} = 266.6$ Hz), 121.38 (q, $J_{C-F} = 38.1$ Hz), 111.90 (q, $J_{C-F} = 3.7$ Hz), 108.13, 51.51. ¹⁹F NMR (377 MHz, CDCl₃) δ – 57.51. GCMS (EI) *m/z* calcd. for C₁₂H₁₀F₃N [M⁺] 225.1, found 225.1, 206.1, 154.0, 128.1, 91.1, 89.1, 77.1, 69.1, 65.1, 63.1.

1-Methyl-2-(trifluoromethyl)-1*H*-pyrrole (7)

The title compound was synthesized according to the general procedure A employing CdSe (2.4 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), 1-methyl-1*H*-pyrrole (24.3 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 1 h. The reaction mixture was purified by prep TLC using 15% DCM in petroleum ether to provide the title compound. Yield = 89% (yield determined by 19 F NMR analysis due to the high volatility of the desired product).

¹H NMR (400 MHz, CDCl₃) δ 6.71 (d, J = 2.3 Hz, 1H), 6.56 (d, J = 3.5 Hz, 1H), 6.09 (dd, J = 4.2, 2.2 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 126.73, 121.64 (q, $J_{C-F} = 267.1$ Hz), 121.13 (q, $J_{C-F} = 38.1$ Hz), 111.67 (q, $J_{C-F} = 3.5$ Hz), 107.31, 34.90. ¹⁹F NMR (377 MHz, **CDCl**₃) δ – 58.83. **GCMS (EI)** m/z calcd. for C₆H₆F₃N [M⁺] 149.0, found 149.1, 130.1, 99.1, 78.1, 75.0, 69.0, 64.1, 57.1. The analytical data correspond with those reported in the literature.⁶

3-Methyl-2-(trifluoromethyl)-1*H*-indole (8)

The title compound was synthesized according to the general procedure A employing CdSe (3.9 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), 3-methyl-1Hindole (39.3 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 1 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 75% (44.7 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 8.18 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.36 (dt, J = 15.0, 8.1 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 2.46 (q, J = 1.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.31, 128.19, 124.89, 122.25 (q, $J_{C-F} = 269.6 \text{ Hz}$), 121.66 (q, $J_{C-F} = 36.8 \text{ Hz}$), 120.51, 120.22, 114.20 (d, $J_{C-F} = 3.0$ Hz), 111.69, 8.46. ¹⁹F NMR (377 MHz, CDCl₃) $\delta - 58.61$. GCMS (EI) m/z calcd. for C₁₀H₈F₃N [M⁺] 199.1, found 199.1, 178.1, 158.0, 130.1, 102.0, 89.4, 77.0, 65.0, 51.0. The analytical data correspond with those reported in the literature.⁷

2-(Trifluoromethyl)-1*H*-indole-3-carbaldehyde (9)

The title compound was synthesized according to the general procedure A employing CdSe (4.3 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1H-indole-3-carbaldehyde (43.5 mg, 0.30 mmol), CF_3SO_2Cl (64 μ L, 0.60 mmol), and CH_3CN (0.1 M, 3 mL) for 8 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 58% (37 mg).

¹**H NMR (400 MHz, DMSO-***d*₆) δ 13.43 (s, 1H), 10.24 (s, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO d_6) δ 184.22, 135.35, 130.87 (q, J_{C-F} = 39.0 Hz), 125.80, 124.32, 123.83, 121.98, 120.78 (q, J_{C-F} = 270.4 Hz), 115.43, 113.18. ¹⁹F NMR (377 MHz, DMSO-d₆) δ – 55.46. GCMS (EI) m/z calcd. for C₁₀H₆F₃NO [M⁺] 213.0, found 213.1, 212.1, 192.0, 184.0, 164.0, 144.0, 134.0, 114.0, 107.0, 96.0, 88.0, 75.0. The analytical data correspond with those reported in the literature.⁸

1-(2-(Trifluoromethyl)-1*H*-indol-3-yl)ethan-1-one (10)

The title compound was synthesized according to the general procedure A employing CdSe (4.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1-(1H-indol-3-yl)ethan-1-one (47.7 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 8 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 60% (40.8 mg).

¹H NMR (400 MHz, DMSO-d₆) δ 13.07 (s, 1H), 8.09 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 2.65 (s, 3H). ¹³C NMR (101 MHz, DMSO*d*₆) δ 192.60, 134.67, 126.77 (q, *J*_{C-F} = 38.3 Hz), 125.26, 124.81, 122.96, 121.86, 120.91 (q, *J*_{C-F} = 269.9 Hz), 116.18, 113.24, 30.90. ¹⁹F NMR (377 MHz, DMSO-d₆) δ – 57.47. GCMS (EI) m/z calcd. for C₁₁H₈F₃NO [M⁺] 227.1, found 227.1, 212.1, 192.0, 178.1, 164.0, 144.0, 128.1, 114.0, 96.0, 75.0, 63.0.

Methyl 2-(trifluoromethyl)-1*H*-indole-3-carboxylate (11)

The title compound was synthesized according to the general procedure A employing CdSe (5.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), methyl 1Hindole-3-carboxylate (52.5 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 8 h. The product was purified by column

chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 64% (46.6 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.41 – 7.32 (m, 2H), 3.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.69, 133.91, 129.04 (q, J_{C-F} = 38.8 Hz), 126.61, 125.67, 123.38, 123.00, 120.52 (q, J_{C-F} = 270.0 Hz), 112.07, 108.41, 51.84. ¹⁹F NMR (377 MHz, CDCl₃) δ – 59.86. GCMS (EI) *m*/*z* calcd. for C₁₁H₈F₃NO₂ [M⁺] 243.1, found 243.1, 212.1, 192.0, 184.0, 164.0, 144.0, 134.1, 114.0, 107.0, 96.0, 87.0. The analytical data correspond with those reported in the literature.⁹

3-(2-Bromoethyl)-2-(trifluoromethyl)-1*H*-indole (12)

The title compound was synthesized according to the general procedure A employing CdSe (6.6 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 3-(2-bromoethyl)-1*H*-indole (66.9 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 1 h. The product was purified by column

chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 69% (60.2 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.37 – 7.25 (m, 1H), 3.73 – 3.59 (m, 2H), 3.56 – 3.45 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.22, 127.11, 125.27, 122.38 (q, $J_{C-F} = 37.0$ Hz), 121.88 (q, $J_{C-F} = 268.9$ Hz), 121.13, 120.07, 112.01, 115.45 (d, $J_{C-F} = 3.0$ Hz), 31.40, 27.91. ¹⁹F NMR (377 MHz, CDCl₃) δ – 58.34. GCMS (EI) m/z calcd. for C₁₁H₉BrF₃N [M⁺] 291.0, found 293.0, 291.0, 272.0, 212.1, 198.1, 190.1, 178.1, 172.1, 158.1, 152.1, 143.1, 128.1, 115.1.

1-(1-Methyl-2-(trifluoromethyl)-1*H*-indol-3-yl)ethan-1-one (13)

The title compound was synthesized according to the general procedure A employing CdSe (5.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1-(1-methyl-1*H*-indol-3-yl)ethan-1-one (51.9 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 8 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield

= 68% (49.1 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.1 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.29 (ddd, *J* = 8.1, 5.4, 2.6 Hz, 1H), 3.90 (q, *J* = 1.3 Hz, 3H), 2.64 (q, *J* = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.64, 137.26, 125.72 (q, *J*_{C-F} = 37.5 Hz), 125.60, 124.76, 122.79, 122.09, 121.25 (q, *J*_{C-F} = 270.3 Hz), 120.04, 110.21, 32.05 (d, *J*_{C-F} = 3.3 Hz), 31.79 (d, *J*_{C-F} = 3.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 54.93. GCMS (EI) *m*/*z* calcd. for C₁₂H₁₀F₃NO [M⁺] 241.1, found 241.1, 226.1, 222.1, 211.0, 198.0, 183.0, 178.0, 169.0, 158.0, 151.0, 128.1, 113.0, 101.1, 75.1.

2,4,6-Trimethyl-3-(trifluoromethyl)pyridine (14)

The title compound was synthesized according to the general procedure A employing CdSe (3.6 mg, 10% w/w), K_2HPO_4 (130.5 mg, 0.75 mmol), 2,4,6-trimethylpyridine (36.3 mg, 0.30 mmol), CF₃SO₂Cl (96 µL, 0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 35 h. The reaction mixture was purified by prep TLC

using 20% DCM in petroleum ether to provide the title compound. Yield = 80% (yield determined by 19 F NMR analysis due to the high volatility of the desired product).

¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 2.63 (q, J = 3.1 Hz, 3H), 2.47 (s, 3H), 2.40 (q, J = 3.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.98, 156.57, 147.21, 125.64 (q, $J_{C-F} = 274.9$ Hz), 124.46, 121.42 (q, $J_{C-F} = 29.9$ Hz), 24.24 (q, $J_{C-F} = 3.8$ Hz), 23.93, 20.98 (q, $J_{C-F} = 3.8$ Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 54.35. GCMS (EI) m/z calcd. for C₉H₁₀F₃N [M⁺] 189.1, found

189.1, 174.0, 169.1, 154.1, 148.0, 139.1, 133.0, 127.0, 120.1, 101.0, 77.0, 40.0. The analytical data correspond with those reported in the literature.⁷

2,6-Dimethyl-3-(trifluoromethyl)pyridine (15)

The title compound was synthesized according to the general procedure A employing CdSe (3.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2,6-dimethylpyridine (32.1 mg, 0.30 mmol), CF₃SO₂Cl (96 μ L, 0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The reaction mixture was purified by prep TLC using 25% DCM in petroleum ether to provide the title compound. Yield = 75% (yield determined by ¹⁹F NMR analysis due to the high volatility of the desired product).

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 2.67 (s, 3H), 2.58 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 161.29, 156.45, 134.25 (d, *J*_{C-F} = 5.2 Hz), 124.42 (q, *J*_{C-F} = 272.2 Hz), 122.24 (q, *J*_{C-F} = 31.6 Hz), 120.27, 24.57, 22.72. ¹⁹**F** NMR (377 MHz, CDCl₃) δ – 61.90. GCMS (EI) *m*/*z* calcd. for C₈H₈F₃N [M⁺] 175.1, found 175.0, 160.0, 156.0, 140.0, 133.0, 125.0, 114.0, 107.1, 92.0, 77.0. The analytical data correspond with those reported in the literature.⁷

2,3,5-Trimethyl-6-(trifluoromethyl)pyrazine (16)

 $\underset{Me}{\overset{Me}{\longrightarrow}} \underset{Me}{\overset{Ke}{\longrightarrow}} \underset{Me}{\overset{Ke}{\longrightarrow}}$ The title compound was synthesized according to the general procedure A employing CdSe (3.6 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2,3,5-trimethylpyrazine (36.6 mg, 0.30 mmol), CF₃SO₂Cl (96 µL, 0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 72% (41 mg).

¹H NMR (400 MHz, CDCl₃) δ 2.63 (q, *J* = 2.0 Hz, 3H), 2.56 (s, 3H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.95, 148.85, 148.63, 138.49 (q, *J*_{C-F} = 34.1 Hz), 122.40 (q, *J*_{C-F} = 274.3 Hz), 22.09, 21.41, 20.91 (q, *J*_{C-F} = 2.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 65.18. GCMS (EI) *m/z* calcd. for C₈H₉F₃N₂ [M⁺] 190.1, found 190.1, 171.1, 149.0, 121.1, 107.0, 88.0, 80.1, 69.0, 57.0, 42.1.

2,5-Dimethyl-3-(trifluoromethyl)pyrazine (17)

The title compound was synthesized according to the general procedure A employing CdSe (3.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2,5dimethylpyrazine (32.4 mg, 0.30 mmol), CF₃SO₂Cl (96 μ L, 0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 67% (35.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 2.67 (d, *J* = 2.3 Hz, 3H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.31, 149.37, 146.32, 140.92 (q, *J*_{C-F} = 34.1 Hz), 122.05 (q, *J*_{C-F} = 274.8 Hz), 21.00 (d, *J*_{C-F} = 2.5 Hz), 20.95. ¹⁹F NMR (377 MHz, CDCl₃) δ – 65.90. GCMS (EI) *m*/*z* calcd. for C₇H₇F₃N₂ [M⁺] 176.1, found 176.0, 157.1, 149.0, 107.0, 88.0, 80.1, 69.0, 57.0. The analytical data correspond with those reported in the literature.⁷

3,5-Dimethyl-2-(trifluoromethyl)pyrazine (18)

The title compound was synthesized according to the general procedure A employing CdSe (3.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2,6-dimethylpyrazine (32.4 mg, 0.30 mmol), CF₃SO₂Cl (96 μ L, 0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 65% (34.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 2.70 (q, *J* = 1.9 Hz, 3H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.37, 151.83, 140.45, 139.31 (q, *J*_{C-F} = 34.4 Hz), 122.34 (q, *J*_{C-F} = 274.3 Hz), 21.74, 21.49 (q, *J*_{C-F} = 2.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 65.50. GCMS (EI) *m*/*z* calcd. for C₇H₇F₃N₂ [M⁺] 176.1, found 176.0, 157.0, 149.0, 135.0, 115.0, 107.0, 88.0, 69.0, 66.0. The analytical data correspond with those reported in the literature.⁶

S-((5-(Trifluoromethyl)furan-2-yl)methyl)methanethioate (19)

The title compound was synthesized according to the general procedure A employing CdSe (4.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), *S*-(furan-2-ylmethyl)methanethioate (42.6 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 68% (42.8 mg).

¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 6.70 (dt, J = 2.6, 1.3 Hz, 1H), 6.40 – 6.21 (m, 1H), 4.24 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 185.81, 153.00, 141.62 (q, $J_{C-F} = 42.8$ Hz), 118.98 (q, $J_{C-F} = 267.0$ Hz), 112.77 (q, $J_{C-F} = 2.9$ Hz), 109.37, 22.83. ¹⁹F NMR (377 MHz, CDCl₃) δ – 64.12. GCMS (EI) m/z calcd. for C₇H₅F₃O₂S [M⁺] 210.0, found 210.0, 191.0, 182.0, 149.0, 130.0, 121.0, 111.0, 99.0, 79.0, 69.0, 51.1.

1,2,4,5-Tetramethyl-3-(trifluoromethyl)benzene (20)

The title compound was synthesized according to the general procedure A employing M_{e} M_{e} M

¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 1H), 2.33 (q, J = 3.3 Hz, 6H), 2.26 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 135.24, 134.68, 133.65, 128.18 (q, $J_{C-F} = 27.0$ Hz), 126.48 (q, $J_{C-F} = 277.1$ Hz), 20.70, 16.78 (q, $J_{C-F} = 4.7$ Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 51.74. GCMS (EI) m/z calcd. for C₁₁H₁₃F₃ [M⁺] 202.1, found 202.1, 187.1, 159.1, 147.1, 133.1, 115.1, 103.1, 91.1, 77.1, 65.0.

1,4-Dimethoxy-2-(trifluoromethyl)benzene (21)

The title compound was synthesized according to the general procedure A employing CdSe (4.1 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1,4dimethoxybenzene (41.4 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 35 h. The reaction mixture was purified by prep TLC using 5% DCM in petroleum ether to provide the title compound. Yield = 80% (yield determined by ¹⁹F NMR analysis due to the high volatility of the desired product).

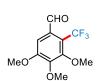
¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 3.0 Hz, 1H), 7.02 (dd, J = 9.0, 3.0 Hz, 1H), 6.94 (d, J = 9.0 Hz, 1H), 3.86 (s, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.95, 151.53, 123.43 (q, J_{C-F} = 272.2 Hz), 119.37 (q, J_{C-F} = 30.9 Hz), 118.08, 113.57, 112.82 (q, J_{C-F} = 5.5 Hz), 56.55, 55.87. ¹⁹F NMR (377 MHz, CDCl₃) δ – 62.41. GCMS (EI) m/z calcd. for C₉H₉F₃O₂ [M⁺] 206.1, found 206.1, 191.1, 163.1, 157.0, 148.0, 129.0, 120.1, 101.0, 95.1. The analytical data correspond with those reported in the literature.⁷

1,3,5-Trimethoxy-2-(trifluoromethyl)benzene (22)

The title compound was synthesized according to the general procedure A employing CdSe (5.0 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1,3,5-trimethoxybenzene (50.4 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 3 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% diethyl ether/petroleum ether). Yield = 81% (57.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 6.12 (s, 2H), 3.83 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.64, 160.51, 124.49 (q, $J_{C-F} = 273.2$ Hz), 100.40 (q, $J_{C-F} = 30.1$ Hz), 91.33, 56.33, 55.47. ¹⁹F NMR (377 MHz, CDCl₃) δ – 54.08. GCMS (EI) *m*/*z* calcd. for C₁₀H₁₁F₃O₃ [M⁺] 236.1, found 236.1, 207.1, 193.1, 176.1, 163.1, 139.1, 120.0, 107.0, 95.1, 69.0. The analytical data correspond with those reported in the literature.³

3,5-Dimethoxy-2-(trifluoromethyl)benzonitrile (23)



The title compound was synthesized according to the general procedure A employing CdSe (4.8 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 3,5-dimethoxybenzonitrile (48.9 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column

chromatography (silica gel, gradient 5 to 10% diethyl ether/petroleum ether). Overall yield: 70% (80:20, r.r., the yield and ratio were determined by ¹⁹F NMR analysis). Isolated yield of reported compound **23** is 51% (35.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, *J* = 2.4 Hz, 1H), 6.73 (s, 1H), 3.90 (s, 3H), 3.88 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 163.14, 160.04, 122.59 (q, *J*_{C-F} = 273.5 Hz), 116.34, 113.29 (q, *J*_{C-F} = 31.6 Hz), 112.33 (q, *J*_{C-F} = 3.0 Hz), 110.81, 103.86, 56.58, 56.13. ¹⁹F NMR (377 MHz, CDCl₃) δ – 57.82. GCMS (EI) *m*/*z* calcd. for C₁₀H₈F₃NO₂ [M⁺] 231.1, found 231.1, 212.0, 201.0, 188.0, 182.0, 171.0, 158.0, 154.0, 145.0, 139.0, 132.0, 126.0, 121.0, 104.1, 88.0.

3,4,5-Trimethoxy-2-(trifluoromethyl)benzaldehyde (24)

The title compound was synthesized according to the general procedure A employing CdSe (5.8 mg, 10% w/w), K_2HPO_4 (130.5 mg, 0.75 mmol), 3,4,5-trimethoxybenzaldehyde (58.8 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 24 h. The product was purified by column

chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield: 77% (61 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 10.32 (q, J = 2.4 Hz, 1H), 7.34 (s, 1H), 3.95 (s, 6H), 3.93 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 189.31 (q, $J_{C-F} = 5.7$ Hz), 155.92, 152.94, 147.47, 130.98, 124.30 (q, $J_{C-F} = 275.2$ Hz), 118.09 (q, $J_{C-F} = 31.1$ Hz), 107.40, 62.17, 61.16, 56.39. ¹⁹F NMR (377 MHz, CDCl₃) δ – 51.13. GCMS (EI) *m*/*z* calcd. for C₁₁H₁₁F₃O₄ [M⁺] 264.1, found 264.1, 249.0, 229.0, 193.0, 178.0, 163.0, 135.0, 119.0, 107.0, 87.0, 69.0, 57.0. The analytical data correspond with those reported in the literature.¹⁰

4-Methoxy-*N*,*N*-dimethyl-2-(trifluoromethyl)aniline (25)

The title compound was synthesized according to the general procedure A employing CdSe (4.5 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 4-methoxy-*N*,*N*-dimethylaniline (45.3 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 24 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% diethyl ether/petroleum ether). Yield: 70% (46 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.9 Hz, 1H), 7.12 (s, 1H), 7.04 (dd, *J* = 8.8, 3.0 Hz, 1H), 3.82 (s, 3H), 2.67 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 156.39, 127.94 (d, *J*_{C-F} = 28.8 Hz), 125.07, 123.86 (q, *J*_{C-F} = 274.7 Hz),118.20, 112.29 (d, *J*_{C-F} = 7.0 Hz), 55.79, 46.59. ¹⁹F NMR (377 MHz, CDCl₃) δ – 60.68. GCMS (EI) *m*/*z* calcd. for C₁₀H₁₂F₃NO [M⁺] 219.1, found 219.1, 204.1, 188.0, 176.1, 160.0, 145.0, 132.0, 115.1, 101.0, 92.1, 75.1, 63.1.

1-Methoxy-2-methyl-5-nitro-3-(trifluoromethyl)benzene (26)

The title compound was synthesized according to the general procedure A employing CdSe (5.0 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2-methoxy-1-methyl-4-nitrobenzene (50.1 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 24 h. The product was purified by column

chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield: 43% (30 mg).

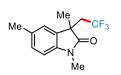
¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.33 (s, 1H), 3.95 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.26, 147.34, 132.44, 130.60, 129.54 (q, *J*_{C-F} = 5.4 Hz), 122.47 (q, *J*_{C-F} = 273.2 Hz), 115.56 (q, *J*_{C-F} = 34.1 Hz), 56.36, 16.44. ¹⁹F NMR (377 MHz, CDCl₃) δ – 58.90. GCMS (EI) *m*/*z* calcd. for C₉H₈F₃NO₃ [M⁺] 235.0, found 235.0, 189.1, 174.0, 127.0, 109.0, 96.0, 91.0, 77.1, 75.1, 51.1.

2-Methyl-3-(6-(trifluoromethyl)benzo[d][1,3]dioxol-5-yl)propanal (27)

The title compound was synthesized according to the general procedure A employing CdSe (5.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropanal (57.6 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 24 h. The product was purified

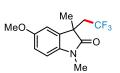
by column chromatography (silica gel, gradient 15 to 20% diethyl ether/petroleum ether). Yield: 61% (47.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.07 (s, 1H), 6.75 (s, 1H), 6.02 (s, 2H), 3.20 (q, J = 7.5 Hz, 1H), 2.70 - 2.62 (m, 2H), 1.12 (d, J = 5.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.71, 150.29, 146.40, 133.13, 124.30 (q, $J_{C-F} = 36.4 \text{ Hz}$), 111.49, 109.71 (q, $J_{C-F} = 252.2 \text{ Hz}$), 106.76 (d, $J_{C-F} = 6.3$ Hz), 102.15, 48.10, 32.91, 13.64. ¹⁹F NMR (377 MHz, CDCl₃) $\delta - 57.73$. GCMS (EI) m/z calcd. for C₁₂H₁₁F₃O₃ [M⁺] 260.1, found 260.1, 232.0, 203.0, 190.0, 173.0, 145.0, 133.1, 127.0, 119.0, 103.0.


1,3-Dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (28)

The title compound was synthesized according to the general procedure B employing CdSe (5.2 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), N-methyl-Nphenylmethacrylamide (52.5 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 72% (52.4 mg).

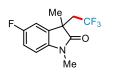
¹**H NMR (400 MHz, CDCl₃)** δ 7.31 (t, J = 7.7 Hz, 1H), 7.26 (d, J = 7.3 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.82 (dq, J = 15.1, 10.7 Hz, 1H), 2.65 (dq, J = 15.2, 10.5 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.60, 142.95, 131.10, 128.63, 125.35 (q, $J_{C-F} = 278.3 \text{ Hz}$), 123.65, 122.76, 108.57, 44.50 (d, $J_{C-F} = 2.3 \text{ Hz}$), 40.74 (q, $J_{C-F} = 28.2 \text{ Hz}$), 26.55, 25.11. ¹⁹F NMR (377 MHz, CDCl₃) δ – 61.96 (t, J = 10.2 Hz). GCMS (EI) m/z calcd. for C₁₂H₁₂F₃NO [M⁺] 243.1, found 243.1, 228.1, 208.1, 200.1, 160.1, 145.1, 130.1, 117.1, 103.1, 89.3, 77.1, 65.1. The analytical data correspond with those reported in the literature.¹¹


1,3,5-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (29)

The title compound was synthesized according to the general procedure B employing CdSe (5.6 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), N-methyl-N-(p-tolyl)methacrylamide (56.7 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified by column

chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 93% (71.7 mg). ¹**H** NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.0 Hz, 1H), 7.07 (s, 1H), 6.76 (d, J = 7.9 Hz, 1H), 3.21 (s, 3H), 2.80 (dq, J = 15.1, 10.7 Hz, 1H), 2.62 (dq, J = 15.2, 10.5 Hz, 1H), 2.35 (s, 3H), 1.38(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.54, 140.58, 132.29, 131.19, 128.87, 125.39 (q, $J_{C-F} =$ 278.3 Hz), 124.45, 108.27, 44.55 (d, $J_{C-F} = 2.6$ Hz), 40.74 (q, $J_{C-F} = 28.2$ Hz), 26.57, 25.16, 21.24. ¹⁹F NMR (377 MHz, CDCl₃) δ – 61.90 (t, J = 10.8 Hz). GCMS (EI) m/z calcd. for C₁₃H₁₄F₃NO [M⁺] 257.1, found 257.1, 242.1, 222.1, 174.1, 159.1, 144.1, 130.1, 115.1, 103.1, 91.1, 77.1, 71.7. The analytical data correspond with those reported in the literature.¹¹

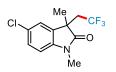
5-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (30)



The title compound was synthesized according to the general procedure B employing CdSe (6.1 mg, 10% w/w), K_2CO_3 (103.5 mg, 0.75 mmol), *N*-(4-methoxyphenyl)-*N*-methylmethacrylamide (61.5 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was

purified by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 86% (70.4 mg).

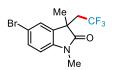
¹**H NMR** (**400 MHz**, **CDCl**₃) δ 6.86 (d, J = 2.3 Hz, 1H), 6.81 (dd, J = 8.5, 2.5 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 3.77 (s, 3H), 3.18 (s, 3H), 2.79 (dq, J = 15.2, 10.7 Hz, 1H), 2.61 (dq, J = 15.2, 10.5 Hz, 1H), 1.37 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 178.16, 156.13, 136.42, 132.45, 125.33 (q, $J_{C-F} = 278.2$ Hz), 112.66, 111.29, 108.78, 55.85, 44.84 (q, $J_{C-F} = 2.2$ Hz), 40.64 (q, $J_{C-F} = 28.3$ Hz), 26.53, 25.09.¹⁹**F NMR** (**377 MHz**, **CDCl**₃) δ – 61.88 (t, J = 13.3 Hz). **GCMS (EI**) m/z calcd. for C₁₃H₁₄F₃NO₂ [M⁺] 273.1, found 258.1, 238.1, 230.1, 210.1, 190.1, 175.1, 160.1, 147.1, 132.1, 118.1, 104.1, 91.1. The analytical data correspond with those reported in the literature.¹¹


5-Fluoro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (31)

The title compound was synthesized according to the general procedure B employing CdSe (5.7 mg, 10% w/w), K_2CO_3 (103.5 mg, 0.75 mmol), *N*-(4-fluorophenyl)-*N*-methylmethacrylamide (57.9 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified by

column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 75% (58.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.03 – 6.97 (m, 2H), 6.79 (dd, J = 9.3, 4.2 Hz, 1H), 3.21 (s, 3H), 2.81 (dq, J = 15.5, 10.7 Hz, 1H), 2.62 (dq, J = 15.4, 10.4 Hz, 1H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.22, 159.40 (d, J_{C-F} = 240.9 Hz), 138.92, 132.74 (d, J_{C-F} = 8.1 Hz), 125.23 (q, J = 278.2 Hz), 114.95 (d, J_{C-F} = 23.5 Hz), 111.89 (d, J_{C-F} = 24.9 Hz), 109.08 (d, J_{C-F} = 8.1 Hz), 44.93, 40.67 (q, J_{C-F} = 28.4 Hz), 26.68, 25.01. ¹⁹F NMR (377 MHz, CDCl₃) δ – 61.99 (t, J = 10.4 Hz), - 120.43 (d, J = 10.2 Hz). GCMS (EI) *m*/*z* calcd. for C₁₂H₁₁F₄NO [M⁺] 261.1, found 261.1, 246.1, 226.1, 193.1, 178.1, 163.1, 148.1, 135.1, 124.1, 95.1, 69.1. The analytical data correspond with those reported in the literature.¹¹

5-Chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (32)



The title compound was synthesized according to the general procedure B employing CdSe (6.2 mg, 10% w/w), K_2CO_3 (103.5 mg, 0.75 mmol), *N*-(4-chlorophenyl)-*N*-methylmethacrylamide (62.7 mg, 0.30 mmol), CF₃SO₂Cl (64 μ L, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified

by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 68% (56.5 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.28 (dd, J = 8.3, 2.1 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 6.80 (d, J= 8.2 Hz, 1H), 3.21 (s, 3H), 2.82 (dq, J = 15.3, 10.6 Hz, 1H), 2.62 (dq, J = 15.2, 10.4 Hz, 1H), 1.39(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.05, 141.57, 132.80, 128.64, 128.21, 125.18 (q, $J_{C-F} =$ 278.2 Hz), 124.21, 109.53, 44.70 (d, $J_{C-F} = 2.6$ Hz), 40.68 (q, $J_{C-F} = 28.4$ Hz), 26.67, 25.03. ¹⁹F **NMR (377 MHz, CDCl**₃) δ – 61.96 (t, J = 10.8 Hz). **GCMS (EI)** m/z calcd. for C₁₂H₁₁ClF₃NO [M⁺] 277.0, found 279.1, 277.0, 264.0, 262.0, 244.0, 242.0, 196.0, 194.0, 179.0, 164.0, 159.1, 130.1, 115.1, 103.1, 101.0, 89.1. The analytical data correspond with those reported in the literature.¹¹

5-Bromo-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (33)

The title compound was synthesized according to the general procedure B employing CdSe (7.5 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), N-(4bromophenyl)-N-methylmethacrylamide (75.9 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified

by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 72% (69.3 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.41 (dd, J = 8.3, 2.0 Hz, 1H), 7.36 (s, 1H), 6.75 (d, J = 8.3 Hz, 1H), 3.20 (s, 3H), 2.81 (dqd, J = 15.2, 10.7, 1.4 Hz, 1H), 2.61 (dq, J = 15.2, 10.4 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.90, 142.03, 133.14, 131.51, 126.90, 125.15 (q, J_{C-F} = 278.3 Hz), 115.39, 110.03, 44.62 (d, $J_{C-F} = 2.4$ Hz), 40.65 (q, $J_{C-F} = 28.5$ Hz), 26.62, 25.02. ¹⁹F **NMR (377 MHz, CDCl₃)** $\delta - 61.95$ (t, J = 10.4 Hz). **GCMS (EI)** m/z calcd. for C₁₂H₁₁BrF₃NO [M⁺] 321.0, found 323.0, 321.0, 308.0, 306.0, 288.0, 286.0, 240.0, 238.0, 208.0, 191.1, 159.1, 130.1, 115.1, 102.1, 89.1. The analytical data correspond with those reported in the literature.¹¹

1-Ethyl-3-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one (34)

The title compound was synthesized according to the general procedure B employing CdSe (5.6 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), N-ethyl-Nphenylmethacrylamide (56.7 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 90% (69.4 mg).

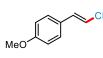
¹**H NMR (400 MHz, CDCl₃)** δ 7.29 (t, J = 7.8 Hz, 1H), 7.25 (d, J = 6.8 Hz, 1H), 7.07 (t, J = 7.3 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.87 (dq, J = 14.5, 7.3 Hz, 1H), 3.68 (dq, J = 14.2, 7.2 Hz, 1H), 2.84 (dq, J = 15.2, 10.7 Hz, 1H), 2.63 (dq, J = 15.1, 10.4 Hz, 1H), 1.39 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.18, 142.00, 131.32, 128.54, 125.36 (q, $J_{C-F} = 278.2 \text{ Hz}$), 123.80, 122.49, 108.71, 44.39 (d, $J_{C-F} = 2.6$ Hz), 40.76 (q, $J_{C-F} = 28.2$ Hz), 34.87, 25.22, 12.34. ¹⁹F NMR (377 MHz, CDCl₃) δ – 61.93 (t, J = 9.8 Hz). GCMS (EI) m/z calcd. for C₁₃H₁₄F₃NO [M⁺] 257.1, found 257.1, 242.1, 222.1, 214.1, 194.1, 174.1, 146.1, 144.1, 130.1, 128.1, 117.1, 103.1, 89.1, 77.1. The analytical data correspond with those reported in the literature.¹¹

3-Methyl-1-phenyl-3-(2,2,2-trifluoroethyl)indolin-2-one (35)

The title compound was synthesized according to the general procedure B employing CdSe (7.1 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), N,Ndiphenylmethacrylamide (71.1 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield: 86% (78.7 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.54 (t, J = 7.6 Hz, 2H), 7.46 – 7.38 (m, 3H), 7.33 (d, J = 7.4 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 7.9 Hz, 1H), 2.98 (dq, J = 15.2, 10.7 Hz, 1H), 2.74 (dq, J = 15.2, 10.4 Hz, 1H), 1.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.07, 143.02, 134.43, 130.76, 129.76, 128.54, 128.35, 126.70, 125.41 (q, $J_{C-F} = 278.3 \text{ Hz}$), 123.85, 123.16, 109.85, 44.60 (d, $J_{C-F} = 2.4 \text{ Hz}$), 41.15 (q, $J_{C-F} = 28.1 \text{ Hz}$), 25.54. ¹⁹F NMR (377) **MHz, CDCl₃**) $\delta - 61.83$ (t, J = 10.4 Hz). **GCMS (EI)** m/z calcd. for C₁₇H₁₄F₃NO [M⁺] 305.1, found 305.1, 290.1, 270.1, 242.1, 222.1, 200.1, 194.1, 180.1, 167.1, 152.2, 130.1, 117.1, 96.1. The analytical data correspond with those reported in the literature.¹¹

1-Methyl-1-(2,2,2-trifluoroethyl)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one (36)



The title compound was synthesized according to the general procedure B employing CdSe (6.0 mg, 10% w/w), K₂CO₃ (103.5 mg, 0.75 mmol), 1-(3,4dihydroquinolin-1(2H)-yl)-2-methylprop-2-en-1-one (60.3 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol) and CH₃CN (0.1 M, 3 mL) for 14 h. The product

was purified by column chromatography (silica gel, gradient 10 to 15% EA/petroleum ether). Yield: 88% (71 mg).

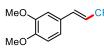
¹**H NMR (400 MHz, CDCl**₃) δ 7.10 (d, J = 7.4 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 3.79 - 3.66 (m, 2H), 2.90 - 2.56 (m, 4H), 2.00 (p, J = 6.0 Hz, 2H), 1.41 (s, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 177.43, 138.70, 129.77, 127.36, 125.51 (q, $J_{C-F} = 278.1$ Hz), 122.16, 121.54, 120.59, 45.72 (d, $J_{C-F} = 2.6$ Hz), 40.55 (q, $J_{C-F} = 28.3$ Hz), 39.13, 24.69, 24.64, 21.21. ¹⁹F **NMR (377 MHz, CDCl₃)** δ – 61.81 (t, J = 11.8 Hz). **GCMS (EI)** m/z calcd. for C₁₄H₁₄F₃NO [M⁺] 269.1, found 269.1, 254.1, 234.1, 206.1, 200.1, 186.1, 158.1, 144.1, 130.1, 115.1, 103.0, 92.6, 77.1. The analytical data correspond with those reported in the literature.¹¹

(*E*)-1-Methoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (37)

The title compound was synthesized according to the general procedure C employing CdSe (5.3 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), (E)-3-(4-methoxyphenyl)acrylic acid (53.4 mg, 0.30 mmol), CF₃SO₂Cl (96 µL, 0.90

mmol), and CH₃CN (0.1 M, 3 mL) for 28 h. The product was purified by column chromatography (silica gel, gradient 100% petroleum ether). Yield = 69% (41.8 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.40 (d, J = 8.7 Hz, 2H), 7.09 (dd, J = 16.1, 2.3 Hz, 1H), 6.91 (d, J = 8.7 Hz, 2H), 6.07 (dq, J = 16.1, 6.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.18, 137.24 (q, $J_{C-F} = 6.8$ Hz), 129.16, 126.18, 124.08 (q, $J_{C-F} = 268.6$ Hz), 114.44, 113.50 (q, $J_{C-F} = 33.6 \text{ Hz}$), 55.46. ¹⁹F NMR (377 MHz, CDCl₃) $\delta - 62.83 \text{ (d, } J = 5.6 \text{ Hz}$). GCMS (EI) m/z calcd. for $C_{10}H_9F_3O$ [M⁺] 202.1, found 202.1, 187.0, 183.1, 159.1, 151.1, 139.0, 133.1, 119.0, 109.1, 89.1, 83.1, 75.1, 63.1. The analytical data correspond with those reported in the literature.¹²

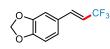

(E)-1-Methyl-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (38)

The title compound was synthesized according to the general procedure C employing CdSe (4.8 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), (*E*)-3- (*p*-tolyl)acrylic acid (48.6 mg, 0.30 mmol), CF₃SO₂Cl (96 μ L, 0.90 mmol), and

CH₃CN (0.1 M, 3 mL) for 28 h. The product was purified by column chromatography (silica gel, gradient 100% petroleum ether). Yield = 58% (32.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 7.12 (dd, J = 16.1, 2.2 Hz, 1H), 6.15 (dq, J = 16.1, 6.6 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.43, 137.67 (q, J_{C-F} = 6.8 Hz), 130.78, 129.77, 127.61, 123.92 (q, J_{C-F} = 268.6 Hz), 114.89 (q, J_{C-F} = 33.6 Hz), 21.53. ¹⁹F NMR (377 MHz, CDCl₃) δ – 63.11. GCMS (EI) m/z calcd. for C₁₀H₉F₃ [M⁺] 186.1, found 186.1, 167.1, 151.0, 133.1, 117.1, 115.1, 91.1, 77.1, 69.0, 63.1. The analytical data correspond with those reported in the literature.¹²

(E)-1,2-Dimethoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (39)



The title compound was synthesized according to the general procedure C employing CdSe (6.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), (*E*)-3-(3,4-dimethoxyphenyl)acrylic acid (62.4 mg, 0.30 mmol), CF₃SO₂Cl (96 μ L,

0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 28 h. The product was purified by column chromatography (silica gel, gradient 5 to 8% diethyl ether/petroleum ether). Yield = 72% (50.1 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.07 (dd, J = 16.1, 2.2 Hz, 1H), 7.01 (dd, J = 8.3, 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.06 (dq, J = 16.0, 6.5 Hz, 1H), 3.90 (d, J = 2.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.82, 149.32, 137.49 (q, $J_{C-F} = 6.8$ Hz), 126.38, 123.99 (q, $J_{C-F} = 268.6$ Hz), 121.71, 113.67 (q, $J_{C-F} = 33.8$ Hz), 111.12, 109.39, 56.00, 55.96. ¹⁹F NMR (377 MHz, CDCl₃) δ – 62.81 (d, J = 4.6 Hz). GCMS (EI) *m*/*z* calcd. for C₁₁H₁₁F₃O₂ [M⁺] 232.1, found 232.1, 217.1, 213.1, 189.1, 174.0, 169.1, 149.0, 145.0, 139.1, 125.0, 121.1, 109.1, 101.1, 96.1, 77.1. The analytical data correspond with those reported in the literature.¹²

(E)-5-(3,3,3-Trifluoroprop-1-en-1-yl)benzo[d][1,3]dioxole (40)

The title compound was synthesized according to the general procedure C employing CdSe (5.7 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), (*E*)-3-(benzo[*d*][1,3]dioxol-5-yl)acrylic acid (57.6 mg, 0.30 mmol), CF₃SO₂Cl (96 μ L,

0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 28 h. The product was purified by column chromatography (silica gel, gradient 5 to 8% diethyl ether/petroleum ether). Yield = 70% (45.3 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 17.6 Hz, 1H), 6.95 (s, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.14 – 5.96 (m, 1H), 6.01 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.40,

148.52, 137.36 (q, $J_{C-F} = 6.8$ Hz), 127.85, 123.94 (q, $J_{C-F} = 268.7$ Hz), 123.55, 113.97 (q, $J_{C-F} = 268.7$ Hz), 123.55, 123.94 (q, $J_{C-F} = 268.7$ Hz), 123.95 (q, J_{C-F} = 268.7 Hz), 123.55 (q, J_{C-F} = 268.7 Hz), 123.55 (q, J_{C-F} = 268.7 Hz), 123.55 (q, J_{C-F} = 268.7 33.7 Hz), 108.64, 106.30, 101.69. ¹⁹F NMR (377 MHz, CDCl₃) δ – 62.91. GCMS (EI) *m/z* calcd. for C₁₀H₇F₃O₂ [M⁺] 216.0, found 216.1, 215.1, 197.1, 167.0, 157.0, 145.0, 139.1, 132.0, 127.1, 119.1, 114.1, 107.1, 91.1, 89.1, 63.1. The analytical data correspond with those reported in the literature.¹³

(E)-3-(3,3,3-Trifluoroprop-1-en-1-yl)phenol (41)

HO

нο

The title compound was synthesized according to the general procedure C CF₂ employing CdSe (4.9 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), (E)-3-(3-hydroxyphenyl)acrylic acid (49.2 mg, 0.30 mmol), CF₃SO₂Cl (96 µL, 0.90

mmol), and CH₃CN (0.1 M, 3 mL) for 28 h. The product was purified by column chromatography (silica gel, gradient 3 to 6% DCM/petroleum ether). Yield = 55% (31 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.26 (t, J = 7.9 Hz, 1H), 7.08 (dd, J = 16.1, 2.3 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.93 (s, 1H), 6.87 (dd, J = 8.1, 2.5 Hz, 1H), 6.16 (dq, J = 16.1, 6.5 Hz, 1H), 5.59 (broad, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.19, 137.45 (q, $J_{C-F} = 6.8$ Hz), 135.17, 130.31, 123.67 (q, $J_{C-F} = 268.8$ Hz), 120.39, 117.25, 116.38 (q, $J_{C-F} = 33.9$ Hz), 114.16. ¹⁹F NMR (377) MHz, CDCl₃) $\delta - 63.37$. GCMS (EI) m/z calcd. for C₉H₇F₃O [M⁺] 188.0, found 188.0, 167.0, 149.0, 140.0, 124.0, 119.0, 114.0, 109.1, 101.0, 96.0, 91.1, 75.0, 69.0, 65.1.

(*E*)-2-Methoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)phenol (42)

The title compound was synthesized according to the general procedure C CF₂ employing CdSe (5.8 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), (E)-3-(4-hydroxy-3-methoxyphenyl)acrylic acid (58.2 mg, 0.30 mmol), CF₃SO₂Cl (96 µL, 0.90 mmol), and CH₃CN (0.1 M, 3 mL) for 28 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% DCM/petroleum ether). Yield = 63% (41.2 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.06 (dd, J = 16.1, 2.3 Hz, 1H), 7.02 – 6.89 (m, 3H), 6.05 (dq, J =16.1, 6.6 Hz, 1H), 5.86 (s, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.62, 146.91, 137.64 (q, $J_{C-F} = 6.8$ Hz), 126.03, 124.05 (q, $J_{C-F} = 268.5$ Hz), 122.20, 114.84, 113.45 (q, $J_{C-F} = 268.5$ Hz) 33.7 Hz), 109.12, 56.07. ¹⁹F NMR (377 MHz, CDCl₃) δ – 62.78 (d, J = 4.3 Hz). GCMS (EI) m/z calcd. for C₁₀H₉F₃O₂ [M⁺] 218.1, found 218.1, 203.0, 199.1, 175.0, 167.0, 155.1, 145.1, 139.0, 136.1, 133.0, 127.1, 125.0, 107.0, 101.0, 91.0, 77.0. The analytical data correspond with those reported in the literature.¹²

1,3-Dimethyl-5-(trifluoromethyl)pyrimidine-2,4(1*H***,3***H***)-dione (43)**

The title compound was synthesized according to the general procedure A employing CdSe (4.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 1,3dimethylpyrimidine-2,4(1H,3H)-dione (42.0 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% diethyl ether/petroleum ether). Yield = 84% (52.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 1.3 Hz, 1H), 3.47 (s, 3H), 3.32 (s, 3H). ¹³C NMR (101 **MHz, CDCl**₃) δ 158.84, 150.99, 143.87 (q, $J_{C-F} = 5.9$ Hz), 122.13 (q, $J_{C-F} = 269.7$ Hz), 103.95 (q, $J_{C-F} = 32.9 \text{ Hz}$, 37.79, 28.05. ¹⁹F NMR (377 MHz, CDCl₃) $\delta - 63.81$. GCMS (EI) m/z calcd. for C₇H₇F₃N₂O₂ [M⁺] 208.0, found 208.1, 188.0, 179.0, 160.0, 150.0, 132.0, 123.0, 103.0, 91.0, 75.0, 60.0. The analytical data correspond with those reported in the literature.⁵

2-(2-(Trifluoromethyl)-1*H*-indol-3-yl)acetic acid (44)

The title compound was synthesized according to the general procedure A employing CdSe (5.2 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2-(1Hindol-3-yl)acetic acid (52.5 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 3 h. The product was purified by column

chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield = 70% (51 mg). ¹**H NMR (400 MHz, DMSO-***d*₆) δ 12.42 (b, 1H), 12.08 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 3.83 (s, 2H). ¹³C NMR (101) **MHz**, **DMSO-***d*₆) δ 171.95, 135.63, 126.89, 124.39, 122.17 (q, J_{C-F} = 268.9 Hz), 121.67 (q, J_{C-F} = 36.0 Hz), 120.18, 120.08, 112.24, 110.37 (d, $J_{C-F} = 3.0$ Hz), 29.31. ¹⁹F NMR (377 MHz, DMSOd₆) δ – 56.84. GCMS (EI) m/z calcd. for C₁₁H₈F₃NO₂ [M⁺] 243.1, found 243.0, 198.1, 178.0, 158.0, 152.0, 128.0, 101.1, 89.0, 75.0.


2-(2-(Trifluoromethyl)-1H-indol-3-yl)ethyl acetate (45)

The title compound was synthesized according to the general procedure A employing CdSe (6.1 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 2-(1Hindol-3-yl)ethyl acetate (60.9 mg, 0.30 mmol), CF3SO2Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 3 h. The product was purified by column chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield = 79% (64.2 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 8.62 (s, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 4.34 (t, J = 6.9 Hz, 2H), 3.25 (td, J = 7.0, 1.5 Hz, 2H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.39, 135.39, 127.51, 125.01, 122.54 (q, J_C-F = 36.9 Hz, 122.03 (q, $J_{C-F} = 240.7 \text{ Hz}$), 120.85, 120.21, 114.04 (d, $J_{C-F} = 3.1 \text{ Hz}$), 111.96, 64.26, 23.61, 21.03. ¹⁹F NMR (377 MHz, CDCl₃) δ – 58.27. GCMS (EI) m/z calcd. for C₁₃H₁₂F₃NO₂ [M⁺] 271.1, found 271.1, 211.1, 198.1, 191.1, 178.1, 176.1, 172.1, 158.1, 152.1, 143.1, 140.1, 128.1, 115.1, 101.1, 89.1, 77.1.

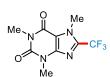
N-(2-(2-(Trifluoromethyl)-1*H*-indol-3-yl)ethyl)acetamide (46)

The title compound was synthesized according to the general procedure A employing CdSe (6.0 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), N-(2-(1H-indol-3-yl)ethyl)acetamide (60.6 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 3 h. The product was purified by column

chromatography (silica gel, gradient 5 to 10% EA/petroleum ether). Yield = 65% (52.6 mg).

¹**H NMR (400 MHz, DMSO-***d*₆) δ 11.93 (s, 1H), 7.98 (s, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.28 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.13 (ddd, J = 8.1, 6.9, 1.0 Hz, 1H), 3.24 (q, J) = 6.7 Hz, 2H), 2.97 (d, J = 7.3 Hz, 2H), 1.76 (t, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO d_{6}) δ 169.16, 135.74, 126.81, 124.29, 122.33 (q, $J_{C-F} = 220$ Hz), 121.09 (q, $J_{C-F} = 36.1$ Hz), 119.90, 114.54 (q, $J_{C-F} = 3.0$ Hz), 112.32, 39.67, 23.93, 22.61. ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ – 56.41. GCMS (EI) *m/z* calcd. for C₁₃H₁₃F₃N₂O [M⁺] 270.1, found 270.1, 211.1, 198.0, 189.1, 178.0, 176.0, 166.0, 158.0, 152.0, 128.1, 115.0, 101.1, 77.1, 72.1.

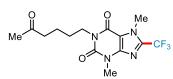
3-Hydroxy-4-methoxy-5-(trifluoromethyl)benzaldehyde (47)


сно MeO

The title compound was synthesized according to the general procedure A employing CdSe (4.5 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), 3-hydroxy-4-methoxybenzaldehyde (45.6 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The product was purified by column

chromatography (silica gel, gradient 15 to 20% diethyl ether/petroleum ether). Yield = 61% (40.2 mg, 95:5, r.r., the product ratio was determined by ¹⁹F NMR analysis).

¹**H NMR (400 MHz, CDCl**₃) δ 10.24 (q, J = 2.1 Hz, 1H), 7.64 (s, 1H), 7.29 (s, 1H), 6.31 (s, 1H), 4.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.99 (q, $J_{C-F} = 2.9$ Hz), 150.34, 148.86, 127.26, 126.54 (q, $J_{C-F} = 33.0 \text{ Hz}$), 123.73 (q, $J_{C-F} = 274.0 \text{ Hz}$), 112.84 (q, $J_{C-F} = 5.9 \text{ Hz}$), 110.30, 56.60. ¹⁹F NMR (377 MHz, CDCl₃) δ – 56.84. GCMS (EI) *m/z* calcd. for C₉H₇F₃O₃ [M⁺] 220.0, found 220.0, 219.0, 201.0, 191.0, 176.1, 149.0, 129.0, 120.0, 113.0, 101.0, 75.0, 51.0.


1,3,7-Trimethyl-8-(trifluoromethyl)-3,7-dihydro-1H-purine-2,6-dione (48)

The title compound was synthesized according to the general procedure A employing CdSe (5.8 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), caffeine (58.2 mg, 0.30 mmol), CF_3SO_2Cl (64 $\mu L,$ 0.60 mmol), and CH_3CN (0.1 M, 3 mL) for 48 h. The product was purified by column chromatography (silica gel, gradient 10 to 15% EA/petroleum ether). Yield = 78% (61.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 4.13 (q, J = 1.3 Hz, 3H), 3.56 (s, 3H), 3.38 (s, 3H). ¹³C NMR (101 **MHz, CDCl**₃) δ 155.52, 151.40, 146.59, 138.98 (q, $J_{C-F} = 40.0 \text{ Hz}$), 118.27 (q, $J_{C-F} = 271.4 \text{ Hz}$), 109.72, 33.27 (d, $J_{C-F} = 2.2$ Hz), 29.98, 28.27. ¹⁹F NMR (377 MHz, CDCl₃) $\delta - 62.43$. GCMS (EI) *m/z* calcd. for C₉H₉F₃N₄O₂ [M⁺] 262.1, found 262.1, 243.1, 233.0, 204.0, 193.1, 177.0, 150.0, 108.1, 82.1, 67.0. The analytical data correspond with those reported in the literature.⁵

3,7-Dimethyl-1-(5-oxohexyl)-8-(trifluoromethyl)-3,7-dihydro-1H-purine-2,6-dione (49)

The title compound was synthesized according to the general procedure A employing CdSe (8.3 mg, 10% w/w), K₂HPO₄ (130.5 mg, 0.75 mmol), pentoxifylline (83.4 mg, 0.30 mmol), CF₃SO₂Cl (64 µL, 0.60 mmol), and CH₃CN (0.1 M, 3 mL) for 48 h. The product was

purified by column chromatography (silica gel, gradient 15 to 20% EA/petroleum ether). Yield = 73% (75.7 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 4.11 (d, J = 1.4 Hz, 3H), 4.01 – 3.93 (m, 2H), 3.53 (d, J = 1.4 Hz, 3H), 2.46 (t, J = 6.7 Hz, 2H), 2.10 (s, 3H), 1.64 – 1.57 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 208.63, 155.35, 151.11, 146.61, 138.96 (q, $J_{C-F} = 40.1$ Hz), 118.25 (q, $J_{C-F} = 271.3$ Hz), 109.74, 43.13, 41.18, 33.25 (d, $J_{C-F} = 2.2$ Hz), 30.03, 29.89, 27.37, 20.94. ¹⁹F NMR (377 MHz, CDCl₃) δ – 62.44. GCMS (EI) m/z calcd. for C₁₄H₁₇F₃N₄O₃ [M⁺] 346.1, found 346.1, 327.1, 303.1, 289.1, 275.1, 261.0, 249.0, 231.0, 204.0, 177.0, 150.0, 110.0, 82.1, 67.0. The analytical data correspond with those reported in the literature.⁵

(3,3,3-Trifluoroprop-1-ene-1,1-diyl)dibenzene

Ph Yield = 81% (Yield was determined by ¹⁹F NMR analysis of the crude mixture using trifluoromethylbenzene as an internal standard).

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.33 (m, 6H), 7.33 – 7.25 (m, 4H), 6.17 (qd, J = 8.3, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.61 (q, $J_{C-F} = 5.6$ Hz), 140.25, 137.40, 129.53, 129.25, 129.23, 128.61, 128.37, 128.17, 128.10, 127.30, 123.25 (q, $J_{C-F} = 270.5$ Hz), 115.56 (q, $J_{C-F} = 33.8$ Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ – 55.50. GCMS (EI) m/z calcd. for C₁₅H₁₁F₃ [M⁺] 248.1, found 248.1, 227.0, 207.1, 196.1, 179.1, 165.1, 151.0, 139.0, 127.0, 114.0, 89.0, 76.0. The analytical data correspond with those reported in the literature.¹⁴

REFERENCES

(1) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. *Chem. Mater.* **2005**, *17*, 5712–5719.

(2) Muralirajan, K.; Kancherla, R.; Rueping, M. Dehydrogenative Aromatization and Sulfonylation of Pyrrolidines: Orthogonal Reactivity in Photoredox Catalysis. *Angew. Chem. Int. Ed.* **2018**, *57*, 14787–14791.

(3) Pang, Y.; Lee, J. W.; Kubota, K.; Ito, H. Solid-State Radical C–H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. *Angew. Chem. Int. Ed.* **2020**, *59*, 22570–22576.

(4) Pitre, S. P.; Tiernan, C. D. M.; Ismaili, H.; Scaiano, J. C. Metal-Free Photocatalytic Radical Trifluoromethylation Utilizing Methylene Blue and Visible Light Irradiation. *ACS Catal.* **2014**, *4*, 2530–2535.

(5) Ghosh, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Organic Semiconductor Photocatalyst can Bifunctionalize Arenes and Heteroarenes. *Science* **2019**, *365*, 360–366.

(6) Nagib, D. A.; MacMillan, D. W. C. Trifluoromethylation of Arenes and Heteroarenes by Means of Photoredox Catalysis. *Nature* **2011**, *480*, 224–228.

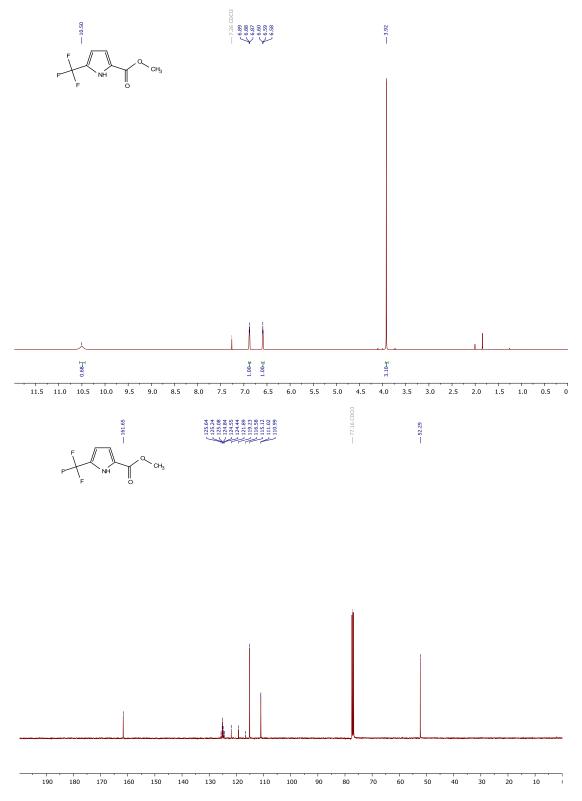
(7) Choi, W. J.; Choi, S.; Ohkubo, K.; Fukuzumi, S.; Cho, E. J.; You, Y. Mechanisms and Applications of Cyclometalated Pt(ii) Complexes in Photoredox Catalytic Trifluoromethylation. *Chem. Sci.* **2015**, *6*, 1454–1464.

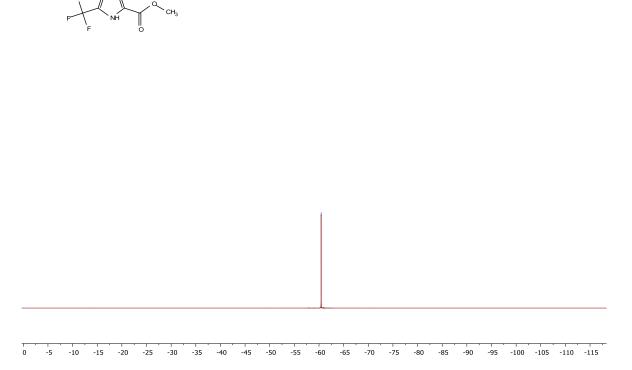
(8) Ye, Y.; Cheung, K. P. S.; He, L.; Tsu, G. C. Synthesis of 2-(Trifluoromethyl)indoles via Domino Trifluoromethylation/Cyclization of 2-Alkynylanilines. *Org. Lett.* **2018**, *20*, 1676–1679.

(9) Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Elaboration of 2-(Trifluoromethyl)indoles via a Cascade Coupling/Condensation/Deacylation Process. *Org. Lett.* **2008**, *10*, 625–628.

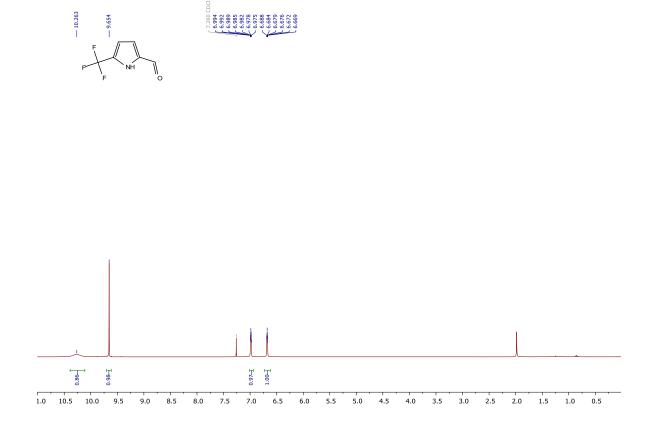
(10) Seo, S.; Taylor, J. B.; Greaney, M. F. Silver-Catalysed Trifluoromethylation of Arenes at Room Temperature. *Chem. Commun.* **2013**, *49*, 6385–6387.

(11) Guo, J.; Xu, C.; Wang, L.; Huang, W.; Wang, M. Catalyst-Free and Selective Trifluoromethylative Cyclization of Acryloanilides using PhICF₃Cl. *Org. Biomol. Chem.* **2019**, *17*, 4593–4599.

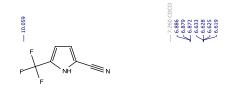

(12) Xu, P.; Abdukader, A.; Hu, K.; Cheng, Y.; Zhu, C. Room Temperature Decarboxylative Trifluoromethylation of α,β -Unsaturated Carboxylic Acids by Photoredox Catalysis. *Chem. Commun.* **2014**, *50*, 2308–2310.

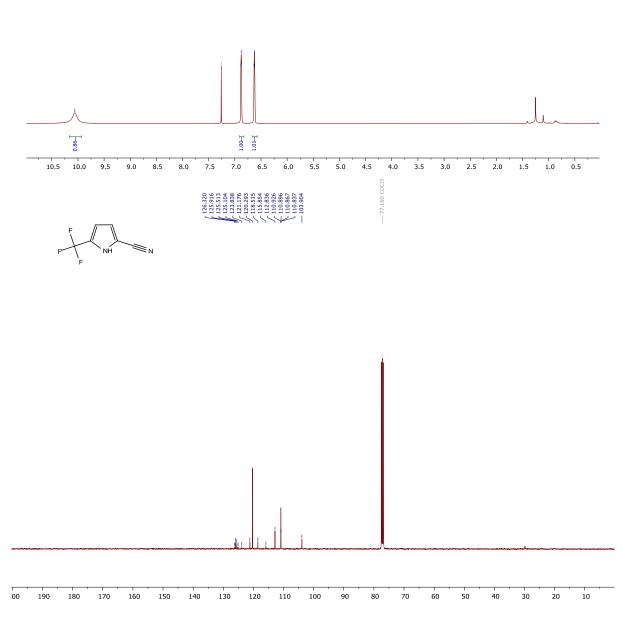

(13) Hong, H.; Li, Y.; Chen, L.; Li, B.; Zhu, Z.; Chen, X.; Chen, L.; Huang, Y. Electrochemical Synthesis Strategy for C_{vinyl}-CF₃ Compounds through Decarboxylative Trifluoromethylation. *J. Org. Chem.* **2019**, *84*, 5980–5986.

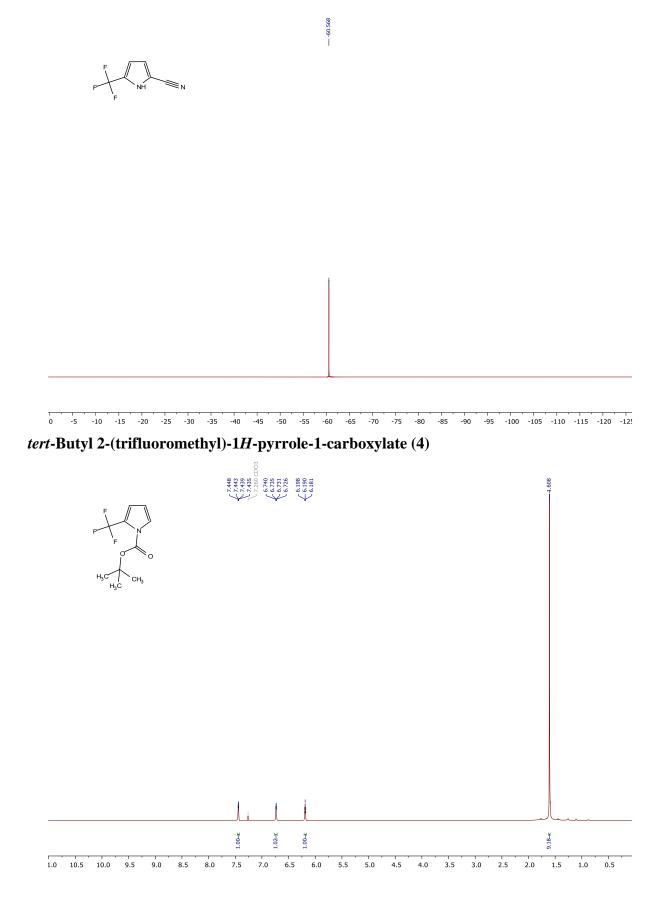
(14) Huang, B.; Bu, X.-S.; Xu, J.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Metal-Free, Visible-Light-Mediated Direct C-H Trifluoromethylation of Hydrazones with NADH Coenzyme Model Catalyst. *Asian J. Org. Chem.* **2018**, *7*, 137–140.

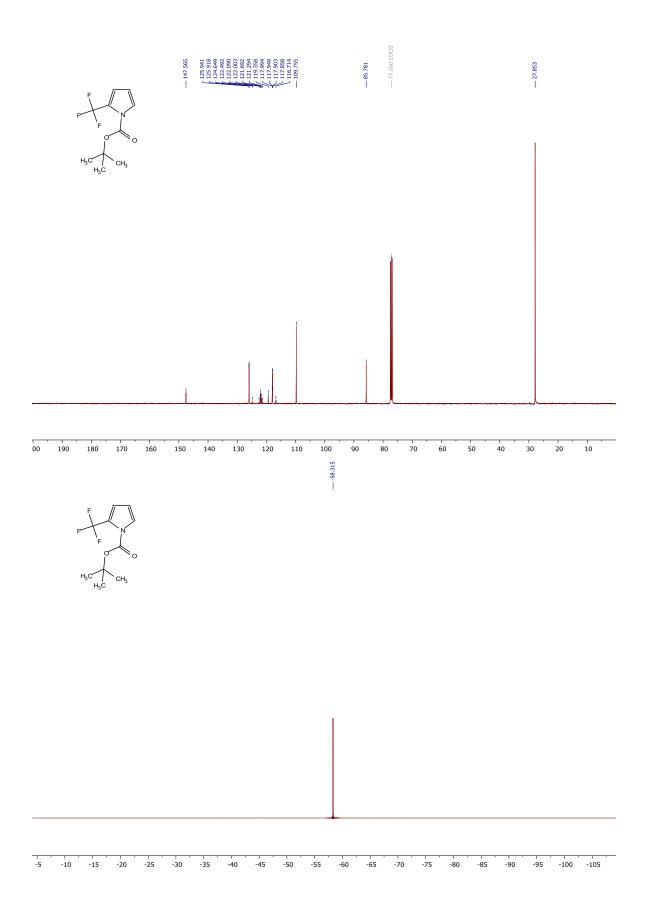

NMR Spectra


¹H, ¹³C and ¹⁹F NMR spectra are included below for all isolated compounds. Methyl 5-(trifluoromethyl)-1*H*-pyrrole-2-carboxylate (1)

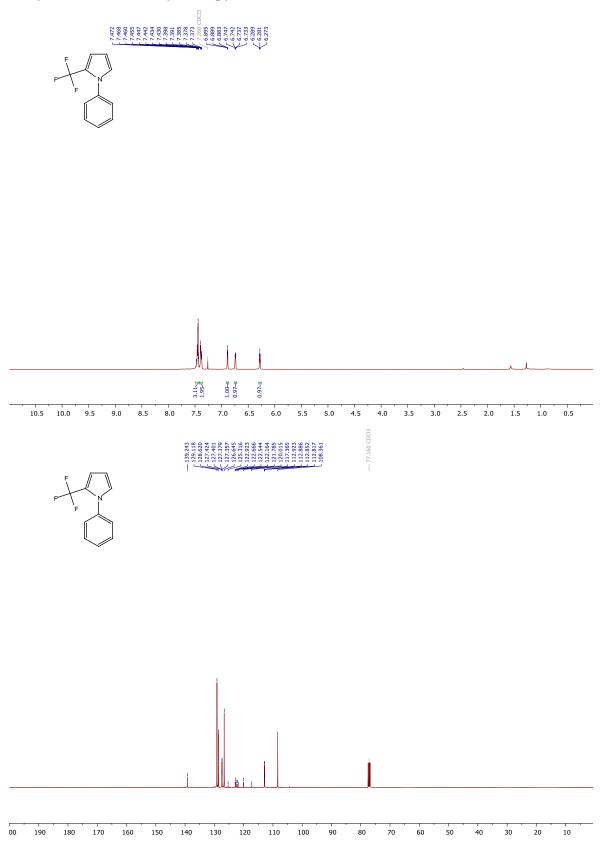


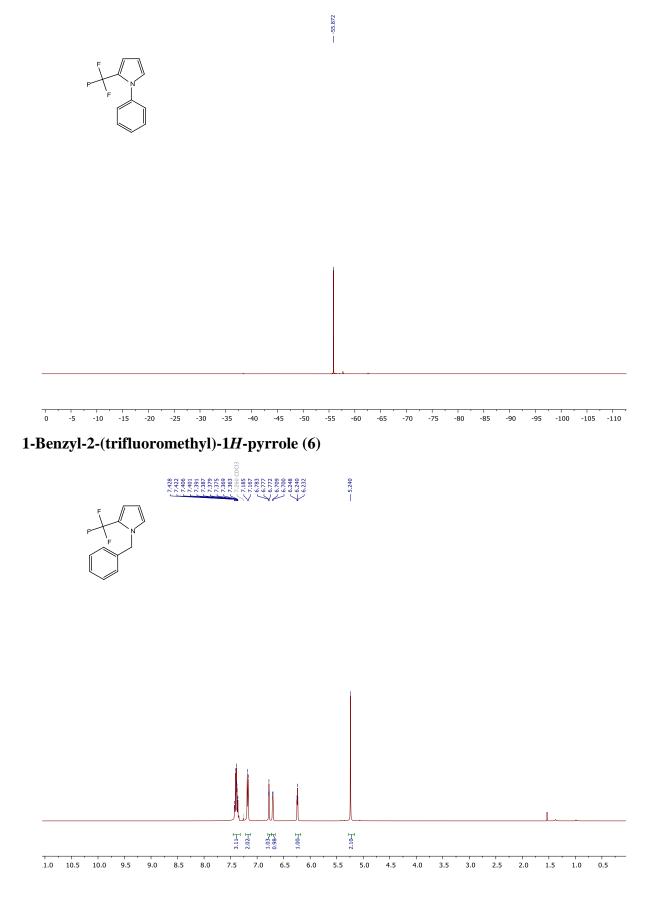

5-(Trifluoromethyl)-1*H*-pyrrole-2-carbaldehyde (2)

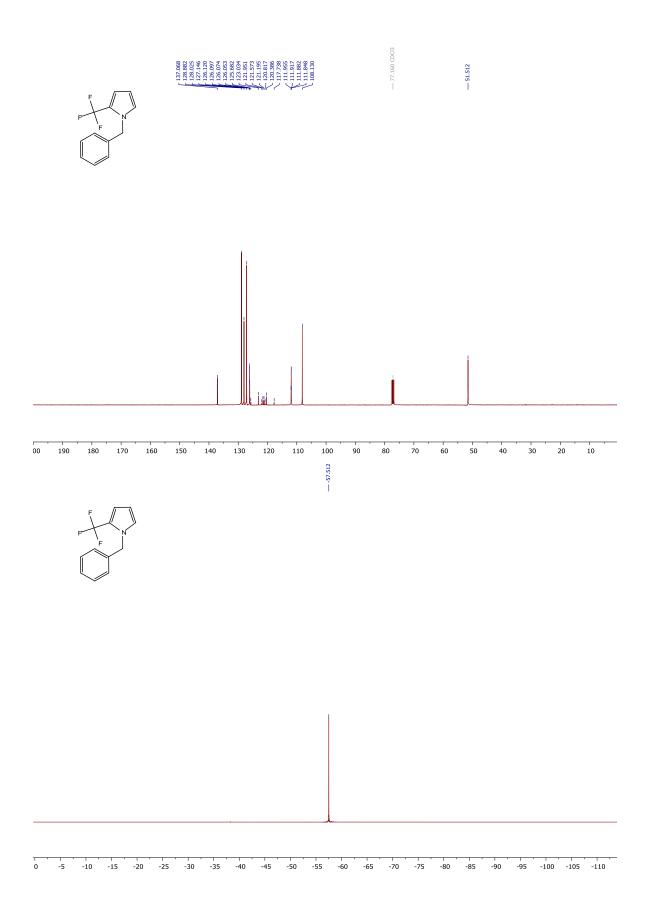


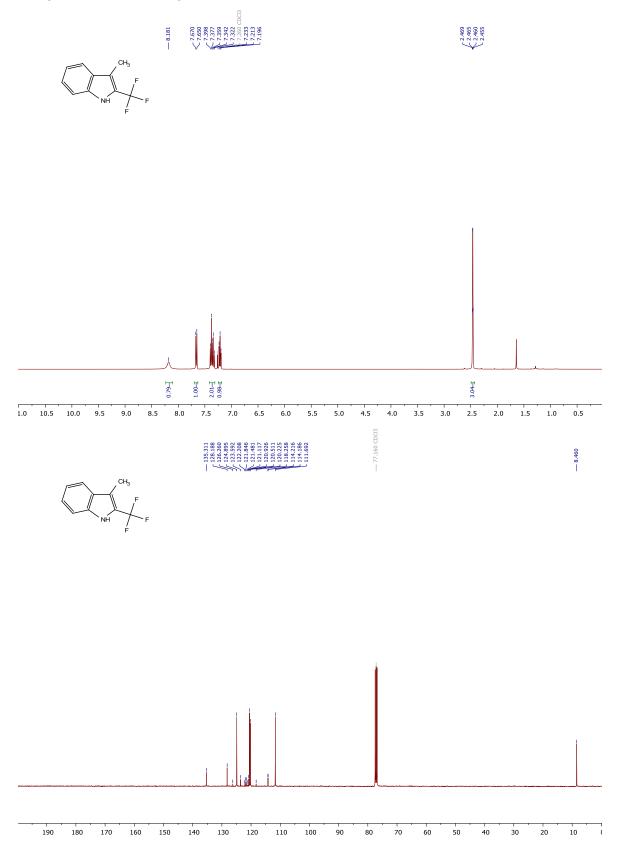


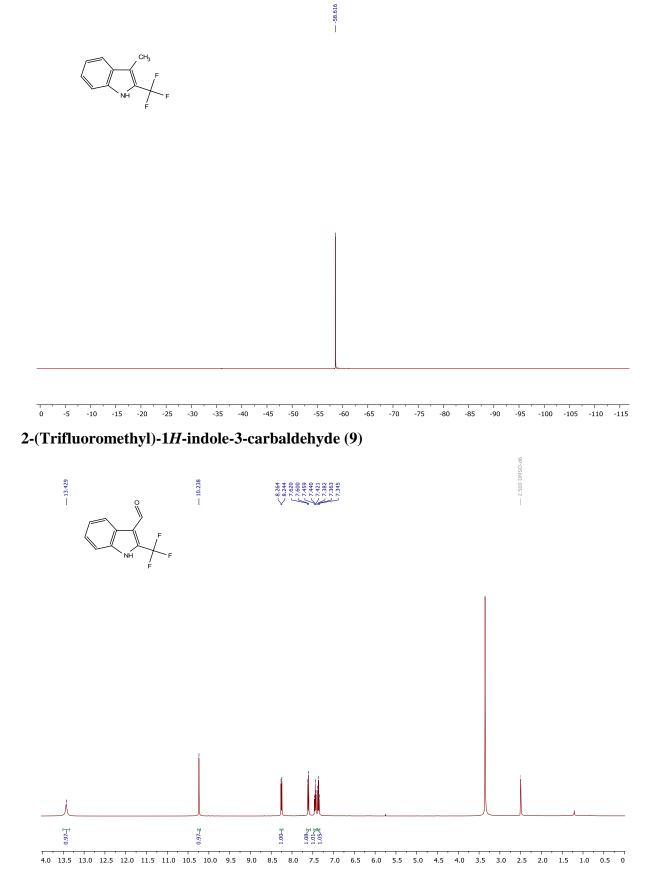
5-(Trifluoromethyl)-1*H*-pyrrole-2-carbonitrile (3)

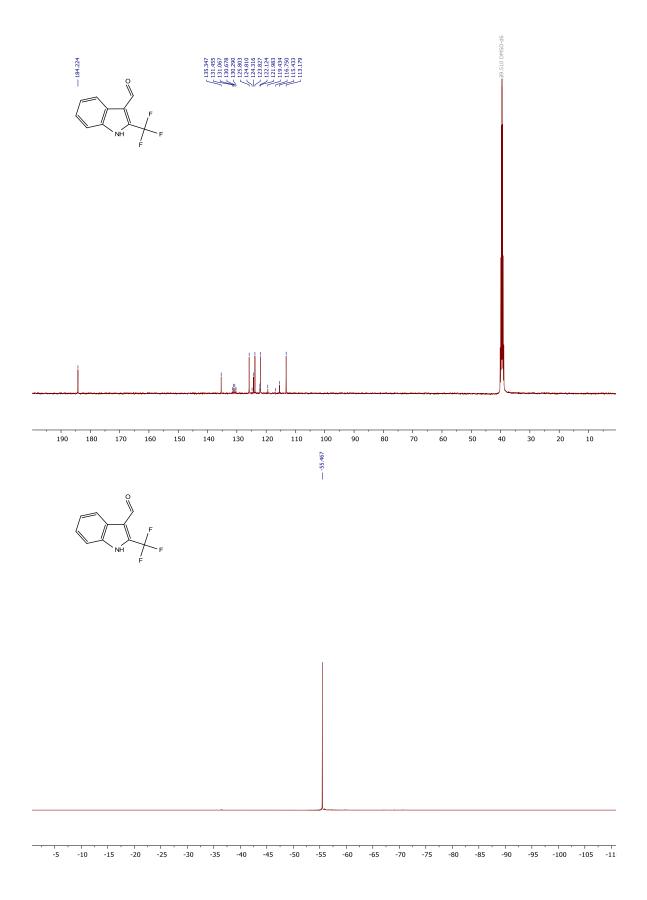


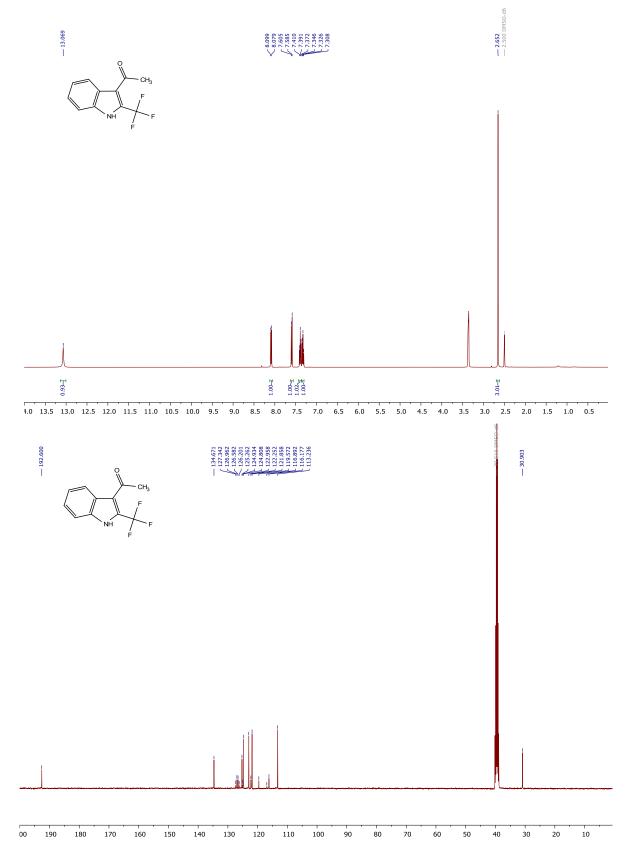


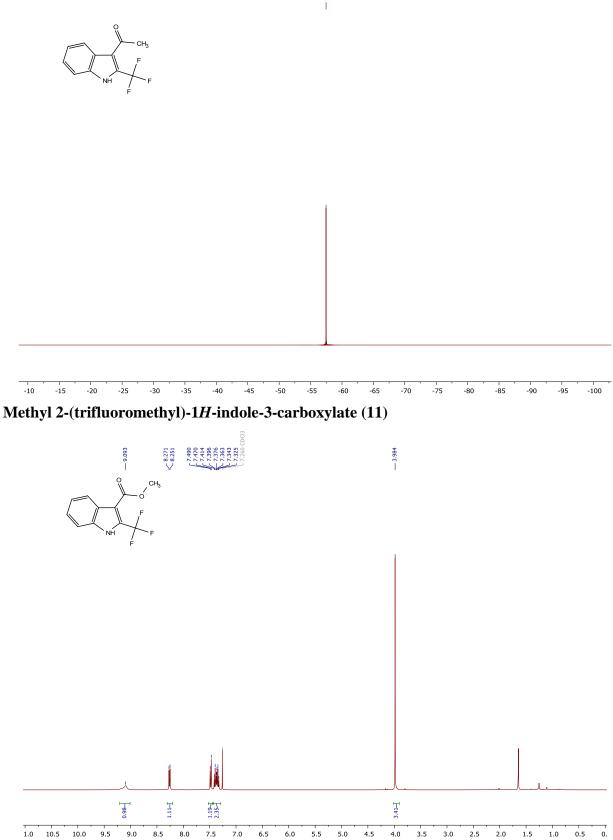


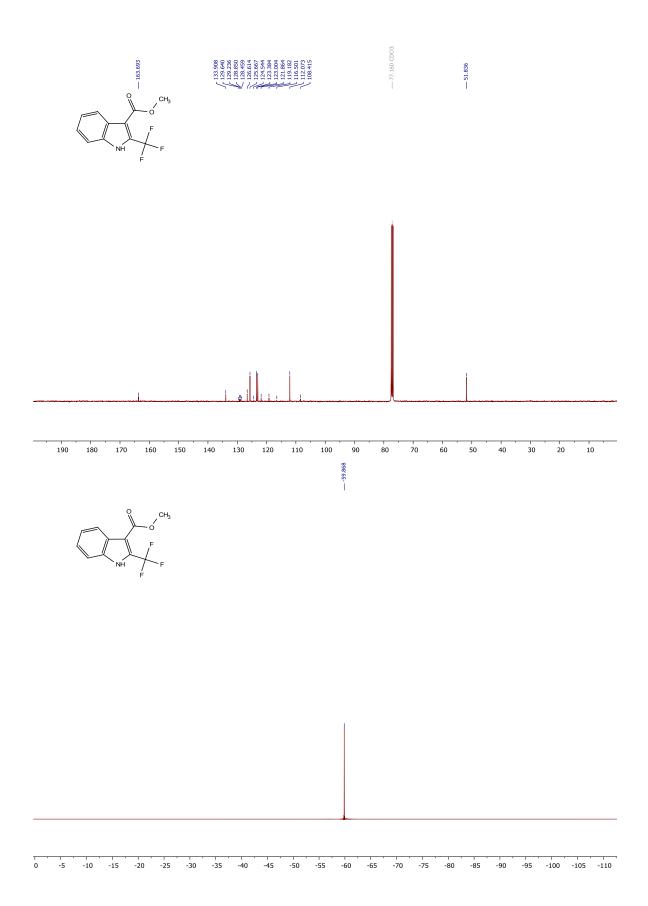

1-Phenyl-2-(trifluoromethyl)-1*H*-pyrrole (5)

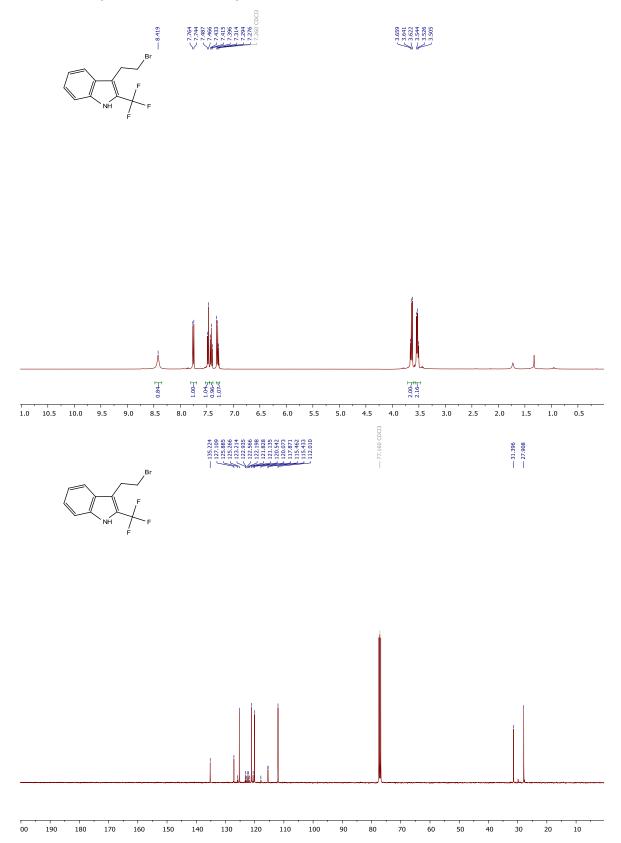


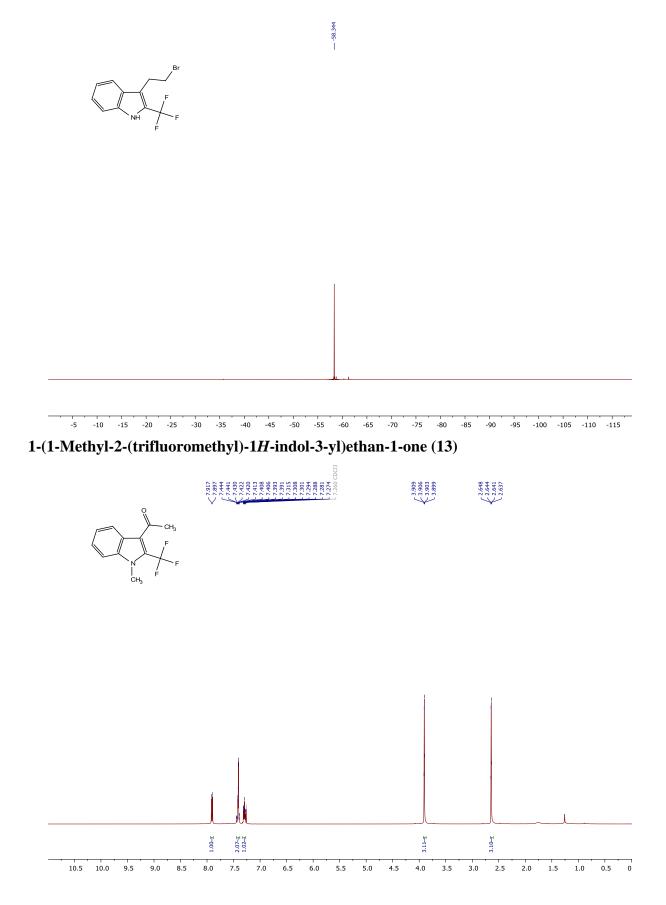


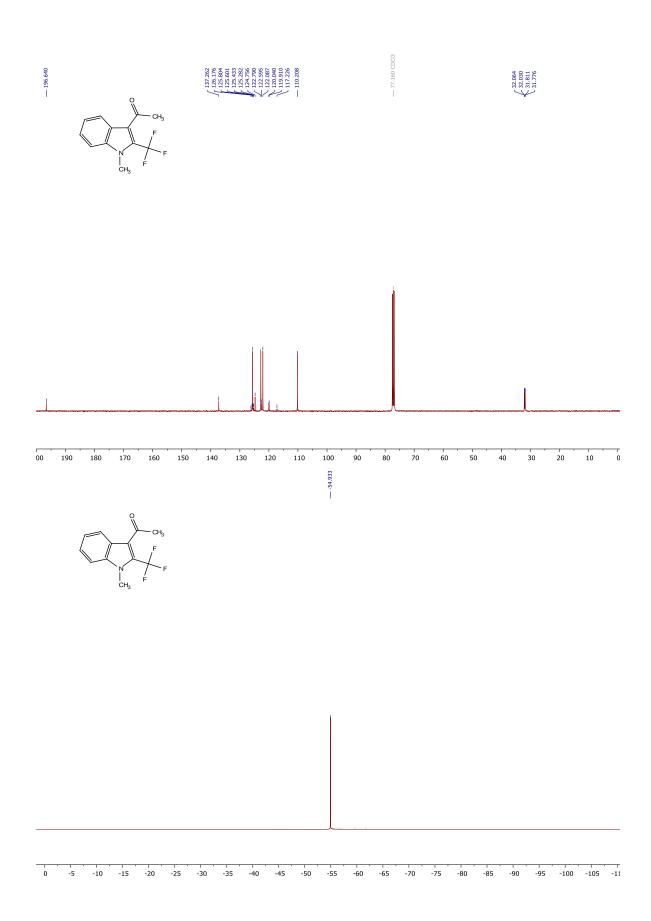

3-Methyl-2-(trifluoromethyl)-1*H*-indole (8)

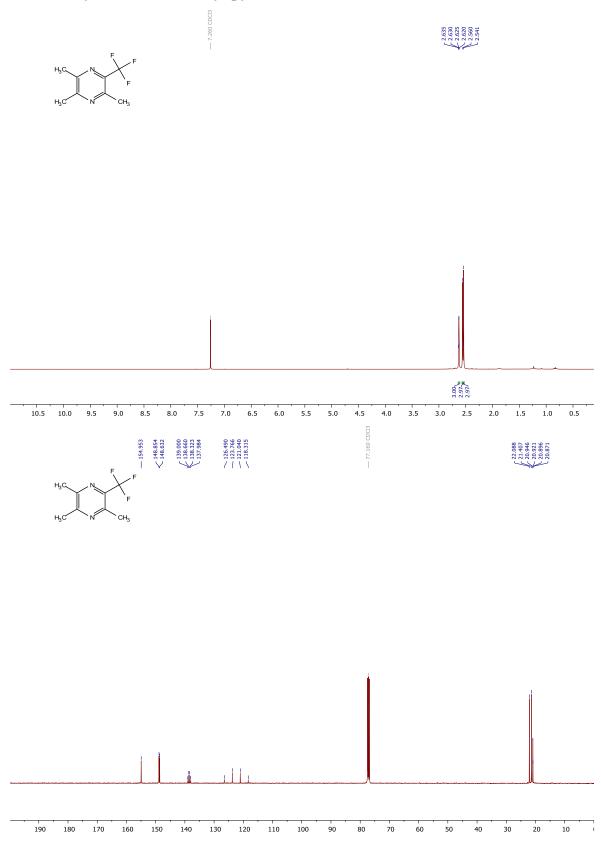


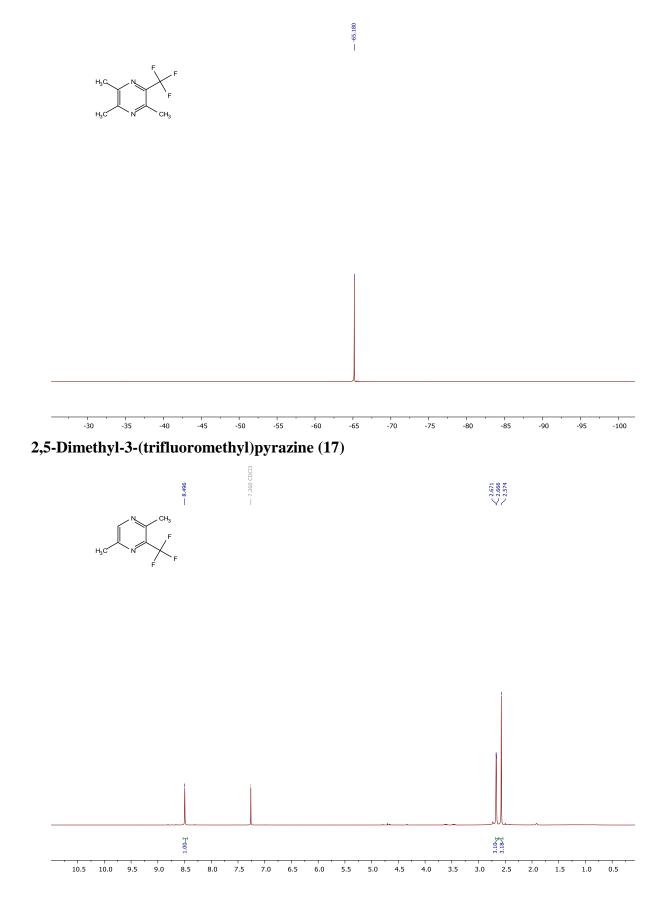


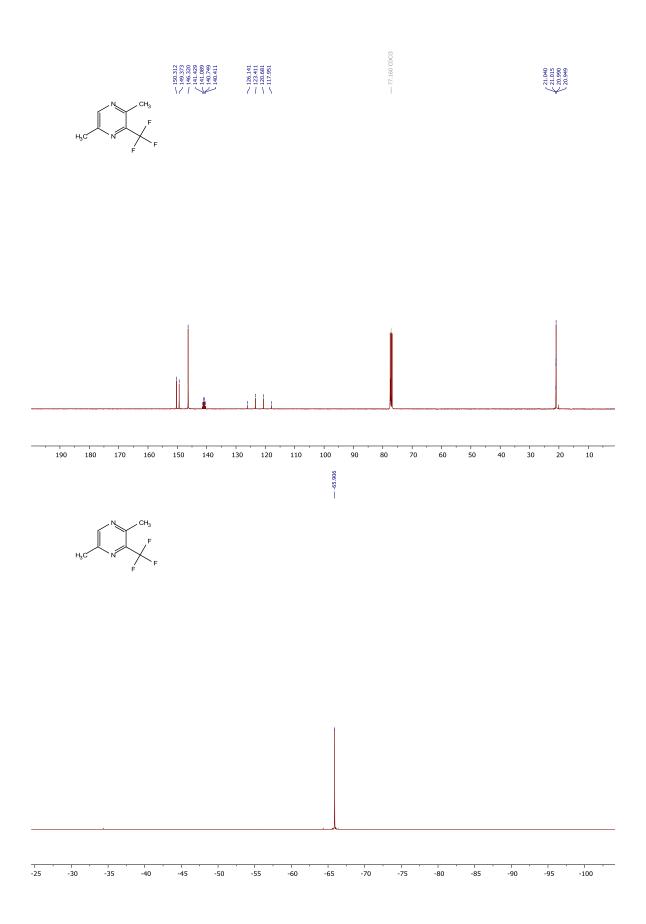

1-(2-(Trifluoromethyl)-1*H*-indol-3-yl)ethan-1-one (10)



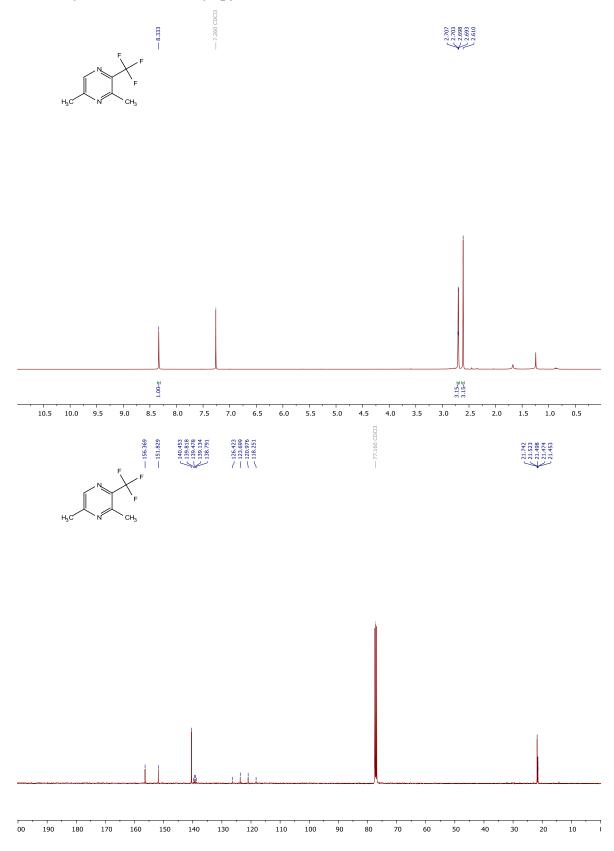


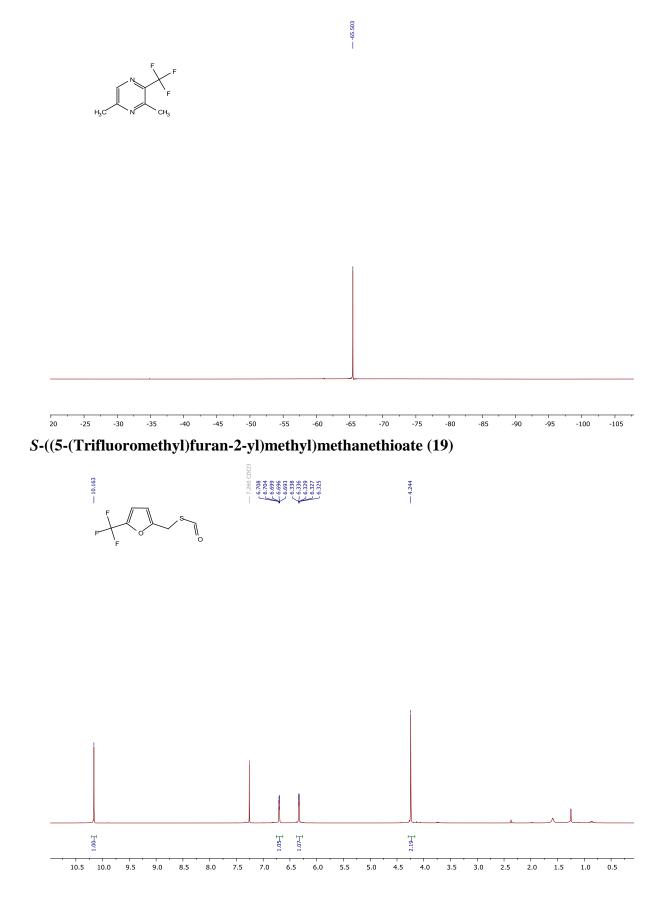

3-(2-Bromoethyl)-2-(trifluoromethyl)-1*H*-indole (12)

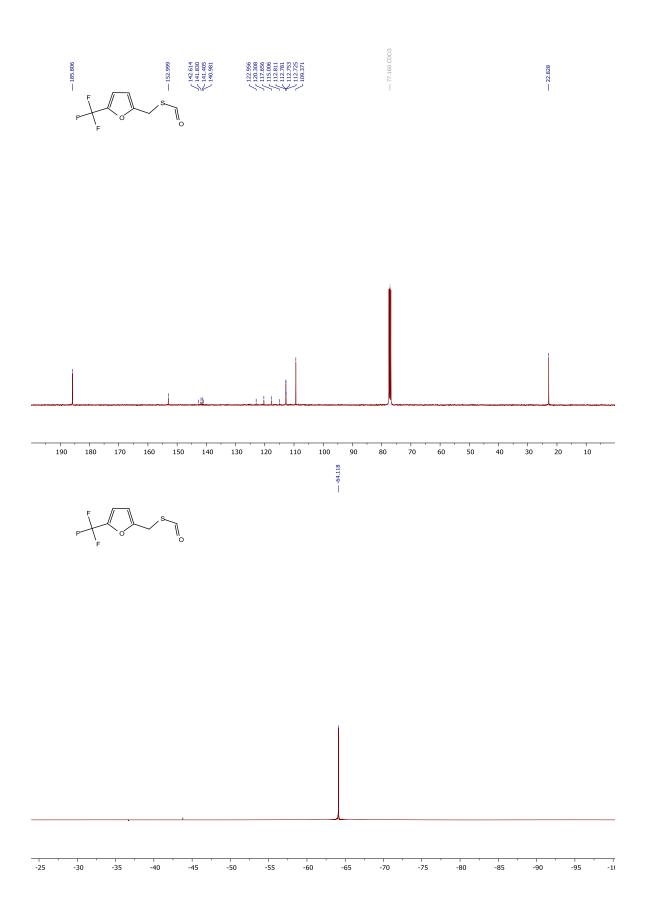


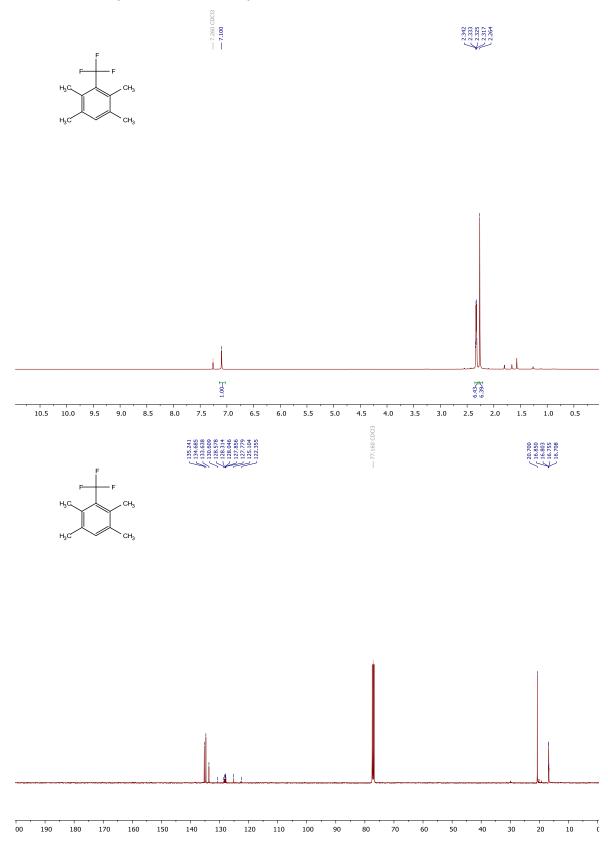


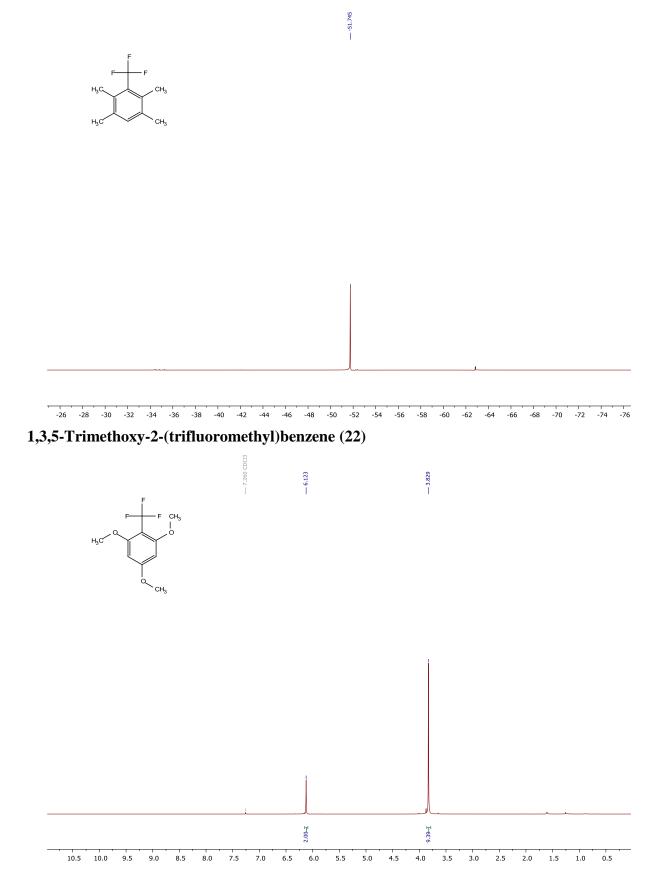
2,3,5-Trimethyl-6-(trifluoromethyl)pyrazine (16)

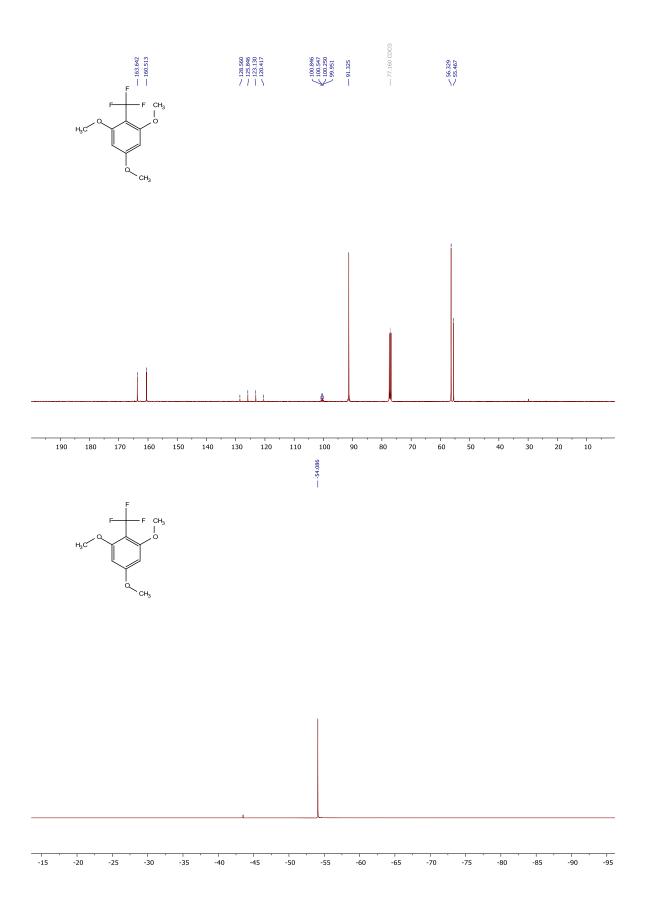


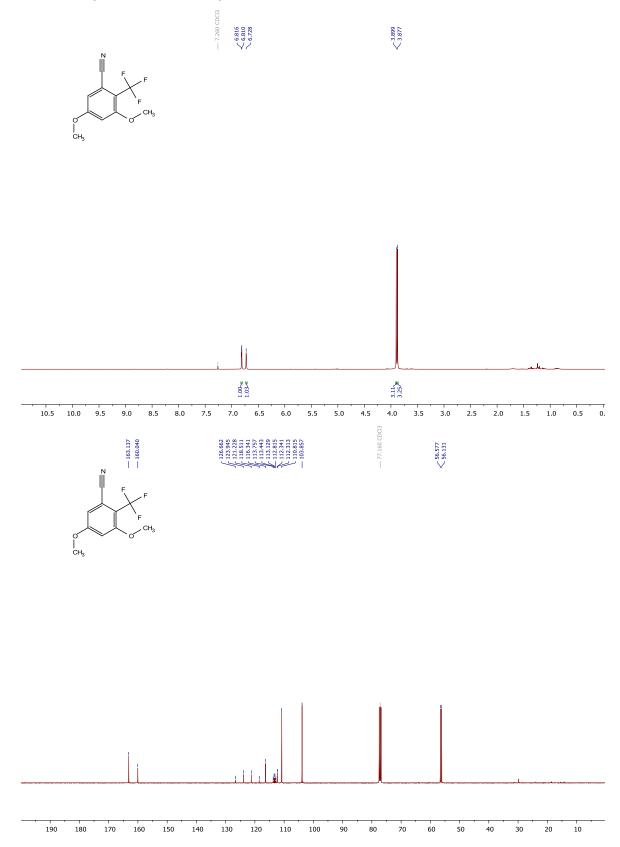


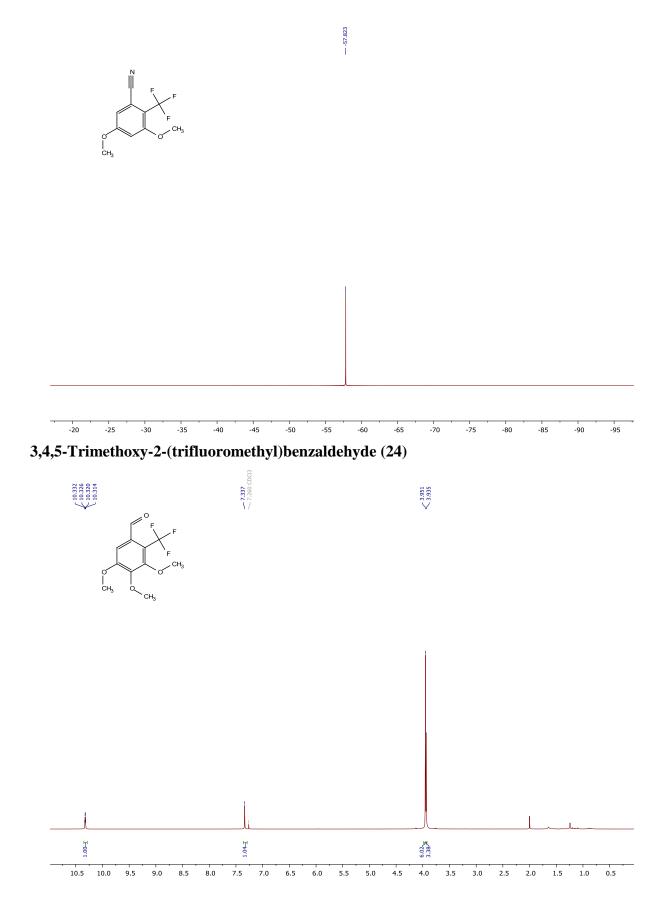

S51

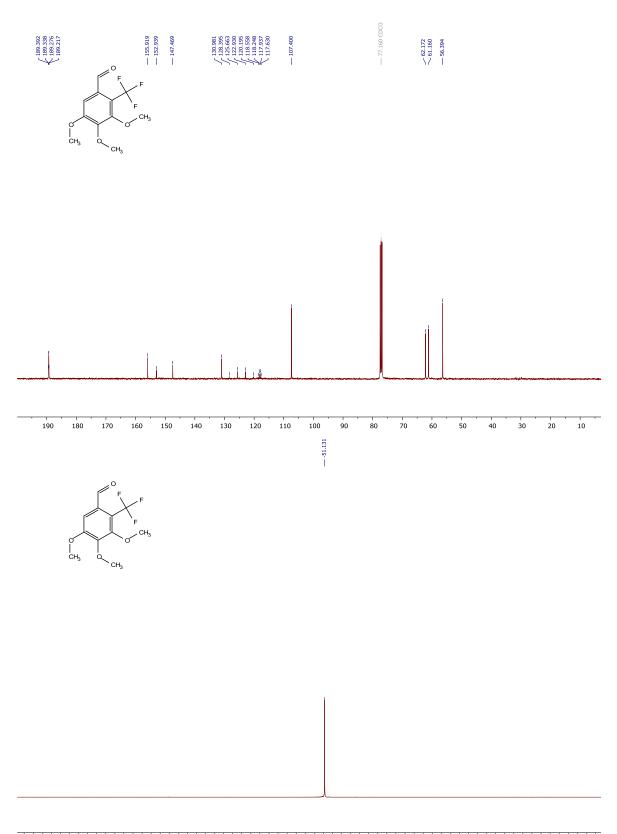

3,5-Dimethyl-2-(trifluoromethyl)pyrazine (18)



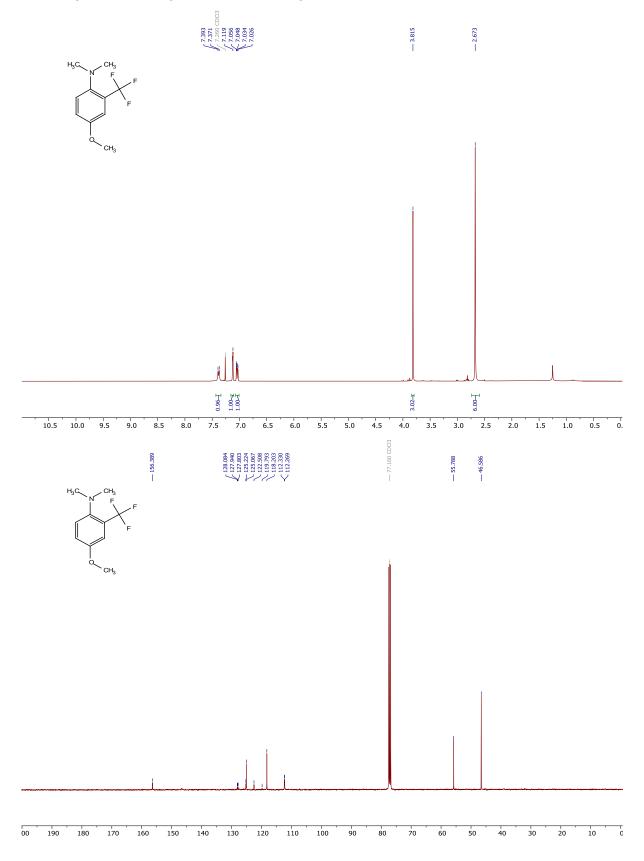


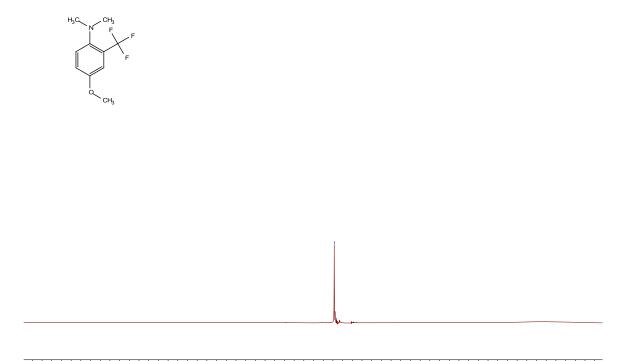

1,2,4,5-Tetramethyl-3-(trifluoromethyl)benzene (20)

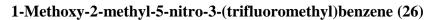


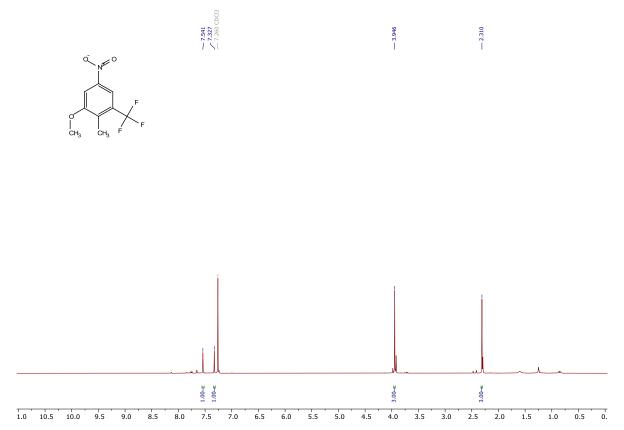


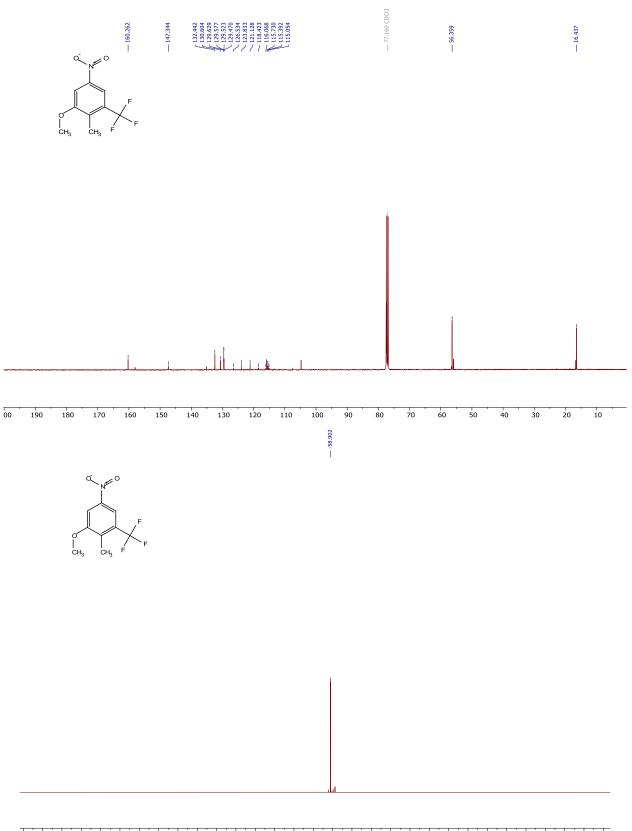
3,5-Dimethoxy-2-(trifluoromethyl)benzonitrile (23)



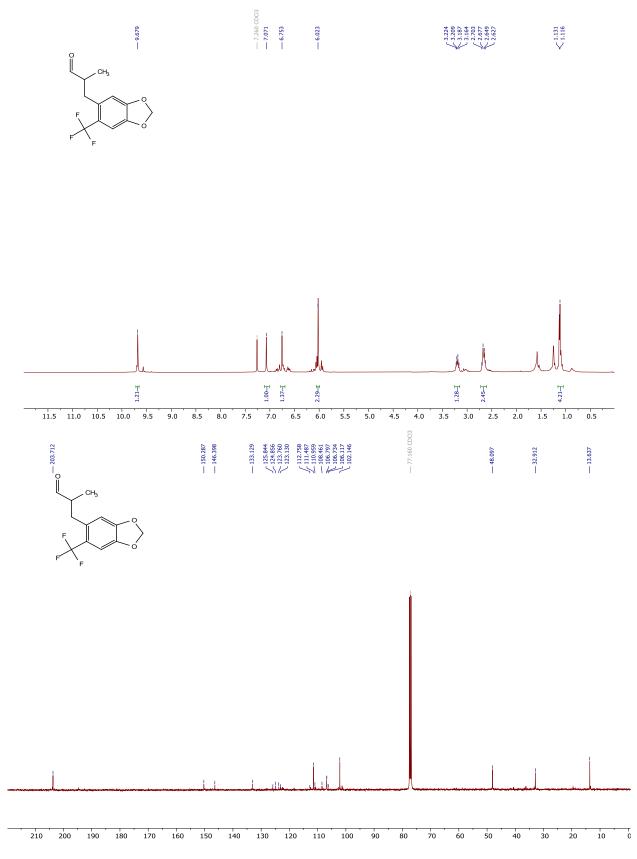


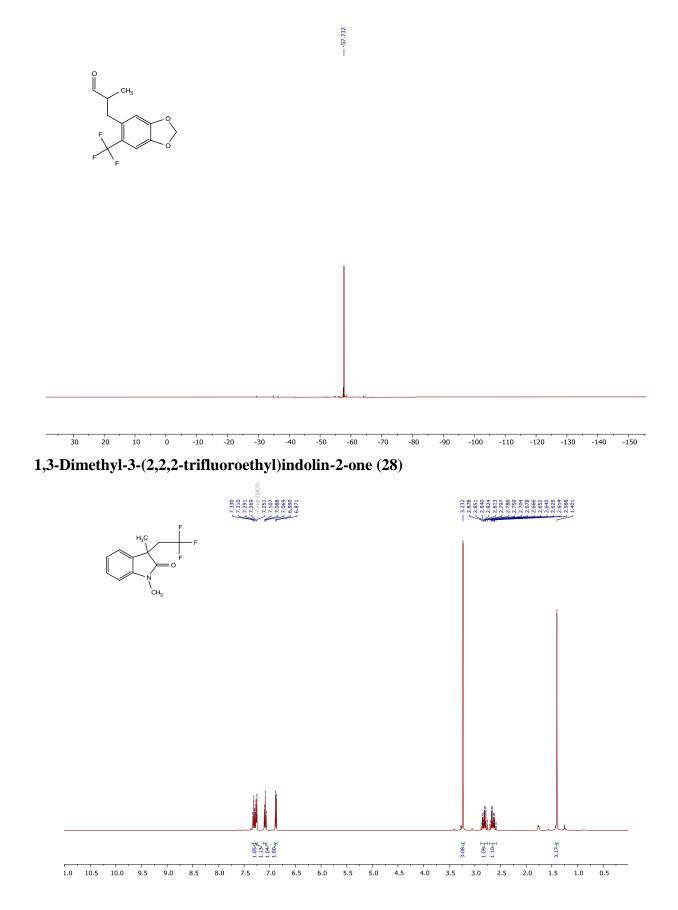

-18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -50 -62 -64 -66 -68 -70 -72 -76 -78 -80

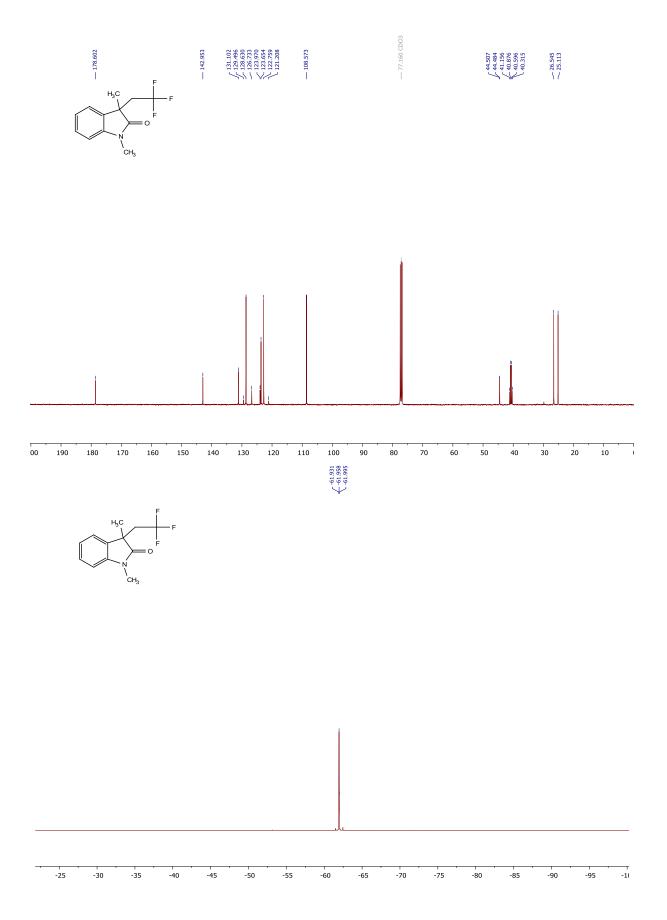

4-Methoxy-N,N-dimethyl-2-(trifluoromethyl)aniline (25)



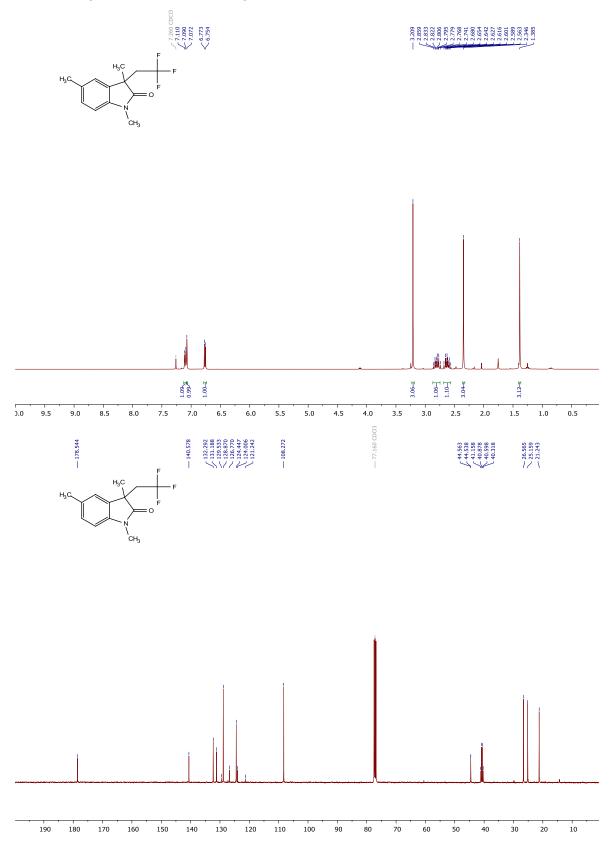
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

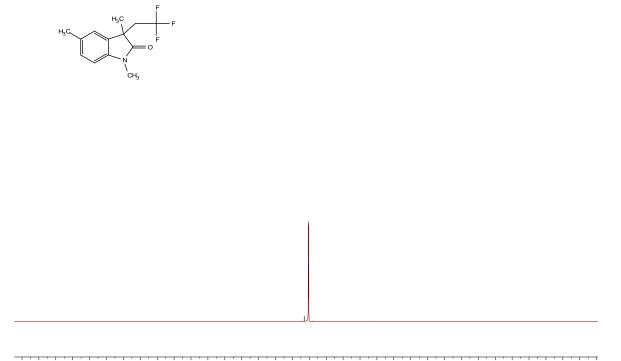




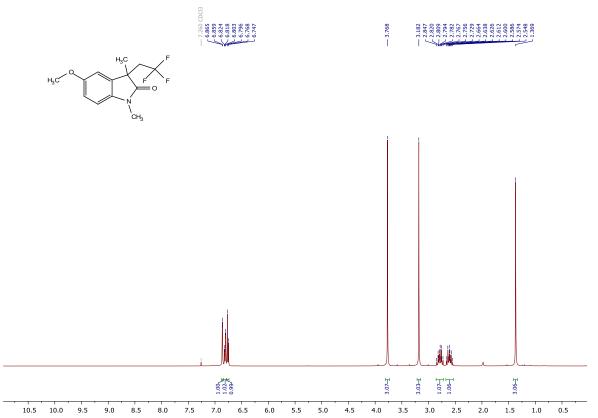


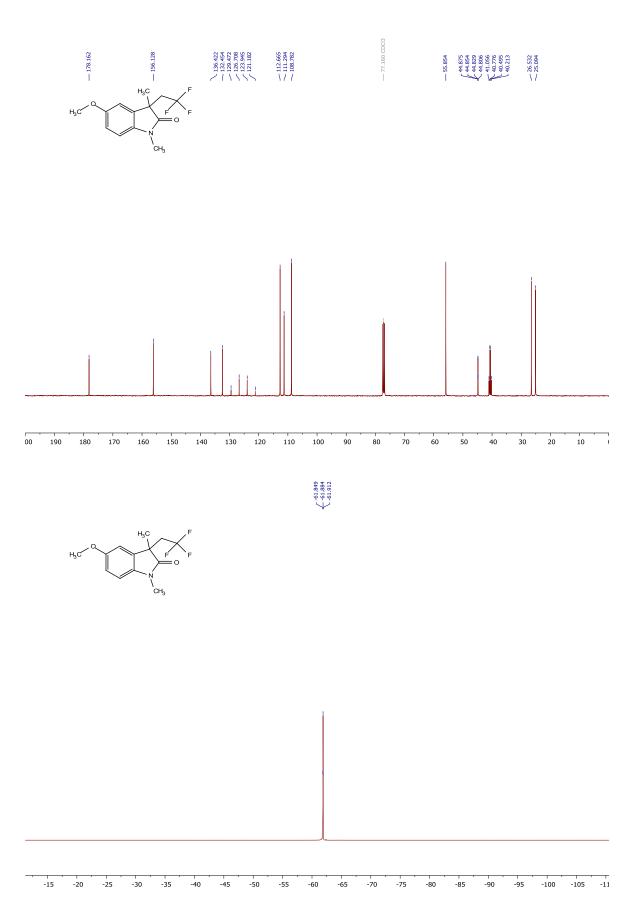
100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20C

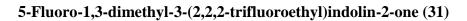


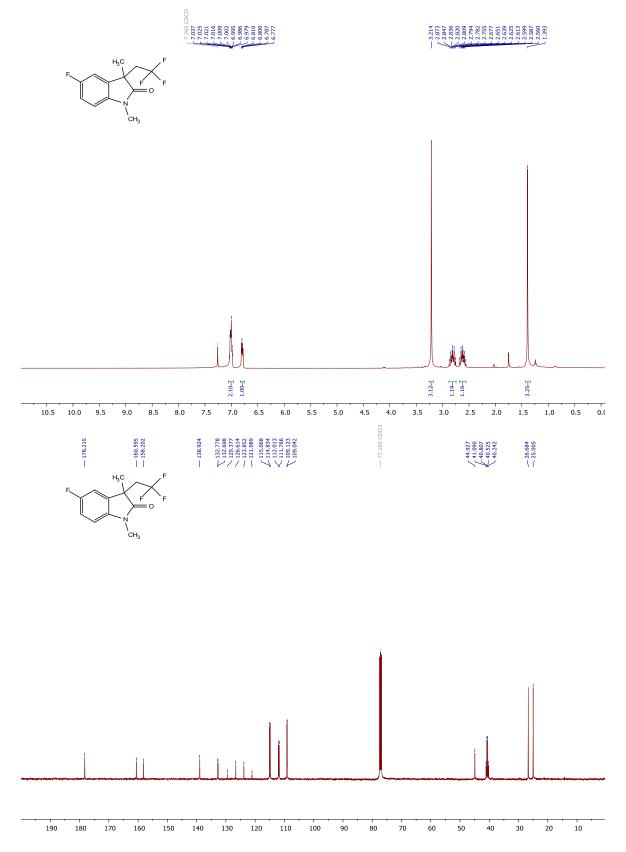


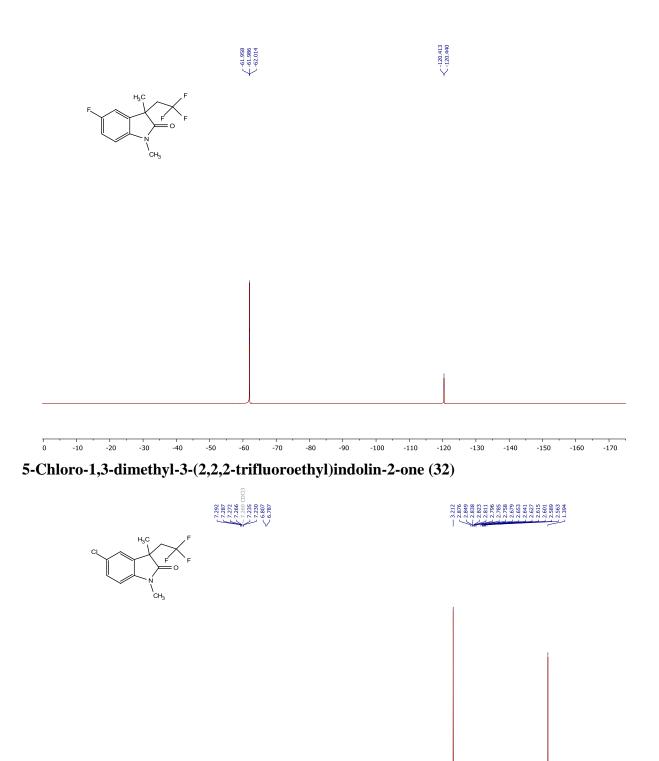
1,3,5-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (29)

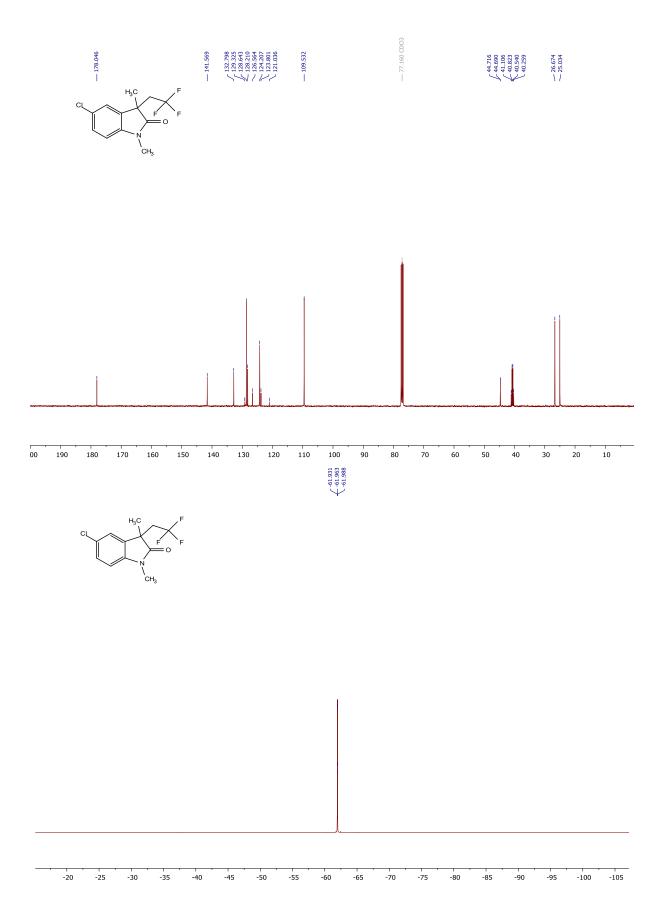


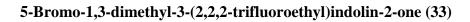


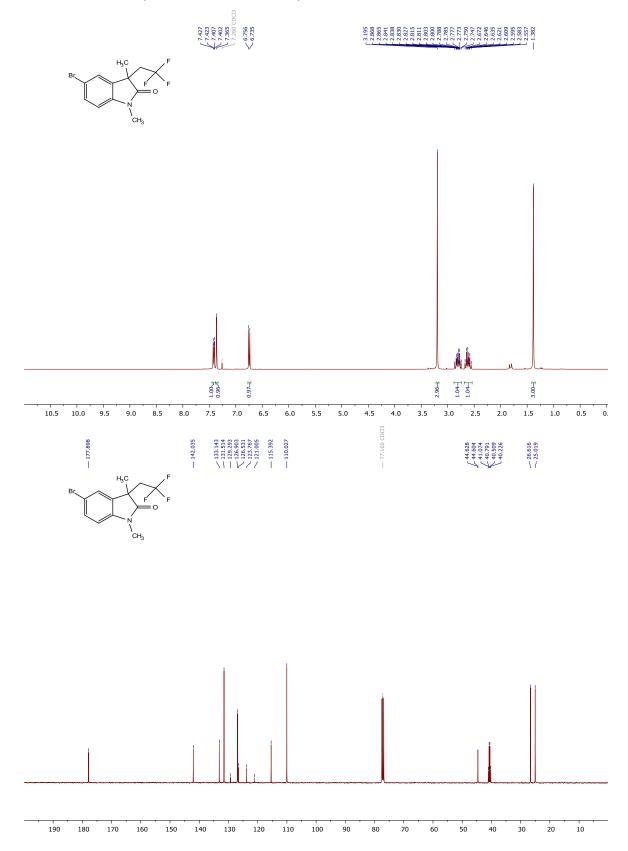

 $\underbrace{\leftarrow}^{-61.876}_{-61.903}_{-61.933}$

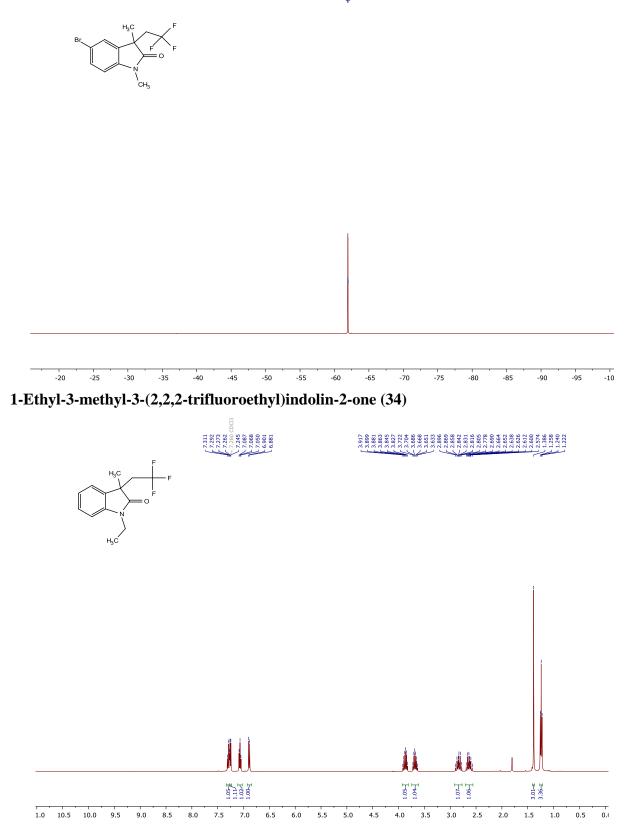

-28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -9


5-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (30)

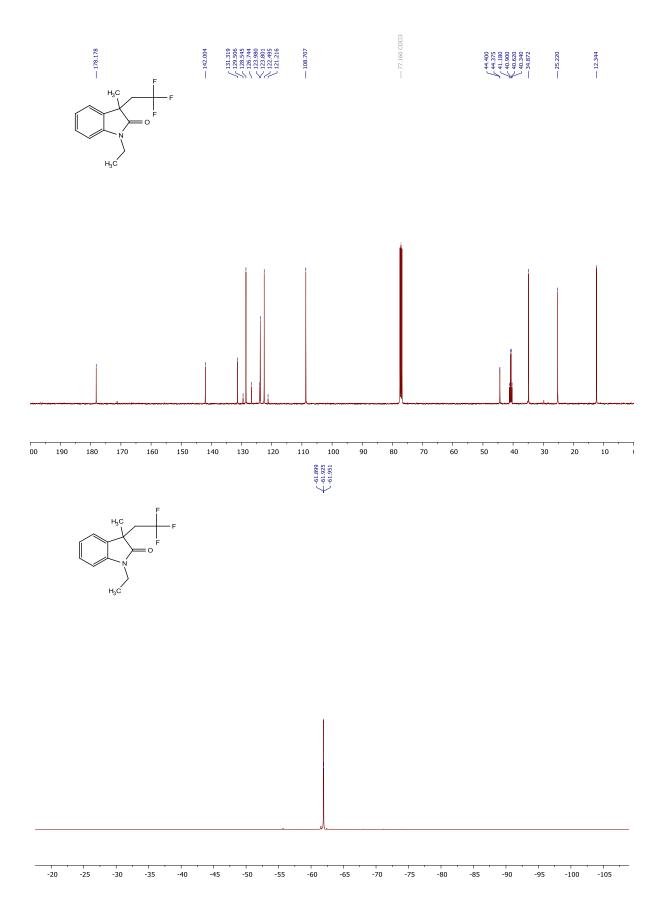




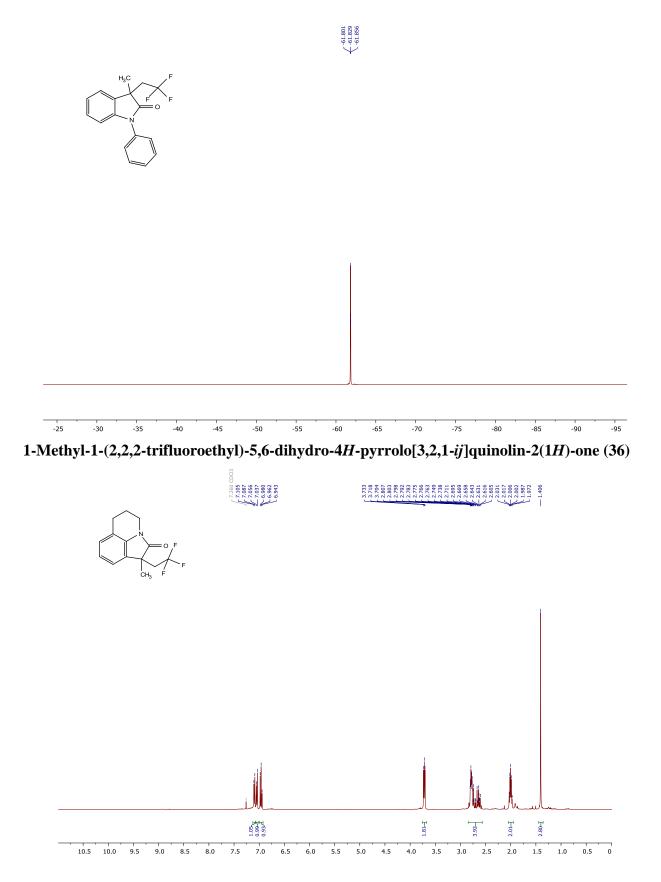


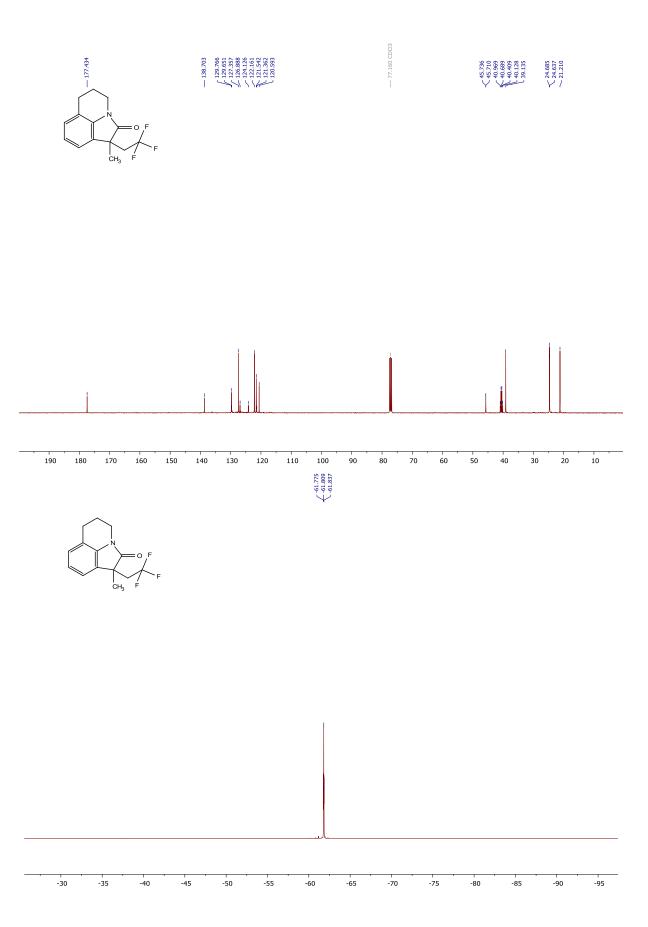


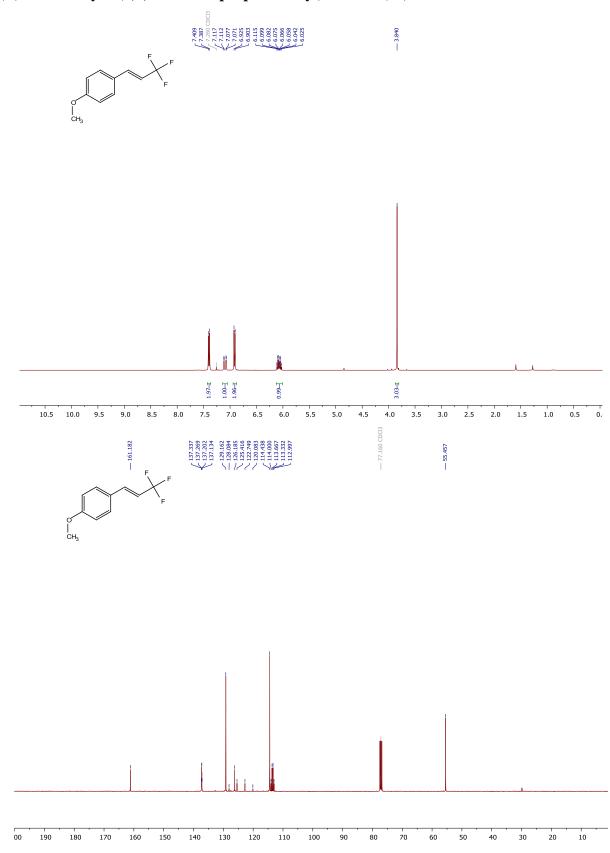
1.00 ¥ 1.03-≖ 3.17-≖ 1-10-L 3.16-≆ 2.5 1.5 10.5 10.0 9.5 7.5 7.0 6.5 6.0 4.0 3.5 3.0 2.0 1.0 0.5 9.0 8.5 8.0 5.5 5.0 4.5

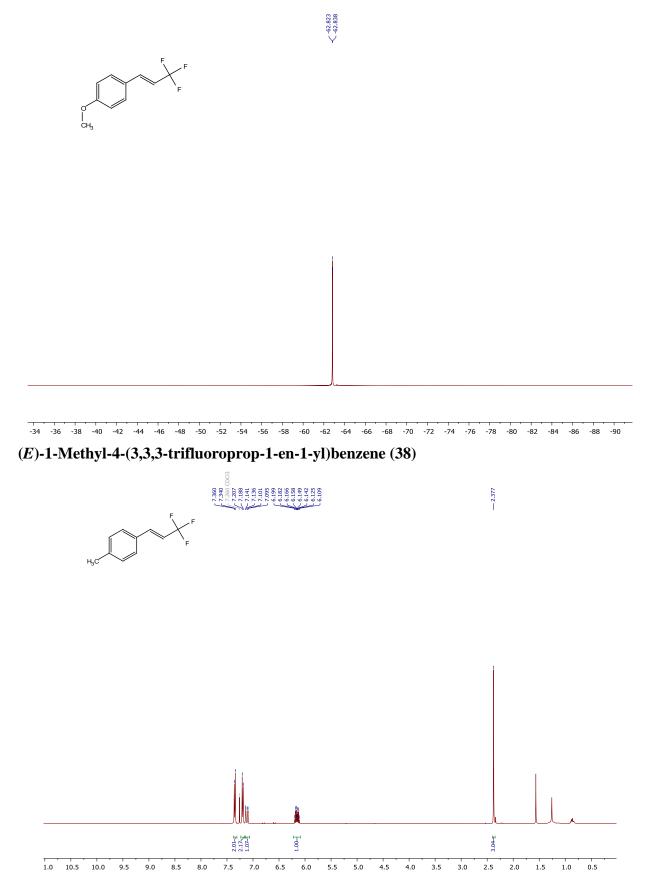


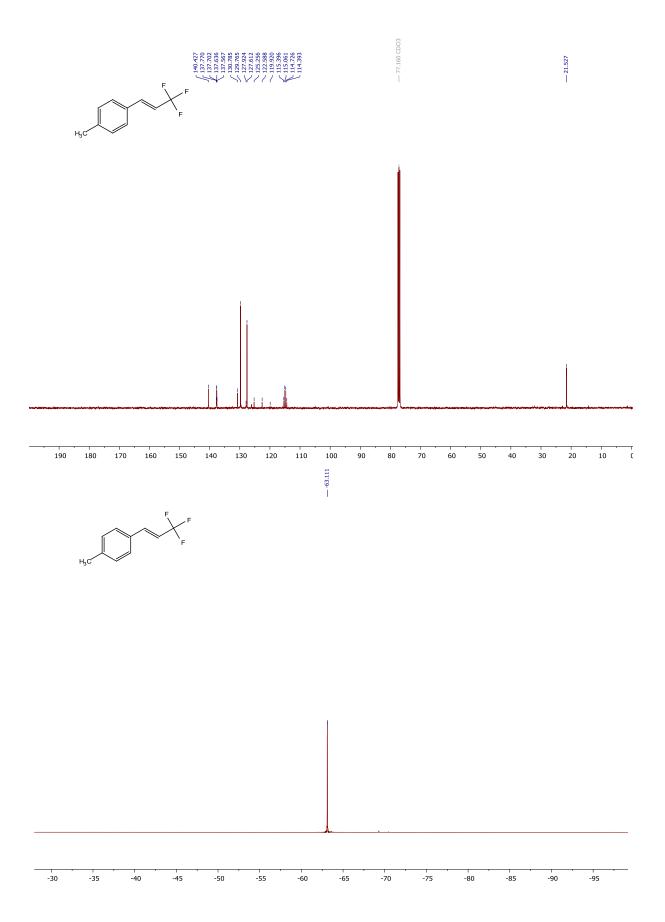


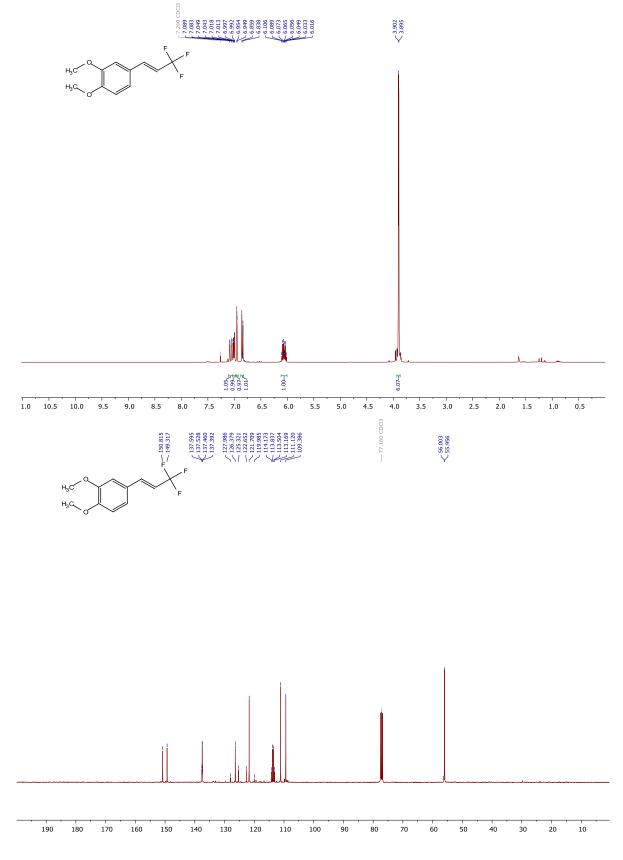



 $\underbrace{\leftarrow}^{-61.921}_{-61.949}_{-61.976}$

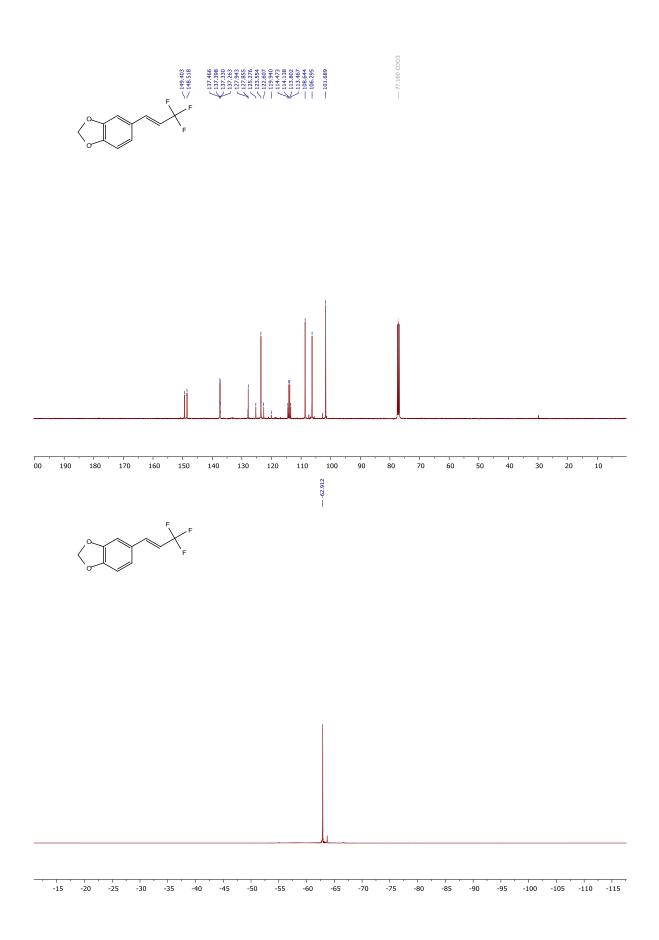


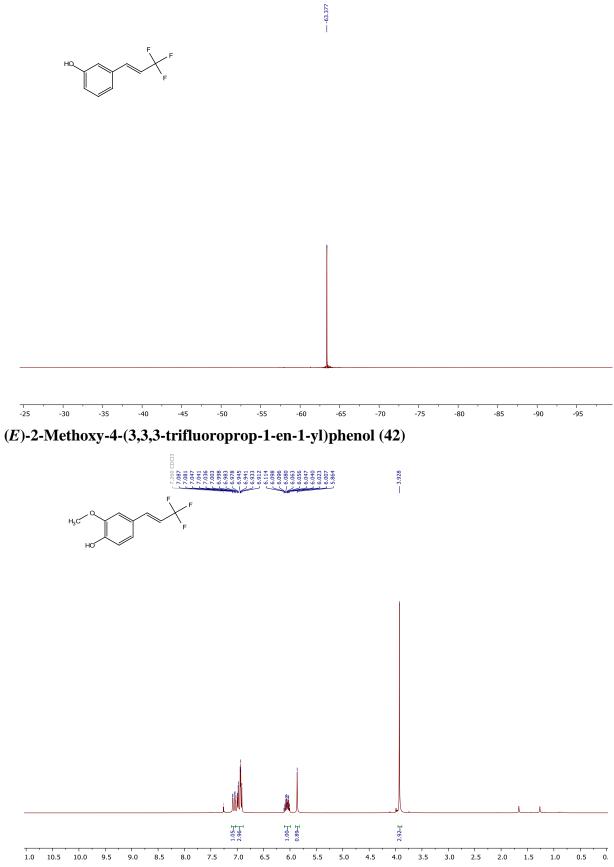


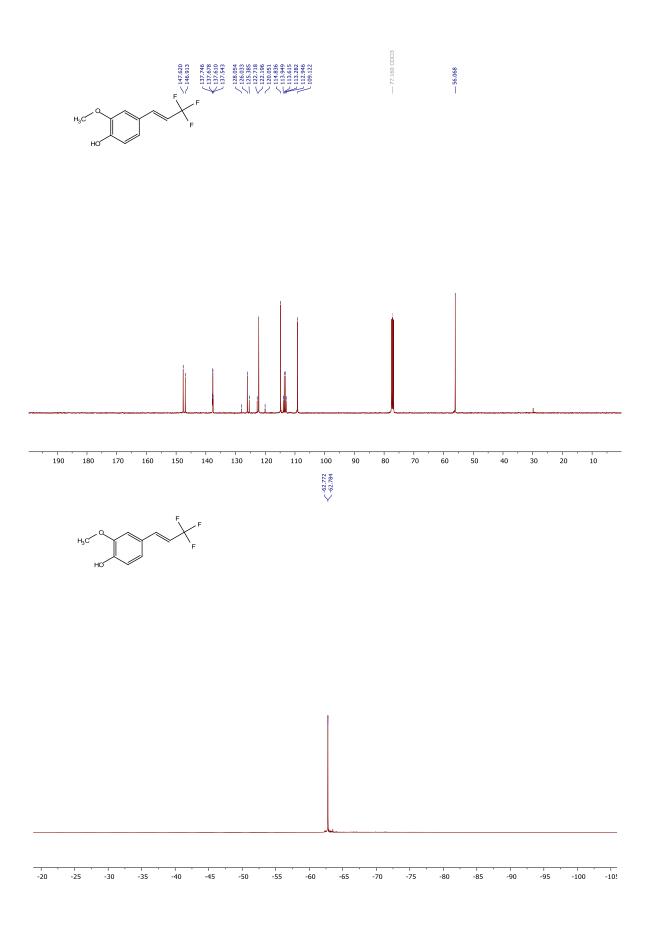




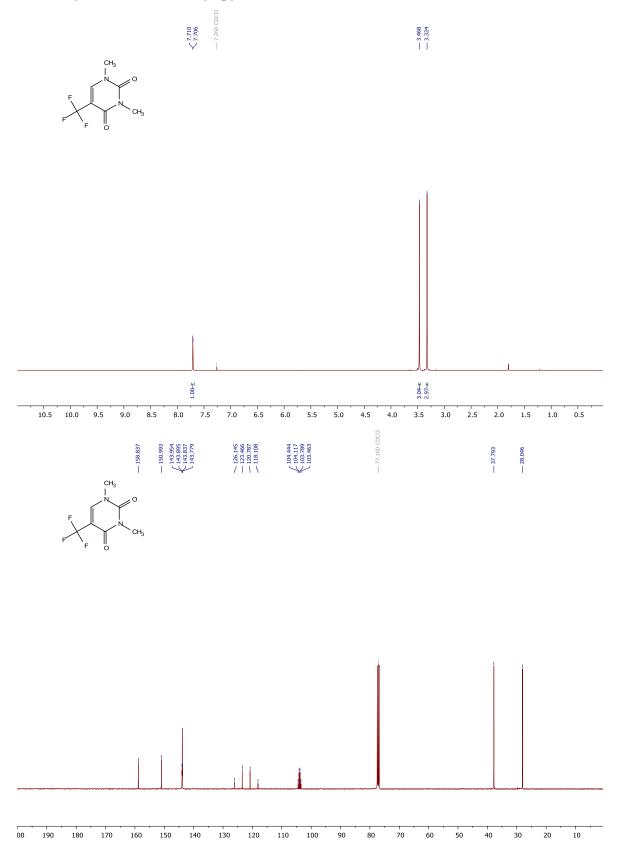


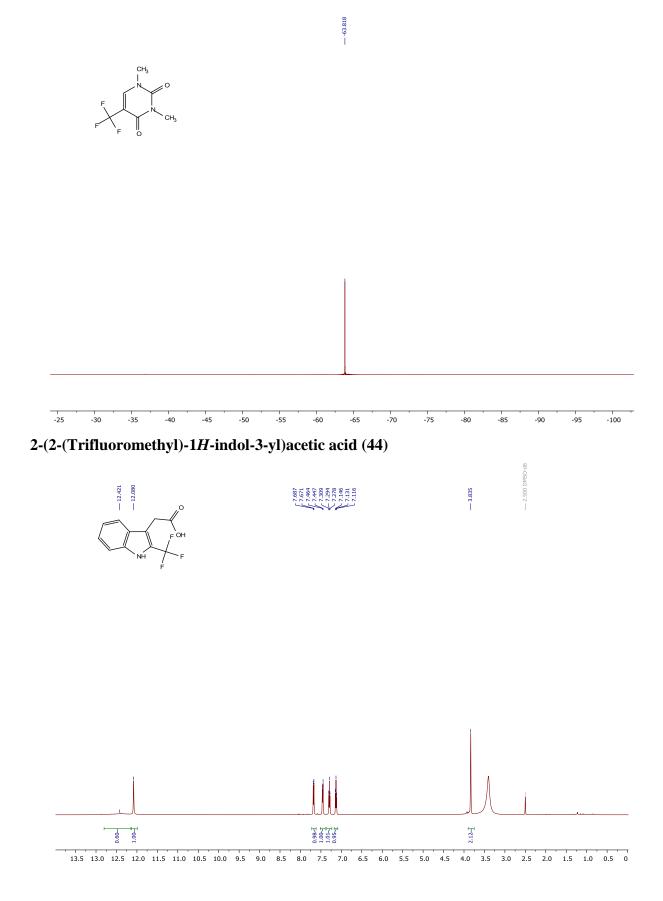

S81

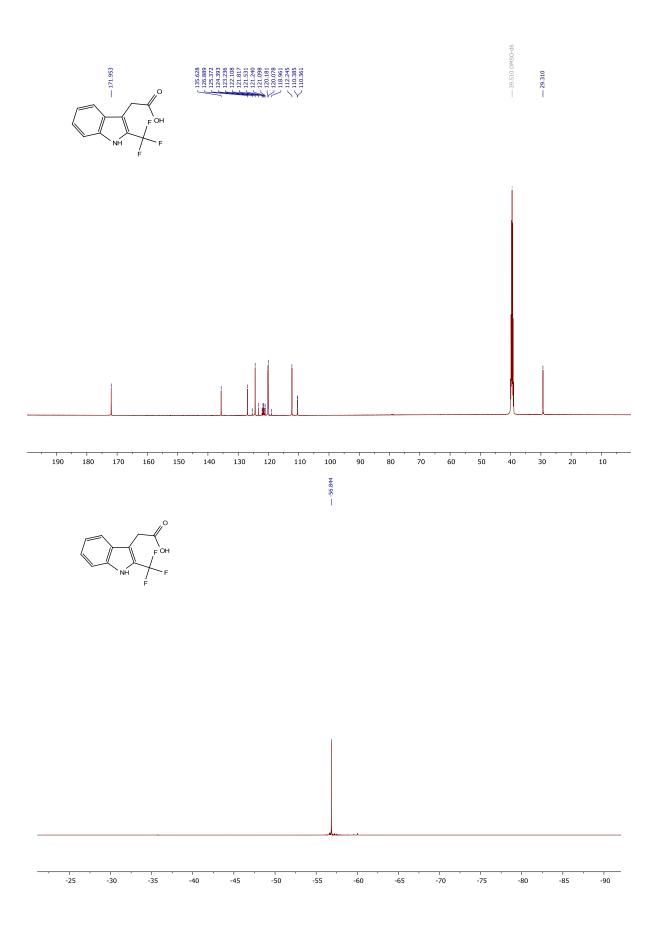

(E)-1,2-Dimethoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (39)

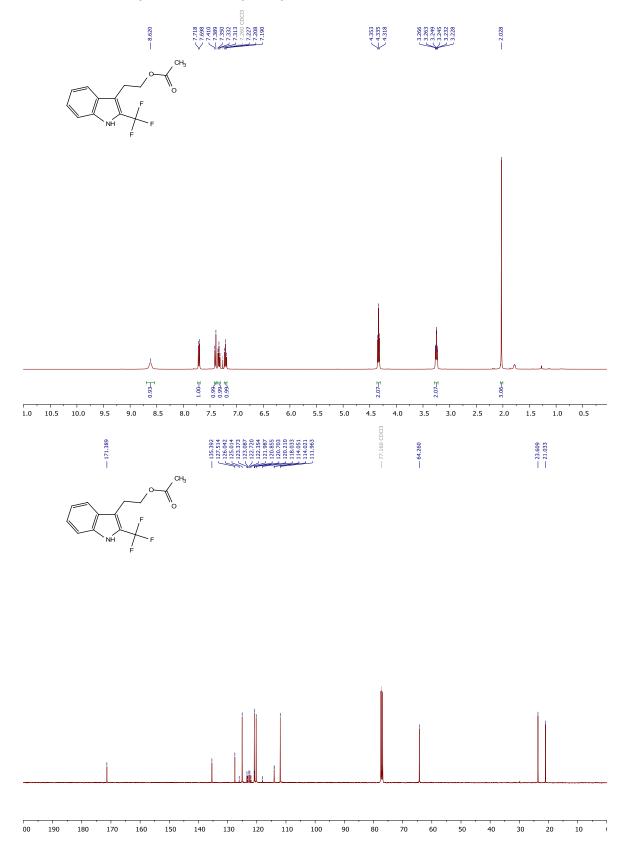


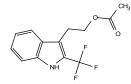
(*E*)-3-(3,3,3-Trifluoroprop-1-en-1-yl)phenol (41)

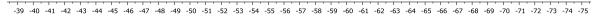


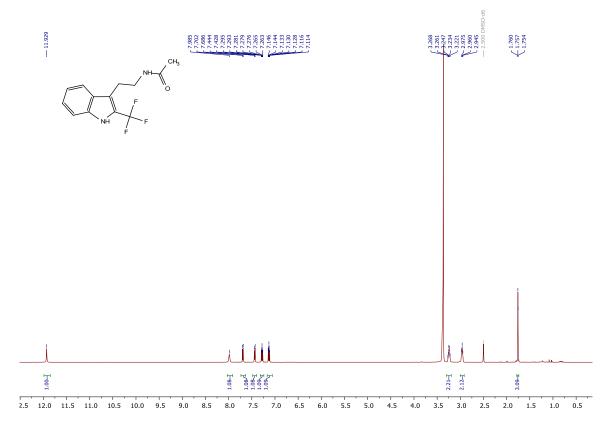


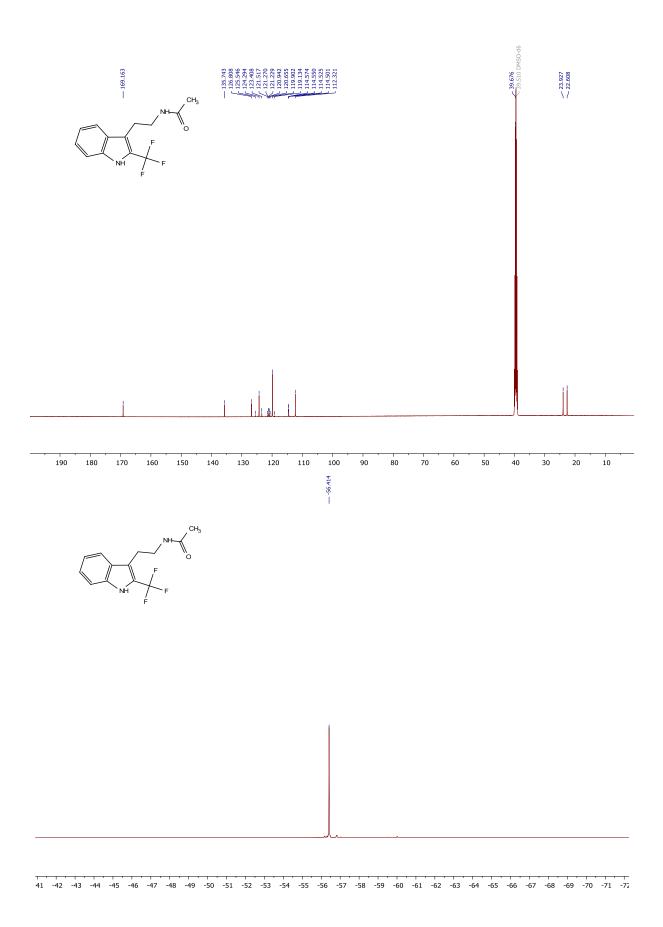

S87

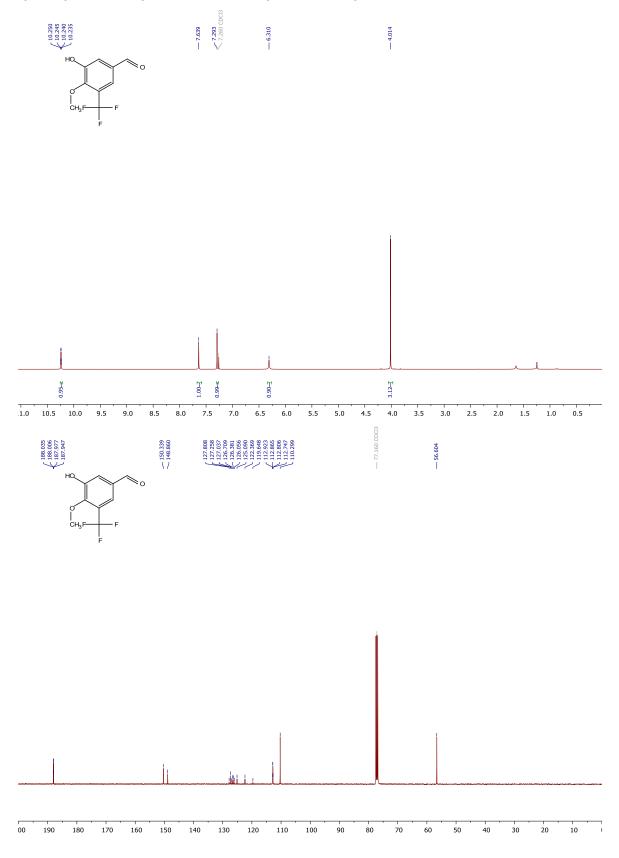

1,3-Dimethyl-5-(trifluoromethyl)pyrimidine-2,4(1*H*,3*H*)-dione (43)

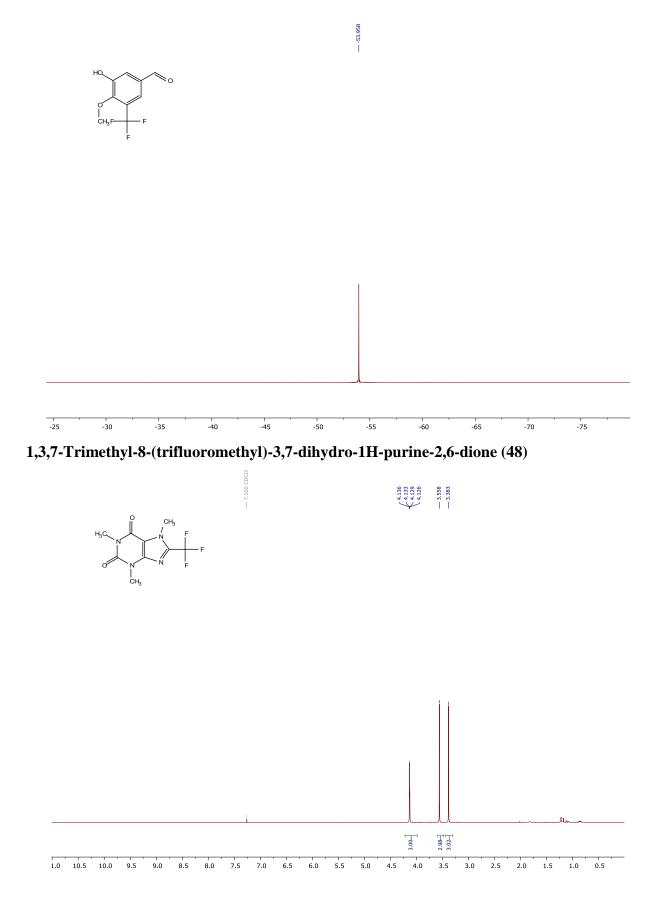


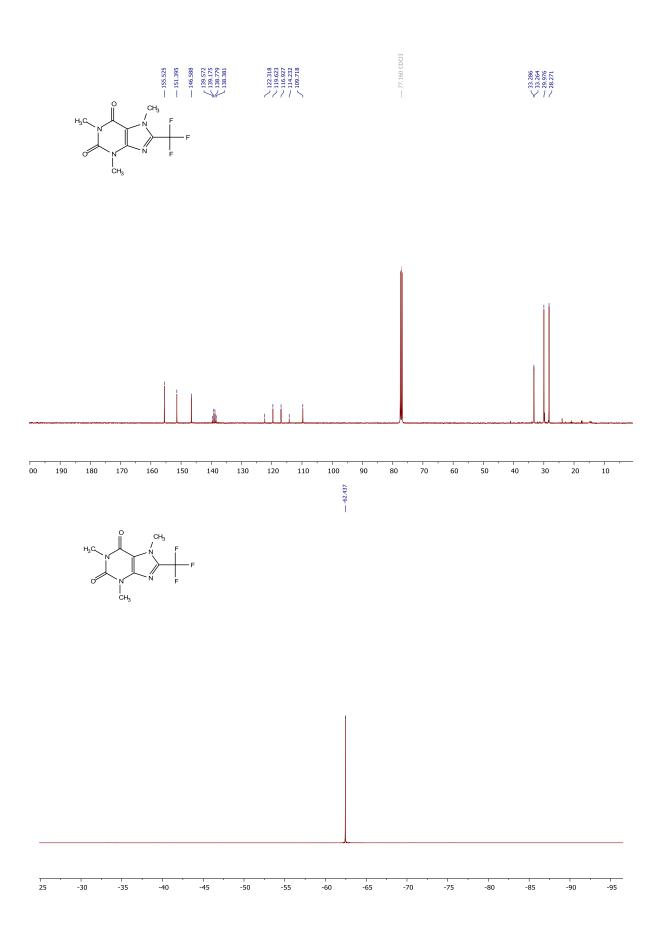



2-(2-(Trifluoromethyl)-1H-indol-3-yl)ethyl acetate (45)

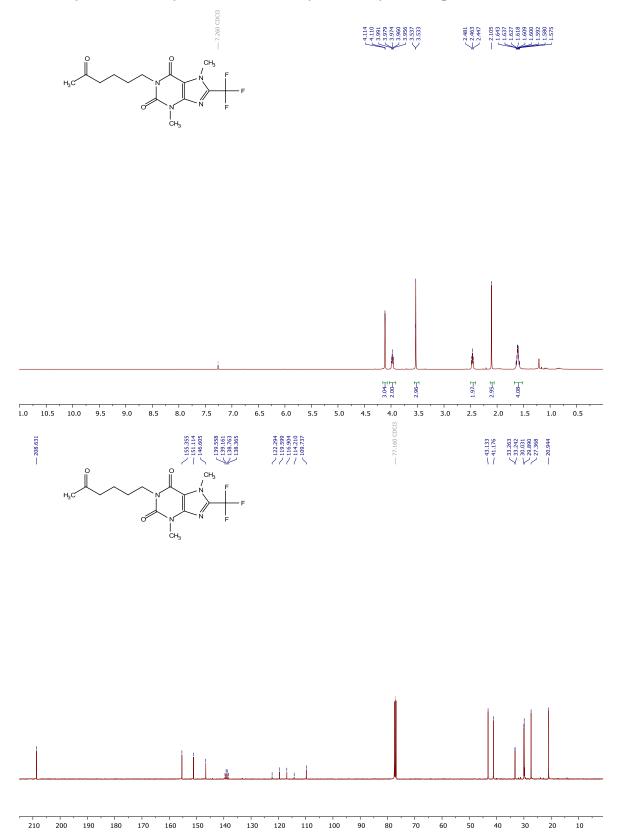


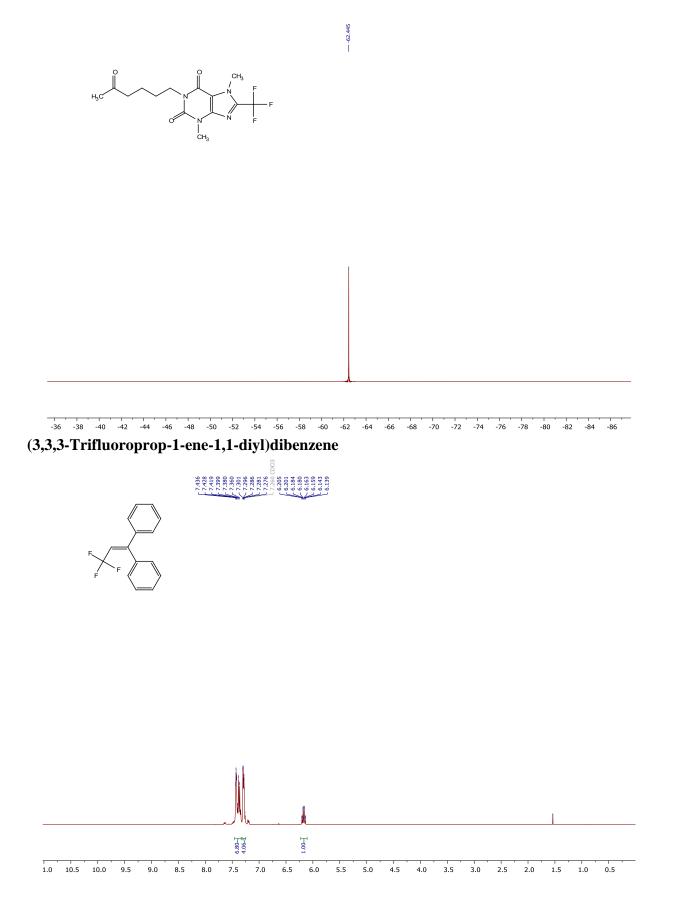


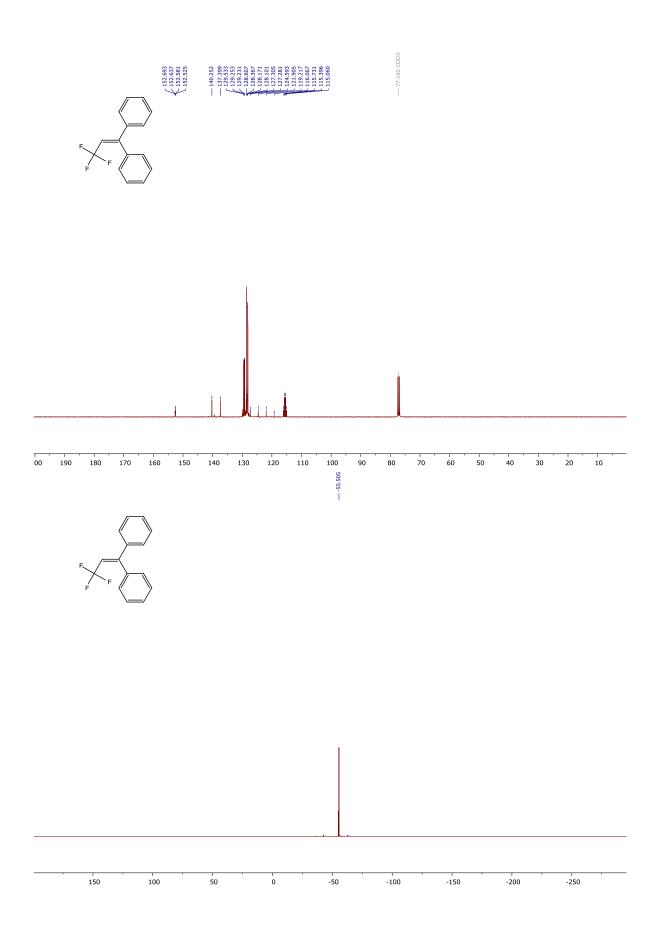

N-(2-(2-(Trifluoromethyl)-1H-indol-3-yl)ethyl)acetamide (46)



3-Hydroxy-4-methoxy-5-(trifluoromethyl)benzaldehyde (47)







3,7-Dimethyl-1-(5-oxohexyl)-8-(trifluoromethyl)-3,7-dihydro-1*H*-purine-2,6-dione (49)

