Operando NMR Spectroscopic Analysis of the Effects of Pt Nanoparticle Size and Crystal Facet Structure on the Alcohol Reforming Reactions

Bei-Bei Xu, Xiao-Meng You, Jing-Xian Dong, Xue-Lu Wang* and Ye-Feng Yao*

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China

*Corresponding author E-mail: xlwang@phy.ecnu.edu.cn; yfyao@phy.ecnu.edu.cn

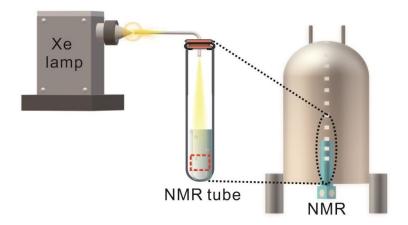
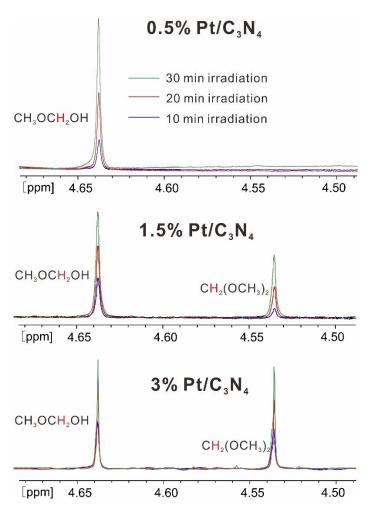
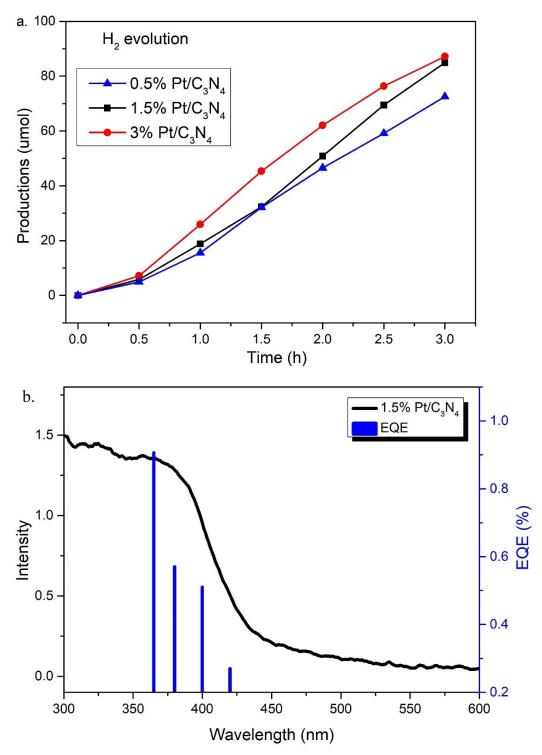
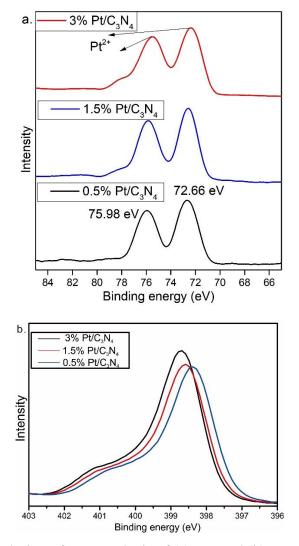
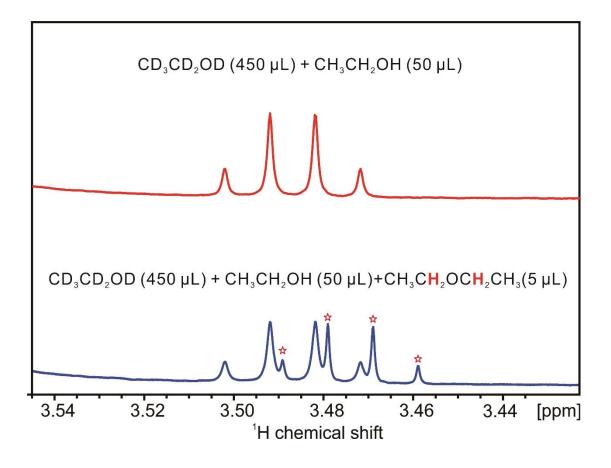
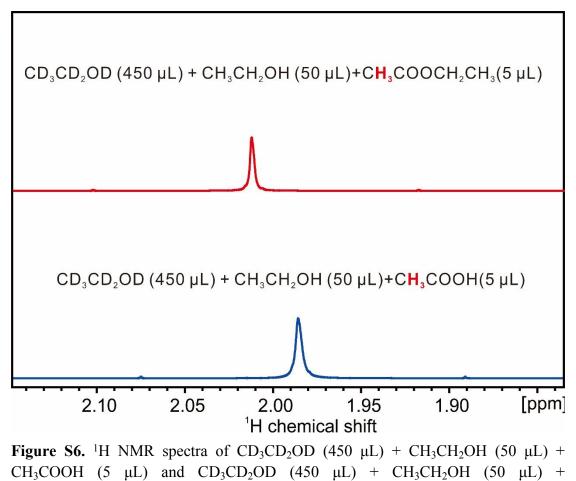




Figure S1. Schematic layout of set-up for operando NMR studies.

Figure S2. ¹H NMR spectra of methanol reforming products obtained for the Pt/C_3N_4 photocatalyst samples after 10 min, 20 min and 30 min of visible light irradiation (>400 nm, 300 W Xe lamp).

Figure S3. a. Photocatalytic H_2 evolution over Pt/C_3N_4 catalysts (20 mg) and CH_3OH (50 mL) under visible light irradiation observed by GC chromatography. b. The wavelength-dependent external quantum efficiency (EQE) of 1.5% Pt/C_3N_4 at 365 nm, 380 nm, 400 nm and 420 nm.

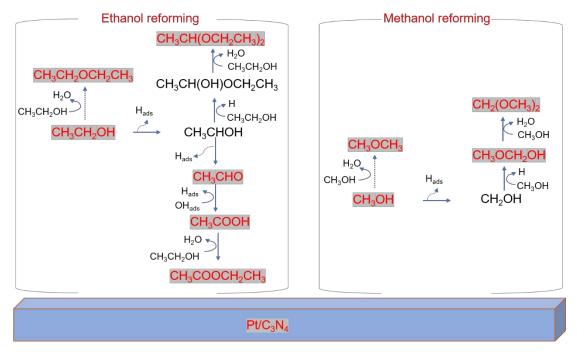

Figure S4. High resolution of XPS analysis of (a) Pt_{4f} and (b) N_{1s} of 0.5% Pt/C_3N_4 , 1.5% Pt/C_3N_4 , and 3% Pt/C_3N_4 samples.

Figure S5. ¹H NMR spectra of CD₃CD₂OD (450 μ L) + CH₃CH₂OH (50 μ L) + CH₃CH₂OCH₂CH₃ (5 μ L) and CD₃CD₂OD (450 μ L) + CH₃CH₂OH (50 μ L). The quadruple peak (1:2:2:1) in the red spectrum represents CH₂ of CH₃CH₂OH, and the new quadruple peak (1:2:2:1) in the blue spectrum is the CH₂ signal of additional CH₃CH₂OCH₂CH₃.

CH₃COOCH₂CH₃ (5 µL).

Figure S7. Methanol and ethanol reforming reaction pathways on Pt/C_3N_4 catalysts, proposed on the basis of literature data and our previous reports¹⁻².

1. Kim, I.; Han, O. H.; Chae, S. A.; Paik, Y.; Kwon, S.-H.; Lee, K.-S.; Sung, Y.-E.; Kim, H., Catalytic Reactions in Direct Ethanol Fuel Cells. *Angew. Chem. Int. Ed.* **2011**, *50*, 2270-2274.

2. Xu, B.-B.; Zhou, M.; Zhang, R.; Ye, M.; Yang, L.-Y.; Huang, R.; Wang, H. F.; Wang, X. L.; Yao, Y.-F., Solvent Water Controls Photocatalytic Methanol Reforming. *J. Phys. Chem. Lett.* **2020**, *11*, 3738-3744.