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General

All starting materials are commercially available and were used as supplied unless otherwise indicated. All experiments 

were conducted in air unless otherwise noted. 2-Bromoanthracene-9,10-dione, 1,4-dibromo-2,3-dihydronaphthalene-

2,3-diamine, 2-chlorobenzoic acid, 3,6-dibromophenanthrene-9,10-dione, and other chemicals and reagents for the 

synthesis were purchased from Sigma-Aldrich and Tee Hai Chem Ltd. and used as received without any further 

purification. Compounds 1-4 and related intermediates were synthesized and characterized according to the methods 

described in the supporting information.

NMR spectra were recorded on a Bruker ARX 400 NMR spectrometer. Chemical shifts were recorded in parts per million 

referenced according to residual solvent (CDCl3 = 7.26 ppm) in 1H NMR and (CDCl3 = 77.0 ppm) in 13C NMR. Mass spectra 

were reported on the AmaZon X LC-MS for ESI. Data were measured using omega and phi scans of 0.5° per frame. UV-vis 

absorption spectra were obtained on a Shimadzu Model UV-1700 spectrometer. Photoluminescence (PL) spectra were 

measured on a Perkin-Elmer LS 55 spectrofluorometer. All UV and PL spectra were collected at 24 ± 1 °C.

Hyperparameter Optimization with Gaussian Process 

Hyperparameters are external configurations of a model that are used in the training process to estimate the model 

parameters and it is necessary to tune the hyperparameters finely to obtain an accurate prediction model. 

Hyperparameters for both initial DA and DAD models were optimized with a Bayesian optimization-based gaussian 

search process. The optimization process was done with scikit-optimize (https://scikit-

optimize.github.io/#skopt.gp_minimize) to minimize MAE till 50 trials have been done. In each cycle, a fixed training 

(80%) and test set (20%) were used for DA and DAD models. The following hyperparameters were tuned:

- Graph convolutional layers: A list of graph convolutional layers with each value representing the number of nodes 

in each layer.

- Dense layers: A list of dense fully connected layers with each value representing the number of nodes in each 

layer. 

- Dropout: Probability (between 0 and 1) that neurons in the hidden layers are ignored; dropout is added to 

prevent overfitting. 

- Learning rate: The multiplier for gradient descent and determines how fast the parameter changes. 

- Epochs: Number of complete passes through the training dataset by the model 

- Batch size: Number of training samples used in each epoch. 

It is noted that it is impossible to determine the best hyperparameters for a specific problem. Thus, the table below shows 

the final hyperparameters that are used in all models in the initial model training and across all active learning cycles, in 

which they are considered to produce accurate enough model predictions. 

Table S1. Hyperparameters for both DA and DAD models

DA Model DAD Model

Structures in the training 

set

DA DA and DAD

Graph convolutional layers 295, 295, 295, 295, 295, 295 512, 512, 512, 512

Dense layers 382, 382, 382, 382 128, 128, 128

Dropout 0.00874 0.01

Learning rate 0.0001 0.001

https://scikit-optimize.github.io/#skopt.gp_minimize
https://scikit-optimize.github.io/#skopt.gp_minimize
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Batch size 10 10

Modified Equation for Expected Improvement used in Bayesian Optimization

The expected improvement (EI) equation was adapted to optimize a minimized value of , and the following Δ𝐸𝑆𝑇

equation is used in our BO algorithm for each active learning cycle. 

𝐸𝐼(Δ𝐸𝑆𝑇) =  {   (Δ𝐸𝑆𝑇
― ― 𝜇(Δ𝐸𝑆𝑇) ― 𝜉)Φ(Z) + 𝜎(Δ𝐸𝑆𝑇)𝜙(𝑍)  𝑖𝑓 𝜎(Δ𝐸𝑆𝑇) > 0

   0  𝑖𝑓 𝜎(Δ𝐸𝑆𝑇) = 0  ,  (𝐄𝐪. 𝐒𝟏)

where

𝑍 =  {   
 Δ𝐸𝑆𝑇

― ― 𝜇(Δ𝐸𝑆𝑇) ―  𝜉
 𝜎(Δ𝐸𝑆𝑇)   𝑖𝑓 𝜎(Δ𝐸𝑆𝑇) > 0

   0  𝑖𝑓 𝜎(Δ𝐸𝑆𝑇) = 0 

Here,  represents the smallest  observed in the labeled dataset so far,  and  represent Δ𝐸𝑆𝑇
― Δ𝐸𝑆𝑇 𝜇(Δ𝐸𝑆𝑇) 𝜎(Δ𝐸𝑆𝑇)

the mean and standard deviation of each predicted  value in the screened dataset by the current surrogate Δ𝐸𝑆𝑇

navigation models,  and  represent the cumulative distribution function and the probability density function, Φ 𝜙

respectively, and a trade-off value of  is used. In our case, each prediction's mean and standard deviation is 𝜉 = 0.01

derived from navigation models with different dropouts. As seen from the EI score calculation, there are two 

counteracting terms in the equation, each focusing on exploitation or exploration of the molecular search space. The first 

term, , is the exploitation term and it contributes a high value when the molecule is predicted (Δ𝐸𝑆𝑇
― ― 𝜇(Δ𝐸𝑆𝑇) ― 𝜉)Φ(Z)

to have a small . The second term, , is the exploration term and it contributes a high value when the Δ𝐸𝑆𝑇 𝜎(Δ𝐸𝑆𝑇)𝜙(𝑍)

molecule is predicted with high uncertainty by the surrogate models.

Detailed Active Learning Data Progression Breakdown

The specific breakdown in labeled data used for model training in each cycle is summarized below.

Table S2. Breakdown of the number of labeled structures used for model training in each active learning cycle before 

a screening of the unlabeled space

DA Model DAD Model

DA DA DAD
Cycle 

(N)
Training Suggestions 

added for 

Cycle N+1

Screening 

Space

Training Training Suggestions 

added for 

Cycle N+1

Screening 

Space

0 

(Initial)
7101 - - 4914 - -

1 7101 119 123239 4914 119 200000

2 7220 112 123120 5033 120 200000

3 * 7332 120 25102 5153 120 17730

4 7452 119 24982 5273 120 17610

5 * 7571 120 24862 5393 120 18621

6 7691 120 24742

7691

5513 120 18501
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7 7811 120 24622 5633 120 18381

8 7931 120 24502 5753 120 18261

9 # 8051 - 24382 5873 120 18141

10 5993 120 18021

11 # 6113 - 17901

Total 8051 950 6113 1199

* It is noted that initially, the search space is formed by the combinations of 96 donors, 98 acceptors, and 14 bridges 

(including single bond). From cycle 3 onwards, 13 new donors, 5 new acceptors, and 9 new bridges were added to the 

substructure list, and from cycle 5 onwards, 3 new acceptors were added for DAD. 

# In these cycles, the DA model is trained on 8051 PSs and the DAD model is trained on 13804 PSs before these final 

models are used for the predictions on the remaining unlabeled dataset for final recommendations. 

To evaluate the model performances, the model in every cycle was validated on a fixed test set of 806 DA and 612 DAD 

structures, respectively. The fixed test set includes random structures from initial and all active learning cycles. A mean 

MAE was obtained by running 5 repetitions of model training on the same training set for each cycle. 

Prediction of HOMO-LUMO (H-L) Energy Gap 

To evaluate the absorption onset of PS candidates, prediction models for both DA and DAD form PSs are trained to predict 

the H-L gaps as well. Note that, instead of the S1 level, the H-L gap is being used because DFT-B3LYP is less sensitive to 

issues with charge transfer than TD-B3LYP. Figure S1 shows the initial prediction performance for H-L gap. Similar to the 

prediction of ΔEST (Figure 2b-c), the predicted values of H-L gap are very close to the quantum calculated values. The H-L 

gap prediction performance for the DA model is also better than that of the DAD model, due to significantly larger design 

space for DAD and larger molecules for DAD compared to DA PSs. 

Figure S1. Prediction of H-L gap by initial models (a) MAE and distribution of H-L gap predictions on a fixed test set 

by an initial model against calculation by DFT for DA form PSs and (b) DAD form PSs.

t-Distributed Stochastic Neighbor Embedding from Neural Fingerprints
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t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised machine learning algorithm. It is often used for 

clustering and visualization of high-dimensional data such as the molecular fingerprints in this study. The algorithm starts 

by calculating the conditional probability of similarity between high-dimensional data points (i.e., the high-dimensional 

molecular fingerprints) and also between their low-dimensional counterparts (i.e., two-dimensional vectors that can be 

visualized) by the Euclidean distances of data points. A cost function, which is defined as a single Kullback-Leibler (KL) 

divergence between joint probability distributions in the high-dimensional space and the low-dimensional space is then 

minimized. By minimizing the cost function, t-SNE can ensure the points that are similar in high-dimensional space are 

close to each other in the low-dimensional space. KL divergence measures the distance between two random distributions. 

When two random distributions are the same, their KL divergence is equal to zero. When the difference between two 

random distributions increases, their KL divergence also increases.

To visualize the molecular space of the DA and DAD datasets through active learning progression, the neural fingerprint 

of every structure was predicted by the final DA model from the last round of active learning. The predicted neural 

fingerprints were fitted in a t-SNE model with 2 components, perplexity of 50, a learning rate of 200 and optimized for 

1000 iterations to reduce KL divergence. The final 2-dimensional embedded features were plotted for structures in the 

unlabeled space, initial training set, predictions by each active learning cycle, and the final recommended 4 structures. In 

this work, neural fingerprints were predicted with help of the DeepChem package 

(https://github.com/deepchem/deepchem), and t-SNE model was done with sklearn (https://scikit-

learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) 

https://github.com/deepchem/deepchem
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Figure S2. t-SNE for DAD Sample Space and with Active Learning Progression

For the visualizations of DA space (in Figure 3e), the final DA model from the last active learning cycle was used to predict 

the neural fingerprints of the full unlabeled DA molecular space, initial 7101 random DA structures used for initial model 

training, and structures added in every active learning cycle from cycle 1 to cycle 8. For the visualizations of DAD space 

(in Figure S2), the final DAD model from the last active learning cycle was used to predict the neural fingerprints of a 

random subset of the initial unlabeled space (> 110000 DAD), initial 4914 random DAD structures used for initial model 

training, and structures added in every active learning cycle from cycle 1 to cycle 10. From the visualizations of DAD space, 

a similar conclusion of the effectiveness of the active learning strategies can be derived. For the visualizations of the 

combined DA and DAD space along with the 4 recommended structures (in Figure 4i), the final DA model from the last 

active learning cycle was used to predict the neural fingerprints of the initial 7101 DA and 4914 DAD structures, and the 

final 4 selected DA and DAD structures. 
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Comparing Molecular Fingerprint Methods

Figure S3. Comparison of average model performances (MAE) between graph-based deep learning method and traditional 

molecular fingerprints methods. For all methods, the respective model is trained on the initial training set and evaluated on the 

fixed test set and an average of 5 performances was obtained. As shown, for both DA and DAD form PSs, the graph-based deep 

learning method has shown better performance than traditional molecular fingerprint methods. This result is aligned with 

signature references as graphs are the most suitable representations of molecules and self-learned features are usually more 

efficient. 

Daylight 

Daylight fingerprint captures the patterns of molecular features such as atoms, the nearest neighbours of atoms, and so 

on. Then the information will be hashed into bit strings and all bit strings will be linearly combined to form a final 

binary fingerprint.1

Atom Pair

The atom pair fingerprint is defined in terms of the atomic environments of, and shortest path separations between, all 

pairs of atoms in the topological representation of a chemical structure.2

Topological Torsion 

Topological torsion consists of four consecutively bonded non-hydrogen atoms along with the number of non-hydrogen 

branches. It is essentially a topological analog of the basic conformational element, the torsion angle.3

Morgan

Morgan fingerprints are one kind of topological fingerprint for molecular characterization.4-6 It contains substructure 

information according to the different radius of a molecule and can represent novel structural classes. 
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Figure S4. The absorption peak areas of 1-4 (a-d).
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Figure S5. The absorption peak areas of Ce6, MB, and RB (a-c).
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Figure S6. Photo-degradation of ABDA with 1-4 (a-d) in DMSO/water (v/v = 1/99) in five minutes upon white light irradiation 

in five minutes, concentration of PSs: 5×10−6 M, power density of light: 50 mW/cm2.
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Figure S7. Photo-degradation of ABDA with Ce6, MB, and RB (a-c) in DMSO/water (v/v = 1/99) upon white light irradiation in 

five minutes, concentration of PSs: 5×10−6 M, power density of light: 50 mW/cm2.
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Synthesis of 1-4.
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Scheme S1. The synthetic route towards compounds 1-4.

O

O

N

S

Synthesis of I1. A 100 mL round-bottom flask equipped with a magnetic stir bar was charged with 2-bromoanthracene-9,10-

dione (375 mg, 1.29 mmol), phenothiazine (283 mg, 1.42 mmol), cesium carbonate (535 mg, 3.87 mmol) and toluene (15 mL). 

The solution was stirred at room temperature. After 10 min, a solution of palladium(II) acetate (8.67 mg, 0.04 mmol) and tri-

tert-butyl phosphine (29 mg, 0.14 mmol) in toluene (5 mL) was added dropwise over 5 min. The reaction mixture was stirred 

and heated to 120 °C under reflux for 24 h. After cooling to room temperature, the resulting mixture was treated with water (40 

mL) and extracted with chloroform (20 mL × 3). The organic phase was separated, washed twice with brine, dried over 

anhydrous MgSO4. Then the solution was concentrated under reduced pressure, and the residue was purified by column 

chromatography on silica gel (hexane/chloroform = 10/1) to afford I1 (355 mg, 70% yield) as a light-yellow solid. 1H NMR (400 
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MHz, CDCl3) δ 8.29 (d, J = 7.5 Hz, 1H), 8.23 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 2.7 Hz, 1H), 7.82 – 7.66 (m, 2H), 

7.54 – 7.46 (m, 4H), 7.45 – 7.35 (m, 3H), 7.28 (t, J = 8.3 Hz, 2H).
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Figure S8. The 1H NMR spectrum of I1 in CDCl3.
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Synthesis of 1. To the solution of compound I1 (40.5 mg, 0.10 mmol) and malononitrile (39.6 mg, 0.60 mmol) in 

dichloromethane (10 mL) was added titanium tetrachloride (0.08 mL, 0.7 mmol) slowly at 0 oC. After the reaction mixture was 

stirred for 30 min, pyridine (0.06 mL, 0.7 mmol) was injected and stirred for another 30 min. Then the mixture was heated at 45 
oC for 48 h. After the mixture was cooled down to room temperature, the reaction was quenched by water (30 mL) and the 

mixture was extracted with dichloromethane. The collected organic layer was washed by brine, dried over Na2SO4 and 

concentrated under reduced pressure. The desired residue was purified by column chromatography using n-

hexane/dichloromethane (1/5, v/v) as eluent to give the desired product 1 as a dark red solid (32 mg, 64% yield).1H NMR (400 

MHz, CDCl3) δ 8.14 (d, J = 7.3 Hz, 1H), 8.02 (d, J = 7.3 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.63 – 7.54 (m, 5H), 7.48 – 7.40 (m, 4H), 

7.26 (t, J = 7.0 Hz, 2H), 7.16 (dd, J = 9.0, 2.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 161.15, 159.48, 148.49, 139.40, 135.23, 132.35, 
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132.11, 131.81, 130.87, 130.01, 129.59, 129.32, 128.07, 127.94, 127.41, 127.27, 119.76, 115.45, 114.15, 113.92, 113.18, 

111.34, 83.10, 79.03. APCI-MS, m/z: calcd 501.1048, found 501.1057.
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Figure S9. The 1H NMR spectrum of 1 in CDCl3.
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Figure S10. The 13C NMR spectrum of 1 in CDCl3.
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Figure S11. The HRMS spectrum of 1.
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Synthesis of I2. In a 100 mL flask,1,4-dibromo-2,3-diaminonaphthalene (1.8 g, 5.5 mmol) was dissolved in 23 mL of anhydrous 

pyridine and then 1.31 mL (16.1 mmol) of thionylaniline and 7.0 mL (55 mmol) of chlorotrimethylsilane were added. The 

reaction was heated at 80 °C overnight with stirring. After the reaction was cooled to room temperature, 20 mL of ethanol was 

added to the mixture. The precipitate was filtered, washed with ethanol, and then recrystallized from a mixture of ethanol and 

chloroform to give I2 (1.5 g, 70% yield) as orange needles. 1H NMR (400 MHz, CDCl3) δ 8.43 (dd, J = 7.0, 3.2 Hz, 2H), 7.61 (dd, J = 

7.0, 3.2 Hz, 2H).
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Figure S12. The 1H NMR spectrum of I2 in CDCl3.
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Synthesis of I3. A mixture of phenoxazine (0.5 g, 2.6 mmol), I2 (400 mg, 2.4 mmol), palladium acetate (90 mg, 0.4 mmol), 

[(t-Bu)3P]HBF4 (348 mg, 1.2 mmol), and sodium tert-butoxide (0.92 g, 9.6 mmol) in 25 mL anhydrous toluene was stirred and 

reflux at 110 °C under argon atmosphere for 72 h. After cooling down to room temperature, the reaction mixture was poured 

into saturated brine and extracted with dichloromethane. Then, the organic phase was dried over anhydrous Na2SO4. After 
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solvent removal, the crude product was purified by column chromatography (silica, hexane/dichloromethane (v/v) = 1:10) to 

give I3 (273 mg, 45% yield) as a purple powder. 1H NMR (400 MHz, CDCl3) δ 8.38 – 8.23 (m, 1H), 8.05 – 7.88 (m, 1H), 7.32 – 7.16 

(m, 2H), 6.60 (d, J = 9.4 Hz, 2H), 6.45 (t, J = 7.6 Hz, 2H), 6.32 – 6.17 (m, 2H), 5.28 (d, J = 8.1 Hz, 2H).
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Figure S13. The 1H NMR spectrum of I3 in CDCl3.
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Synthesis of I4. 2-Bromoanthracene-9,10-dione (574 mg, 2.0 mmol), bis(pinacolato)diborane (1.02 g, 4.0 mmol), potassium 

acetate (687 mg, 7.0 mmol), Pd(dppf)Cl2 (73 mg, 0.23 mmol, dppf = 1,1’-bis (diphenylphosphanyl)ferrocene) and dioxane (20 

mL) were mixed together in a 250 mL flask. After degassing, the reaction mixture was kept at 100 oC for 2 days, and then cooled 

down to room temperature. The organic solvent was distilled out, and the residual solid was dissolved in dichloromethane and 

washed with water. After solvent removal, the crude product was purified on a silica gel column using n-hexane/ethyl acetate 

(20:1, v/v) as the eluent to afford compound I4 (504 mg, 75% yield) as a very viscous liquid. 1H NMR (400 MHz, CDCl3) δ 8.75 

(s, 1H), 8.34 – 8.27 (m, 3H), 8.20 (d, J = 9.0 Hz, 1H), 7.82 – 7.76 (m, 2H), 1.26 (s, 12H).
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Figure S14. The 1H NMR spectrum of I4 in CDCl3.
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Synthesis of 2.  Compound I4 (270 mg, 0.60 mmol), compound I3 (130 mg, 0.20 mmol), potassium carbonate (552 mg, 4.0 

mmol), THF (12 mL)/water (4 mL), and Pd(PPh3)4 (15 %) were carefully degassed and charged with nitrogen. The reaction 

mixture was then stirred at 60 oC for 12 h. After cooling down the reaction mixture to ambient temperature, it was extracted 

with DCM and washed with water. The DCM layer was separated and dried over MgSO4. After evaporation of the solvent, the 

crude product was purified by column chromatography on silica gel by using n-hexane/dichloromethane (1/2 ~ 0/1, v/v) as the 

eluent to afford a dark blue solid 2 (112 mg, 52% yield). 1H NMR (400 MHz, CDCl3) δ 8.61 (s, 1H), 8.56 (d, J = 7.9 Hz, 1H), 8.36 – 

8.28 (m, 3H), 8.12 (d, J = 9.9 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.82 – 7.78 (m, 2H), 7.48 – 7.40 (m, 2H), 6.78 (d, J = 7.8 Hz, 2H), 6.64 

(t, J = 7.6 Hz, 2H), 6.42 (t, J = 7.6 Hz, 2H), 5.52 (d, J = 8.1 Hz, 2H). APCI-MS, m/z: calcd 573.1147, found 573.1157.



19

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
Chemical Shift (ppm)

1.
90

2.
02

2.
04

2.
05

2.
09

2.
04

1.
14

1.
08

2.
99

1.
12

1.
06

5.
51

5.
53

6.
40

6.
42

6.
44

6.
62

6.
63

6.
65

6.
77

6.
79

7.
40

7.
41

7.
43

7.
44

7.
47

7.
48

7.
79

7.
80

7.
82

7.
96

7.
98

8.
10

8.
13

8.
28

8.
31

8.
32

8.
35

8.
36

8.
55

8.
57

8.
61

Figure S15. The 1H NMR spectrum of 2 in CDCl3.
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Figure S16. The HRMS spectrum of 2.
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NHO

Synthesis of I5.  N-phenylanthranilic acid (6.00 g, 27.8 mmol) was suspended in polyphosphoric acid (60 g) and heated to 120 
◦C in a round-bottom flask. which was equipped with a strong magnetic stirring bar. The dark green viscous mixture was also 

occasionally mixed thoroughly with a glass rod. After about 3.5 h, the N-phenylanthranilic acid was completely dissolved and 

the reaction mixture was held at this temperature for additional 0.5 h and then carefully poured into a beaker of ice/water (100 

mL). The greenish yellow suspension was brought to pH 7 by slow addition of NaOH solution. The solid material was filtered off 

by suction filtration and washed with hot water (3×100 mL). The greenish yellow solid was dried in air overnight at 120 ◦C to 

give crude I5 (5.4 g, 95% yield), which was further used without purification.

O

O

NO

Synthesis of 3. A mixture of I5 (256 mg, 2.6 mmol), 2-bromoanthracene-9,10-dione (700 mg, 2.4 mmol), palladium acetate (90 

mg, 0.4 mmol), [(t-Bu)3P]HBF4 (348 mg, 1.2 mmol), and sodium tert-butoxide (0.92 g, 9.6 mmol) in 25 mL anhydrous toluene 

was stirred and reflux at 110 °C under argon atmosphere for 72 h. After cooling down to room temperature, the reaction mixture 

was poured into saturated brine and extracted with dichloromethane. Then, the organic phase was dried over anhydrous Na2SO4. 

After solvent removal, the crude product was purified by column chromatography (silica, hexane/dichloromethane (v/v) = 5:1) 

to give I5 (480 mg, 50% yield) as a purple power. 1H NMR (400 MHz, CDCl3) δ 8.70 (dd, J = 29.4, 7.5 Hz, 3H), 8.44 (q, J = 7.2, 6.4 

Hz, 3H), 7.92 (d, J = 13.0 Hz, 3H), 7.56 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H). 13C NMR (101 MHz, CDCl3) 

δ 182.15, 181.95, 178.06, 144.44, 142.53, 136.75, 136.17, 134.80, 134.10, 133.68, 133.37, 130.72, 129.44, 127.76, 122.78, 116.24. 

APCI-MS, m/z: calcd 401.1052, found 401.1060.
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Figure S17. The 1H NMR spectrum of 3 in CDCl3.
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Figure S18. The HRMS spectrum of 3.

Br

Br
N

N

CN

CN

Synthesis of I6. A suspension of 3,6-dibromophenanthrene-9,10-dione (1.10 g, 3 mmol) and diaminomaleonitrile (0.32 g, 3 

mmol) in acetic acid (10 mL) was heated to reflux for 8 hours. After cooling to room temperature, the resulting mixture was 

poured into ice water (100 mL) and then filtered. The solid was washed with water several times. The crude product was purified 

by column chromatography on silica gel (eluent: dichloromethane) and dried under vacuum to give I6 (1.05 g, 80% yield) as a 

light-yellow solid.

N

N
N

N

CN

CN

Synthesis of 4. (4-(Diphenylamino)phenyl)boronic acid (180 mg, 0.62 mmol), compound I6 (87 mg, 0.20 mmol), potassium 

carbonate (552 mg, 4.0 mmol), THF (12 mL)/water (4 mL), and Pd(PPh3)4 (15 %) were carefully degassed and charged with 

nitrogen. The reaction mixture was then stirred at 60 oC for 12 h. After cooling the reaction mixture to ambient temperature, it 

was extracted with DCM and washed with water. The DCM layer was separated and dried over MgSO4. After evaporation of the 

solvent, the crude product was purified by column chromatography on silica gel by using n-hexane/dichloromethane (1/5, v/v) 

as the eluent to afford 4 (38 mg, 52% yield) as a dark blue solid. 1H NMR (400 MHz, CDCl3) δ 8.99 – 8.70 (m, 1H), 8.56 – 8.30 (m, 

1H), 7.90 – 7.75 (m, 1H), 7.68 – 7.50 (m, 2H), 7.35 (t, J = 7.9 Hz, 4H), 7.23 (d, J = 7.8 Hz, 6H), 7.13 (t, J = 7.3 Hz, 2H). 13C NMR (101 

MHz, CDCl3) δ 148.83, 146.61, 144.47, 141.69, 133.03, 132.18, 129.45, 128.18, 127.37, 127.05, 125.42, 125.16, 123.74, 122.90, 

119.92, 113.84. APCI-MS, m/z: calcd 766.2845, found 766.2854.
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Figure S19. The 1H NMR spectrum of 4 in CDCl3.
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Figure S20. The 13C NMR spectrum of 4 in CDCl3.
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Figure S21. The HRMS spectrum of 4.

REFERENCES
1. Muegge, I. & Mukherjee, P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin. 

Drug Discov. 11, 137–148 (2016).

2. Carhart, R. E., Smith, D. H. & Venkataraghavan, R. Atom pairs as molecular features in structure-activity studies: 

definition and applications. J. Chem. Inf. Comput. Sci. 25, 64–73 (1985).

3. Nilakantan, R., Bauman, N., Dixon, J. S. & Venkataraghavan, R. Topological torsion: a new molecular descriptor for SAR 

applications. Comparison with other descriptors. J. Chem. Inf. Comput. Sci. 27, 82–85 (1987).

4. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

5. Lopez, S. A.; Sanchez-Lengeling, B.; de Goes Soares, J.; Aspuru-Guzik, A., Design principles and top non-fullerene 

acceptor candidates for organic photovoltaics. Joule 1, 857-870. (2017).

6. Pyzer‐Knapp, E. O.; Li, K.; Aspuru‐Guzik, A., Learning from the harvard clean energy project: The use of neural 

networks to accelerate materials discovery. Adv. Funct. Mater. 25, 6495-6502 (2015).


