SUPPORTING INFORMATION

3D Analysis of Helium-3 Nanobubbles in Palladium

Aged under Tritium by Electron Tomography

AUTHOR NAMES

AUTHOR ADDRESS

${ }^{1}$ CEA Valduc, F-21120, Is-sur-Tille, France
${ }^{2}$ Univ Paris-Est Creteil, CNRS, ICMPE (UMR 7182), 2 rue Henri Dunant, F-94320 Thiais,

France
${ }^{3}$ Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504, 23 rue du

Loess 67034 Strasbourg, France

KEYWORDS

Electron tomography, Nanobubbles, Palladium tritide, Distances

Illustration of the post-processing steps for a tomography acquisition of the palladium powder aged
8.5 years under tritium.

Figure SI - 1 - Bright Field (left) and High Angle Annular Dark Field (right) images at 0° tilt from the electron tomography series of palladium sample aged under tritium during 8.5 years. The pixel size is 0.45 nm . The image size is 1024×1024 in pixel unit.

Figure SI - 2 - One of the HAADF images from the corresponding tilt series acquired between, the tilting angles are -64° and $+60^{\circ}$ with a 2° increment (left) and a typical (X,Y) slice through the calculated reconstruction (right)and the associated (X, Z) and (Y, Z) projections for palladium aged 8.5 years under tritium. The size of the image is 1024×1024 in pixel unit and the pixel size is 0.45 nm .

Figure SI - 3-Typical slice through the reconstruction (left) and the segmentation (right) of a palladium particle aged 8.5 years under tritium. For this tomography the tilting angles are between -64° and $+60^{\circ}$. The size of the image is 1024×1024 in pixel unit and the pixel size is 0.45 nm .

Homemade script written in Fortran to calculate the distances between bubbles.

INTEGER $\mathrm{iB}(1: 5000) \mathrm{jB}(1: 5000), \mathrm{kB}(1: 5000)$

REAL Dmin(1:5000)

OPEN(1,FILE='bub.dat',STATUS='old')

OPEN(2,FILE='distB.dat',STATUS='replace')

WRITE(*,*) 'Nombre de bulles ?'
$\operatorname{READ}(*, *) \mathrm{NB}$

DO $\mathrm{n}=1, \mathrm{NB}$
$\operatorname{READ}(1, *) \mathrm{i}, \mathrm{iB}(\mathrm{n}), \mathrm{jB}(\mathrm{n}), \mathrm{kB}(\mathrm{n})$

END DO

DO $\mathrm{n}=1, \mathrm{NB}$
$\mathrm{S}=1 . \mathrm{e} 12$

DO n1 $=1$, NB

$$
\begin{aligned}
& \text { IF }(\mathrm{n} 1==\mathrm{n}) \text { GOTO } 50 \\
& \mathrm{~S} 1=\left((\mathrm{iB}(\mathrm{n})-\mathrm{iB}(\mathrm{n} 1))^{*} * 2\right)+\left((\mathrm{jB}(\mathrm{n})-\mathrm{jB}(\mathrm{n} 1))^{* * 2}\right)+((\mathrm{kB}(\mathrm{n})-\mathrm{kB}(\mathrm{n} 1)) * * 2)
\end{aligned}
$$

$$
\text { IF }(S 1<S) S=S 1
$$

50 END DO
$\operatorname{Dmin}(\mathrm{n})=\mathrm{SQRT}(\mathrm{S})$

WRITE $(2,100) \operatorname{Dmin}(n)$

END DO

100 FORMAT(F13.3)

END PROGRAM

AUTHOR INFORMATION

Corresponding Author

* Bérengère Evin (berengere.evin@icmpe.cnrs.fr ; berengere.evin@ protonmail.com)

Phone number : (+33) 149781214

Postal adress : ICMPE-CNRS, 2-4 rue Henri Dunant, 94320 Thiais, France

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. \ddagger These authors contributed equally.

Funding Sources

This work was supported by the France's Atomic Energy Commission (C.E.A.) and by the French

National Center for Scientific Research (C.N.R.S.).

Acknowledgment

The authors acknowledge financial support from the CNRS-CEA "METSA" French network (FR

CNRS 3507) on the TEM platform of IPCMS.

