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Supporting Information

Electronic Spillover Corrected Local Mean and Gaus-

sian Curvatures

Geometric local curvatures are also influenced by the delocalization of electronic density

outside the metallic surface. The finite spillover of electrons up to the distance δ outside

the metallic surface in normal direction accounted through differential geometry formula for

the curvature of parallel surfaces. This electronic spillover causes opposite influence on the

effective curvature at the concave and the convex sites. This effect is accounted through the

corrected mean (H ′s(x, y)) and Gaussian (K ′s(x, y)) curvatures with δ obtained through the

Steiner’s formulas, given as1

H ′s(x, y) =
Hs(x, y)−Ks(x, y)δ

1− 2Hs(x, y)δ +Ks(x, y)δ2
, K ′s(x, y) =

Ks(x, y)

1− 2Hs(x, y)δ +Ks(x, y)δ2
(S1)

The outward electronic spillover distance δ has different sign convention. It is taken to be

positive from the vaccum side approach to the solid metal electrode, whereas it has negative

sign convention from the material side approach. This spillover correction causes asymmet-

ric contribution to the curvature along the step geometry. The step curvature anisotropy

induces the distribution of electronic charges over the surface which can be analyzed in

terms of the local electronic capacitance. The overall variation in the electronic and elec-

trochemical properties can be obtained by formulation the average curvatures of randomly

nanocorrugated metal step surface, discussed in the following segment.

S2



Average Mean Curvature

The principal curvatures along the metal steps (x-direction) and the step-edge (y-direction)

are represented in terms of first and the second derivatives of surface profile, given as

Hs(x, y) =
ζxx(x, y) + ζyy(x, y)

2
(S2)

where, ζyy(x, y) = ζxx(x, y) ζ̃y(y)2+ζx(x, y) ζ̃yy(y) using surface profile expression (eq 5) given

in the main article. Equation S2 can be written as

Hs(x, y) =
ζxx(x, y)(1 + ζ̃y(y)2) + ζx(x, y) ζ̃yy(y)

2
(S3)

The ensemble averaged mean curvature over all the possible random configuration of nanocor-

rugation along y-axis is given by

〈Hs(x, y)〉 ≈ 〈ζxx(x, y)〉(1 + 〈ζ̃y(y)2〉)
2

(S4)

Since the random nannocorrugation along the step-edge (y-direction) is taken as centered

random process therefore, 〈ζ̃yy(y)〉 = 0 in the above equation. Therefore, the first and second

derivatives of surface profile is given as

ζx(x, y) =
1

2
√

3

(
1− tanh2

[
x

a
+
ζ̃(y)

a

])
,

ζxx(x, y) = − 1√
3 a

tanh

[
x

a
+
ζ̃(y)

a

](
1− tanh2

[
x

a
+
ζ̃(y)

a

]) (S5)

The average curvature distribution of the random nanocorrugation along the step-edge is

considered as a centered Gaussian process having Gaussian correlation function as W (y) =

e−y
2/a2 . The several ensemble averaged morphological properties for the given statistics as:

〈ζ̃(y)〉 = 0, 〈ζ̃2(y)〉 = h2, 〈ζ̃2y (y)〉 = 2h2/a2. For a given randomly nanocorrugated step edge,

the roughness is characterized by mainly two parameters, i.e., root mean square nanocorru-
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gation width (2h) and the transverse correlation length (a as a lattice parameter) along the

step-edge. Further, putting eq S5 in the eq S4 and taking the ensemble average over all the

random configuration of nanocorrugated step-edge, we obtained the ensemble averaged step

mean curvature as

〈Hs(x, y)〉 = − 1

2
√

3 a
tanh

[
x

a
− h2

a2

](
1− tanh2

[
x

a
− h2

a2

])(
1 +

2h2

a2

)
(S6)

The average mean curvature along the metal step profile is obtained considering the two

neighboring step given by

〈Hs〉 =
1

2lT

∫ lT

−lT

∫ ∞
−∞

Hs(x, y) dy dx ≈ 1

2lT

∫ lT

−lT
〈Hs(x)〉 dx (S7)

The statistical averaging fix the random nanocorrugation along y-direction with mean square

nanocorrugation width fluctuation as h2 = 〈ζ̃(y)2〉 for a centered random Gaussian process.

Such transformation is achieved by the cumulant expansion of surface profile along the step-

edge with resultant relation as 〈tanh(x
a

+ ζ̃(y)
a

)〉 = tanh(x
a
− h2

a2
). Details of this transformation

are provided in the main article from eqs 6 to 8.

Further, using eq S6 in eq S7, the integration gives the average mean curvature of a

randomly nanocorrugated step, given as

〈Hs〉 =
na

8
√

3 lT

(
tanh2

[
lT
a

+
h2

a2

]
− tanh2

[
lT
a
− h2

a2

])(
1 +

2h2

a2

)
(S8)

Similarly, the average of square of principal curvature is obtained by using the simplification

as Arc(tanh(x)) ≈ tanh(x), given by

〈H2
s 〉 =−

3(36 + n2
a) sech[ lT

a
− h2

a2
] sech[ lT

a
+ h2

a2
] sinh(2 lT

a
)

16 alT (12 + n2
a)

2
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3n2

a

16 alT

(
ψ1

[
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− h2

a2

]
− ψ2
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a2

]
+ ψ1
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a
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a2

]
− ψ2

[
lT
a

+
h2

a2

]) (S9)
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where ψ1(u) and ψ2(u) are the function of step morphological parameters and defined as

ψ1(u) =
(72 + 12n2

a + (72 + 8n2
a) cosh(2u)) sinh(2u)

n2
a(12 + n2

a)(9 + 2n2
a + 3 cosh(4u) + 12 cosh(2u))

,

ψ2(u) =
8(sinh(4u) + 16 sinh(2u))

(9 + 2n2
a + 3 cosh(4u) + 12 cosh(2u))2

(S10)

The nanocorrugation along the step-edge is random in nature resulting random curvature

distribution. To account for the atomic scale fractal morphological influence, the function

ζ̃(y) can be defined through the modified 1D Weierstrass-Mandelbrot function.2–4

Electronic Spillover Corrected Average Mean and Gaus-

sian Curvatures

From eq S1, the electronic spillover corrected local mean and Gaussian curvatures are written

as

H ′s(x, y) = (Hs(x, y)−Ks(x, y)δ)(1− 2Hs(x, y)δ +Ks(x, y)δ2)−1,

K ′s(x, y) = (Ks(x, y))(1− 2Hs(x, y)δ +Ks(x, y)δ2)−1
(S11)

Since 2Hs(x, y)δ +Ks(x, y)δ2 � 1, therefore applying the Binomial expansion, we have

H ′s(x, y) = (Hs(x, y)−Ks(x, y)δ)(1 + 2Hs(x, y)δ −Ks(x, y)δ2),

K ′s(x, y) = (Ks(x, y))(1 + 2Hs(x, y)δ −Ks(x, y)δ2)

(S12)

Further, simplifying the above equation by taking 〈Ks〉 = 0, we have electronic spillover

corrected average mean and the Gaussian curvatures as

〈H ′s〉 = 〈Hs〉+ 2δ〈H2
s 〉, 〈K ′s〉 = 0 (S13)

We have also observed in Figure 2 of main article that the physical term 〈H2
s 〉 is much

smaller compared to 〈Hs〉 and contributes less than 1% to the overall curvature therefore, it
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is a good approximation to take 〈H ′s〉 ≈ 〈Hs〉 while calculating the average WF and PZC.
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