Supporting Information

A Cost-Effective Alpha-Fluorinated Bithienyl Benzodithiophene Unit for High-Performance Polymer Donor Material

Wenqing Zhang ${ }^{a}$, Chenkai Sun ${ }^{a, e *, ~ S h u c h e n g ~ Q i n ~}{ }^{b, c}$, Ziya Shang $^{b, c}$, Shaman Li ${ }^{c}$, Can Zhu ${ }^{b, c}$, Guang Yang ${ }^{a}$, Lei Meng ${ }^{b, c *}$, Yongfang Li ${ }^{b, c, d *}$

${ }^{\text {a }}$ College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
${ }^{\mathrm{b}}$ Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
${ }^{\mathrm{c}}$ School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China.
${ }^{d}$ Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
${ }^{\mathrm{e}}$ Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China

* Corresponding authors

E-mail: schenkai@zzu.edu.cn (Chenkai Sun), menglei@iccas.ac.cn (Lei Meng), liyf@iccas.ac.cn (Yongfang Li)

Materials and synthesis

The electron acceptors Y6 and ICBA are purchased from Solarmer Materials Inc and J\&K, respectively. Other chemicals and solvents are obtained from J\&K, Alfa Aesar, and TCI Chemical Co., etc. All the reagents and commercial compounds are used as received. The synthetic routes of PBQ10 and $\alpha-\mathrm{PBQ} 10$ are shown in Scheme 1. The compounds 4-7, monomer BDTT-F, monomer 9, and polymer PBQ10 are synthesized according to the reported literatures. ${ }^{1-4}$ The synthetic details of compound 2, compound 3, monomer α-BDTT-F and polymer α-PBQ10 are described in the Experimental Section.

General Characterization

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of the corresponding compounds are measured on a Bruker DMX-400 spectrometer using d-chloroform as solvent and trimethylsilane as the internal reference. Gel permeation chromatography (GPC) measurements are performed on Agilent PLGPC 220 instrument with high temperature chromatograph, using 1,2,4-trichlorobenzene as the eluent at $160{ }^{\circ} \mathrm{C}$. UV-visible absorption spectra are measured on a Hitachi U-3010 UV-vis spectrophotometer. Electrochemical cyclic voltammetry is performed on a Zahner IM6e Electrochemical Workstation under a nitrogen atmosphere using three-electrode system with a Pt disk working electrode, an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode and a Pt wire counter electrode in acetonitrile solution of tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$, and ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox couple is used as an internal reference. Transmission electron microscope (TEM) measurement was performed on the JEM-ARM2100F Transmission Electron Microscope, with samples prepared under the same condition of the optimal photoactive layer on PEDOT: PSS layer of the devices. Atomic force microscope (AFM) measurement was performed on the Bruker-ICON2-SYS atomic force microscope with samples prepared under the same condition of the optimal photoactive layer on PEDOT: PSS layer of the devices.

Measurement of charge carrier mobilities

The charge carrier mobilities were measured with the device structure of

ITO/PEDOT:PSS/active layer/ $\mathrm{MoO}_{3} / \mathrm{Ag}$ for hole mobility and $\mathrm{ITO} / \mathrm{ZnO} /$ active layer/PDINN/Ag for electron mobility. The hole and electron mobilities are calculated according to the space-charge-limited current (SCLC) method equation:

$$
\begin{equation*}
J=\frac{9 \varepsilon_{0} \varepsilon_{r} \mu V^{2}}{8 L^{3}} \tag{S1}
\end{equation*}
$$

Where J is the current density, ε_{0} is the dielectric constant of empty space, ε_{r} is the relative dielectric constant of active layer materials which is usually 2-4 for organic semiconductors, herein we use a relative dielectric constant of $3, \mu$ is the charge mobility, V is the internal voltage in the device, and $V=V_{\text {appl }}-V_{\mathrm{bi}}-V_{\mathrm{s}}$, where $V_{\text {appl }}$ is the voltage applied to the devices, and V_{bi} is the built-in voltage resulting from the relative work function difference between the two electrodes (in the hole-only device, the V_{bi} value is 0.2 V), V_{s} is the voltage drop from the series resistance and L is the thickness of the active layers.

Device fabrication and characterization

The PSCs were fabricated with a structure of ITO/PEDOT:PSS/active layer/PDINN/Ag. The ITO glass was cleaned by sequential ultrasonic treatment in detergent, deionized water, acetone and isopropanol. Then the dried ITO glass was treated with an ultraviolet-ozone chamber (Ultraviolet Ozone Cleaner, Jelight Company, USA) for 25 min . A thin layer of PEDOT: PSS was prepared on precleaned ITO glass through spin-coating a PEDOT: PSS aqueous solution (Baytron P VP AI 4083 from H. C. Starck) at 5000 rpm and dried subsequently at $150{ }^{\circ} \mathrm{C}$ for 20 min in the air. The substrates were then transferred into a N_{2}-filled glovebox. A blend solution was prepared by dissolving the donor and acceptor in chloroform $\left(\mathrm{CHCl}_{3}\right)$, and then the blend solution was spin-coated at 3000 rpm onto the PEDOT:PSS layer. After spin-coating, the active layers were annealed at $85^{\circ} \mathrm{C}$ for 10 min . Then, methanol solution of PDINN at a concentration of $1.0 \mathrm{mg} \mathrm{mL}^{-1}$ is prepared upon the active layer by spin-coating at 3000 rpm to afford a PDINN cathode buffer layer. Finally, cathode metal Ag was deposited at a pressure of $1.0 \times 10^{-6} \mathrm{~Pa}$. The active layer effective area of the devices was $4.7 \mathrm{~mm}^{2}$, which is defined using an optical microscope (Olympus BX51). The current density-voltage ($J-V$) characteristics of the PSCs were measured in a nitrogen glove box with a Keithley 2450 Source Measure unit. Oriel Sol3A Class AAA Solar Simulator (model, Newport 94023A) with a 450W xenon lamp
and an air mass (AM) 1.5 filter was used as the light source. The light intensity was calibrated to $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$ by a Newport Oriel 91150 V reference cell. The input photon to converted current efficiency (IPCE) was measured by Solar Cell Spectral Response Measurement System QE-R3-011 (Enli Technology Co., Ltd., Taiwan). The light intensity at each wavelength was calibrated with a standard single-crystal Si photovoltaic cell.

DFT calculation

All calculations are performed by ORCA (version 4.2.1) unless otherwise statement. The conformations are generated by molclus (version 1.9.4) and optimized by DFT calculation with a function of wB97X-D3 with a basis set of def2-TZVP. The straight and branched alkyl chains were simplified to methyl and isobutyl, respectively, for saving time. The single point energies and gradients were further calculated with wB97M-V function, the energy levels were calculated with B3LYP function, the dipole moments were calculated with PBE0 function, the basis set were all with def2-TZVP. ${ }^{5,6}$ The molecular orbitals and geometries were analyzed by Multiwfn (version 3.6) and VMD (version 1.9.3) for visualization. ${ }^{7,8}$

Figure S1. Normalized absorption spectra of (a) polymer PBQ10 in the solution and in the film, (b) polymer α-PBQ10 in the solution and in the film and (c) α-PBQ10:Y6 film (optimized with $0.5 \% \mathrm{CN}$ and thermal annealing treatment).

Figure S2. $\boldsymbol{J}^{1 / 2} \sim V\left(V=V_{\text {appl }}-V_{\mathrm{bi}}-V_{\mathrm{s}}\right)$ characteristics of the hole-only devices based on polymers PBQ10 and $\alpha-$-PBQ10.

Figure S3. Cyclic voltammograms of (a) the polymer PBQ10, (b) the polymer α-PBQ10, (c) electron accepter Y 6 , and (d) $\mathrm{Fc} / \mathrm{Fc}^{+}$measured in $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ acetonitrile solution at a scan rate of $20 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S4. $J-V$ curves of the devices based on (a) α-PBQ10:Y6 (as cast and optimized with $0.5 \% \mathrm{CN}$ and thermal annealing treatment), (b) α-PBQ10:ICBA, $\alpha-\mathrm{PBQ} 10: \mathrm{Y} 6$ and $\alpha-$ PBQ10:Y6:ICBA.

Figure S5. EQE spactra of the devices based on α-PBQ10:ICBA, α-PBQ10:Y6 and α PBQ10:Y6:ICBA.

Figure S6. Dependence of V_{oc} on $P_{\text {light }}$ of the binary and ternary devices.

Figure S7. $J^{1 / 2} \sim V\left(V=V_{\text {appl }}-V_{\mathrm{bi}}-V_{\mathrm{s}}\right)$ characteristics of the (a) hole-only devices based on PBQ10:Y6, α-PBQ10:Y6 and α-PBQ10:Y6:ICBA (b) electron-only devices based on PBQ10:Y6, α-PBQ10:Y6 and $\alpha-$ PBQ10:Y6:ICBA.

Figure S8. AFM phase images of (a) the PBQ10:Y6 blend, (b) the α-PBQ10:Y6 blend, and (c) the α-PBQ10:Y6:ICBA blend.

Figure S9. AFM (a-c) height images and (d-f) phase images of the PBQ10, α-PBQ10 and Y6.

Figure S10. TEM images of (a) PBQ10, (b) α-PBQ10, and (c) Y6.

Table S1. Photovoltaic performance parameters of the PSCs based on α-PBQ10:Y6 with different D: A weight ratio under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

D / A ratios	V_{oc} (V)	J_{sc} $\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	FF $(\%)$	PCE $(\%)$
$1: 1$	0.843	25.65	70.95	15.34
$1: 1.2$	0.845	26.12	73.65	16.26
$1: 1.5$	0.839	25.16	67.67	14.28

Table S2. Photovoltaic performance parameters of the PSCs based on α-PBQ10:Y6 with different 1-CN additive volume ratio under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

CN $(\mathrm{vol} \%)$	$V_{\text {oc }}$ (V)	J_{sc} $\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	FF $(\%)$	PCE $(\%)$
0	0.845	25.36	58.16	12.46
0.3	0.842	25.43	66.61	14.26
0.5	0.845	26.12	73.65	16.26
0.7	0.832	25.30	73.33	15.43

Table S3. Photovoltaic performance parameters of the PSCs based on α-PBQ10:Y6 with different annealing temperature for 10 min under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$	$V_{\text {oc }}$ (V)	J_{sc} $\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	FF $(\%)$	PCE $(\%)$
70	0.847	24.99	71.10	15.04
85	0.845	26.12	73.65	16.26
100	0.821	25.91	73.87	15.71
110	0.815	26.18	71.85	15.33

Table S4. Photovoltaic performance parameters of the α-PBQ10:Y6:ICBA based PSCs with different ICBA weight ratios under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

$\alpha-$ PBQ10:Y6:ICBA	$V_{\text {oc }}$ (V)	J_{sc} $\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	FF $(\%)$	PCE $(\%)$
$1: 1.2: 0.15$	0.846	26.45	74.96	16.77
$1: 1.2: 0.3$	0.851	25.46	73.03	15.82
$1: 1.2: 0.4$	0.842	24.94	71.92	15.10
$1: 1: 0.2$	0.857	24.22	71.10	14.75

Table S5. The hole $\left(\mu_{\mathrm{h}}\right)$ and electron $\left(\mu_{\mathrm{e}}\right)$ mobilities of the binary and ternary PSCs.

Device	$\boldsymbol{\mu}_{\mathbf{h}}$ $\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	$\boldsymbol{\mu}_{\mathbf{e}}$ $\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	$\boldsymbol{\mu}_{\mathbf{h}} / \boldsymbol{\mu}_{\mathbf{e}}$
PBQ10:Y6	5.32×10^{-4}	3.71×10^{-4}	1.43
α-PBQ10:Y6	5.38×10^{-4}	4.14×10^{-4}	1.29
α-PBQ10:Y6:ICBA	5.48×10^{-4}	5.30×10^{-4}	1.03

References

(1) Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Adv. Mater. 2015, 27, 46554660.
(2) Huang, J.; Peng, R.; Xie, L.; Song, W.; Hong, L.; Chen, S.; Wei, Q.; Ge, Z. A Novel Polymer Donor Based on Dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime \prime}\right]$ benzo[1,2-b:4,5- b^{\prime}]dithiophene for Highly Efficient Polymer Solar Cells. J. Mater. Chem. A 2019, 7, 2646-2652.
(3) Xu, S.; Wang, X.; Feng, L.; He, Z.; Peng, H.; Cimrova, V.; Yuan, J.; Li, Y.; Zou, Y. Optimizing Conjugated Side Chains on Quinoxaline Based Polymers for Nonfullerene Solar Cells with 10.5\% Efficiency. J. Mater. Chem. A 2018, 6, 3074-3083.
(4) Sun, C.; Pan, F.; Qiu, B.; Qin, S.; Chen, S.; Shang, Z.; Meng, L.; Yang, C.; Li, Y. D-A Copolymer Donor Based on Bithienyl Benzodithiophene D-Unit and Monoalkoxy Bifluoroquinoxaline A-Unit for High-Performance Polymer Solar Cells. Chem. Mater. 2020, 32, 3254-3261.
(5) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
(6) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, $8,1057-1065$.
(7) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33-38.
(8) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580-592.

