Supporting Information

Quasi-Solid-State Lithium Metal Batteries Using the LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂-Li_{1+x}Al_xTi_{2-x}(PO₄)₃ Composite Positive Electrode

Zhen Chen,^{#,§} Xinpei Gao,^{#,§} Jae-Kwang Kim,[‡] Guk-Tae Kim,^{#,§,}* Stefano Passerini,^{#,§,}*

[#] Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany.

§ Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany.

[‡] Department of Energy Convergence Engineering, Cheongju University, Cheongju, Chungbuk 28503, Republic of Korea

Corresponding authors: guk-tae.kim@kit.edu; stefano.passerini@kit.edu

Figure S1. (a) The cross-sectional view and (b) a digital photo of a piece of LATP/PVDF-TrFE/ILE hybrid electrolyte.

Figure S2. SEM images of pristine (a–c) NCM₈₁₁_P and (d–f) NCM₈₁₁_CP electrodes.

Figure S3. (a) SEM image and corresponding elemental EDS mapping of a pristine NCM₈₁₁_P electrode: (b) O K α , (c) C K α , (d) Al K α , (e) Ni L α , (f) Co L α , (g) Mn L α and (h) F K α .

Figure S4. Comparison of electrode porosity of pristine NCM_{811} _CP and NCM_{811} _P electrodes.

Figure S5. Ex situ electrode morphology investigation of (a–c) cycled NCM₈₁₁_P (denoted as C_NCM₈₁₁_P) and (d–f) cycled NCM₈₁₁_CP (denoted as C_NCM₈₁₁_CP) electrodes recovered from PTNB@Li||NCM₈₁₁_P and PTNB@Li||NCM₈₁₁_CP cells after 200 cycles at 0.5C, respectively.

Figure S6. A digital photo showing the open circuit voltage of a fresh 2-layer bipolar stacked cell.

Figure S7. Dis-/charge voltage profiles of 15th and 16th cycles of (a) B2_PTNB@Li||NCM₈₁₁_P and (b) B2_PTNB@Li||NCM₈₁₁_CP bipolar cells.

Table S1. The ILE volume percentage within the $NCM_{811}P$ and $NCM_{811}CP$ composite electrodes.

Sample	Electrode weight (mg)	Electrode thickness (µm)	Electrode volume ^a (excl. Al, cm ³)	Electrode weight with ILE (mg)	ILE volume ^b (cm ³)	ILE volume (vol.%)
NCM ₈₁₁ P	7.44	24	0.000904	7.81	0.000246	27.2
NCM ₈₁₁ CP	7.71	25	0.001017	8.13	0.000279	27.5

^{*a*} the thickness of Al current collector is 16 μ m; ^{*b*} the molecular density of ILE is 1.504 g/cm³

Table S2. Detailed information for the calculation of the NCM₈₁₁_P electrode porosity.

	Mass fraction (wt.%)	Mass (g)	Theoretical density (g cm ⁻³)	Practical volume (cm ³)	Theoretical volume (cm ³)	Porosity (%)
NCM ₈₁₁	92	0.002462	4.70	_		
Super C65	4	0.000107	1.60	0.001029	0.000651	36.7
PVDF	4	0.000107	1.78	-		

Table S3. The detailed information for the calculation of the NCM_{811} _CP electrode porosity.

	Mass fraction (wt.%)	Mass (g)	Theoretical density (g cm ⁻³)	Practical volume (cm ³)	Theoretical volume (cm ³)	Porosity (%)
NCM ₈₁₁	82	0.002476	4.70			
Super C65	4	0.000121	1.60	0.001120	0.000774	21.5
PVDF	4	0.000121	1.78	0.001130	0.000774	51.5
LATP	10	0.000302	2.92			

		PTNB@Li	NCM ₈₁₁ _P		PTNB@Li NCM ₈₁₁ _CP		
Cycle	Z'	Z'	Z	Z'	Z'	Z'	
number	(60.9 kHz)	(226.2 Hz)	(2.7 Hz)	(60.9 kHz)	(226.2 Hz)	(2.7 Hz)	
	/ Ω	/ Ω	/ Ω	/ Ω	/ Ω	/ Ω	
20 th	14.6	30.7	42.1	14.2	27.2	39.7	
40 th	14.3	28.8	39.3	14.0	25.1	36.1	
60 th	14.2	28.0	38.4	14.1	24.4	35.0	
80 th	14.2	27.5	38.0	13.7	23.6	33.8	
100 th	14.3	27.4	38.2	14.0	23.4	33.8	
120 th	14.5	27.5	38.6	14.0	23.1	33.5	
140 th	14.5	27.6	39.2	14.1	22.9	33.7	
160 th	14.7	28.1	40.3	14.1	22.8	34.0	
180 th	14.9	28.5	41.5	14.2	22.8	34.4	
200 th	15.2	29.2	42.9	14.4	22.8	34.9	

Table S4. The Z' values collected at 60.9 kHz, 226.2 Hz and 2.7 Hz upon various cycling numbers.