Supporting Information for

Oxazaborolidinone-Mediated Asymmetric Bisvinylogous Mukaiyama Aldol Reaction

Alina Eggert, Christoph Etling, Lucas Millbrodt, Göran Schulz, Markus Kalesse*
Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover
* E-Mail: markus.kalesse@oci.uni-hannover.de

Table of Contents:

General Methods S1-2
General Procedures S3-5

Analytical data of bVMAR products 5a-w S6-29
Determination of absolute configuration via Mosher esters \quad S30-32
Investigations on substrate-induced stereocontrol of aldehyde 4p S33
NMR spectra \quad S34-97
$e e$-determination via chiral HPLC S98-99
$e e$-determination via ${ }^{19} \mathrm{~F}$-spectra of Mosher esters \quad S100-113

General Information

Reactions were carried out using flame-dried glass vessels under argon atmosphere. Dichloromethane was distilled under an inert atmosphere over calcium hydride. Valeronitrile was purified by distillation from $\mathrm{P}_{2} \mathrm{O}_{10}$ under nitrogen atmosphere prior to use.
N-Tosyl-L-tryptophan, ${ }^{1} \quad$ ethyl $\quad(2 E, 4 E)$-2-methylhexa-2,4-dienoate, ${ }^{2} \quad(E)$-3-iodo-2-methylacrylaldehyde, ${ }^{3}$ and 2-butynal dicobalt hexacarbonyl complex ${ }^{4}$ were prepared according to literature procedures.

Nuclear Magnetic Resonance Spectroscopy (NMR)

All NMR spectra were recorded at a Bruker DPX-400, AMX-400, Ascend 400 Avance II, DRX-500 or Ascend-600. ${ }^{1} \mathrm{H}$ NMR spectra were calibrated to the residual proton signal of the solvents $\left(\mathrm{CDCl}_{3}\right.$: $\left.7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: 7.16 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ NMR spectra calibrated to the corresponding solvent signal $\left(\mathrm{CDCl}_{3}\right.$: $\left.77.16 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: 128.06 \mathrm{ppm}\right)$.

If the samples contained a mixture of two inseparable isomers, distinguishable signals that stem from the minor isomer are marked with an asterisk*. NMR spectra were processed using TopSpin (Bruker) Version 4.0.5.

Chromatography

Thin layer chromatography was performed using silica-coated aluminum TLC-plates by MachereyNagel (layer-thickness: 0.20 mm , pore size: 60 A, UV-indicator F_{254}). Substanced were visualized by UV fluorescence extinction ($\lambda_{\max }=254 \mathrm{~nm}$) and staining with basic KMnO_{4}, acidic p-anisaldehyde or acidic vanillin stain.

Flash column chromatography was performed using silica by Macherey-Nagel (40-63 $\mu \mathrm{m}$).

High-performance liquid chromatography was performed using a Merck/Hitachi La Chrome ${ }^{\circledR}$-HPLCsystem with L-7150 pump, L-7200 autosampler and L 7400-UV-detection. A Daicel Chiracel® OD-H column and an isocratic n-Hexane/iso-propanol (99:1) eluent was used; flow rate $1.00 \mathrm{~mL} / \mathrm{min}$.

[^0]
High Resolution Mass Spectrometry

Mass spectra were measured by electron-spray ionization (ESI) at a Waters Micromass LCT (TOF) with lock-spray unit und injection by loop-mode by a Waters Alliance 2695, or electron ionization (EI) at a Agilent 7890 GC system with a 5977B detector (single-quadrupole).

Optical rotation

Optical rotations were measured on a Perkin-Elmer 341 polarimeter at the sodium D-line $\left(\lambda_{\max }=\right.$ 589.3 nm), with a cell length of $\mathrm{d}=1 \mathrm{dm}$ in CHCl_{3}. Concentrations are given in the corresponding experiment. Optical rotations were determined for reaction products with e.r. or d.r. above 5:1.

Racemic samples

Racemic samples were synthesized analogously to general procedure 2 , substituting N-tosyl-Ltryptophan with N-tosylglycine.

Compounds were named as suggested by ChemDraw.

General procedure 1: Preparation of ketene silyl acetals

To a solution of DMPU (1.20 equiv) in THF (1.9 m) was added LiHMDS (1.0 M in THF, 1.10 equiv) at $-78^{\circ} \mathrm{C}$. After 30 min , the corresponding ester ($13.0 \mathrm{mmol}, 1.00$ equiv) was added and the mixture stirred for 30 min . After addition of the corresponding chlorosilane ($14.3 \mathrm{mmol}, 1.10$ equiv), the reaction mixture was warmed to r.t. immediately and stirred for 2 h . To the resulting orange-yellow solution, $n-$ pentane was added until no more lithium salts precipitated. The mixture was transferred to a separation funnel, washed with ice-water (3 x 10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through Celite ${ }^{\circledR}$. After evaporation of the solvent in vacuo, the so obtained KSAs were directly employed in subsequent bVMARs.

$3.44 \mathrm{~g}, 12.8 \mathrm{mmol}, 88 \%$
Prepared according to general procedure 1 starting from 2.24 g of ($2 E, 4 E$)-2-methylhexa-2,4-dienoate. (E/Z 38:62, asterisk denotes minor component).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=6.67(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.59^{*}(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 6.43(\mathrm{ddt}$, $1 \mathrm{H}, J=0.9 \mathrm{~Hz}, 10.7 \mathrm{~Hz}, 16.9 \mathrm{~Hz}$), $6.40^{*}(\mathrm{ddt}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 16.9 \mathrm{~Hz}$), 5.98 (dd, $1 \mathrm{H}, J=10.6$ $\mathrm{Hz}, 15.5 \mathrm{~Hz}), 5.13-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.93-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.86^{*}(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $1.71 *(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}), 0.99^{*}(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=153.0,152.7^{*}, 138.6,132.2^{*}, 132.0,124.8^{*}, 124.5,113.3^{*}$, $113.2,98.3,97.7^{*}, 77.4,66.1,65.4^{*}, 25.82^{*}, 25.77,18.4^{*}, 18.3,14.96^{*}, 14.86,11.5,11.0^{*},-4.3$, -4.4^{*}.

HRMS due to decomposition in the mass spectrometer not available (ESI+; EI). ${ }^{5}$

Appearance: Orange oil

[^1]

Ketene silyl acetals $\mathbf{3 b} \mathbf{- d}$ were prepared according to general procedure 1 starting from 600 mg of ($2 E, 4 E$)-2-methylhexa-2,4-dienoate. Due to their general instability these compounds were directly applied in the reactions, and used without purification and further characterization.

3b: $1.03 \mathrm{~g}, 3.85 \mathrm{mmol}, 99 \%$, orange oil.
3c: $1.11 \mathrm{~g}, 3.58 \mathrm{mmol}, 92 \%$, orange oil.
3d: $1.40 \mathrm{~g}, 3.58 \mathrm{mmol}, 92 \%$, orange oil.

$1.26 \mathrm{~g}, 5.24 \mathrm{mmol}, 80 \%$
Prepared according to general procedure 1 starting from 825 mg of methyl sorbate.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.46-6.31(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.9,14.9 \mathrm{~Hz}), 5.01-4.95$ (m, 1H), 4.85-4.80 (m, 1H), 4.47 (d, 1H, J = 10.7 Hz), 3.58 ($\mathrm{s}, 3 \mathrm{H}), 0.95$ (s, 9H), 0.17 ($\mathrm{s}, 6 \mathrm{H}$). The spectroscopic data match the data reported by List and co-workers. ${ }^{6}$

Appearance: Yellow oil

[^2]
General procedure 2: Bisvinylogous Mukaiyama Aldol Reaction (bVMAR)

To a suspension of N-tosyl-L-tryptophan ($143 \mathrm{mg}, 400 \mu \mathrm{~mol}, 1.00$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL), dichlorophenylborane ($52 \mu \mathrm{~L}, 400 \mu \mathrm{~mol}, 1.00$ equiv) was added carefully at r.t. After stirring for 1 h , the solvent was removed under reduced pressure. ${ }^{7}$ The resulting solid OXB 8 was dissolved in valeronitrile (2.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. The aldehyde ($400 \mu \mathrm{~mol}, 1.00$ equiv) was added, followed by slow addition of the KSA ($760 \mu \mathrm{~mol}, 1.90$ equiv). After 2 h , the reaction was quenched by addition of a mixture of THF/ $\mathrm{H}_{2} \mathrm{O} / 2 \mathrm{~m} \mathrm{HCl}(5: 1: 0.2,10 \mathrm{~mL})$ and stirred vigorously for 1 h at r.t. To the biphasic mixture was added sat. aq. NaHCO_{3} solution (5 mL) and EtOAc (20 mL). After phase-separation, the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine (1 x 25 ml), dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. After chromatographic purification the desired ester was obtained.

[^3]
Ethyl (R,2E,4E)-7-hydroxy-2-methyl-7-phenylhepta-2,4-dienoate (5a)

$64 \mathrm{mg}, 244 \mu \mathrm{~mol}, 61 \%$, e.r. $82: 18$, starting from 42.4 mg of benzaldehyde
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.38-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.4 \mathrm{~Hz}), 6.44(\mathrm{dd}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, 15.1 \mathrm{~Hz}), 6.04(\mathrm{dt}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, 15.1 \mathrm{~Hz}), 4.80(\mathrm{t}, 1 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.66(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.2$ Hz).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.7,143.8,137.9,137.6,129.2,128.7,127.9,126.6,125.9$, $73.8,60.7,43.2,14.5,12.8$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}$ 261.1491; Found 261.1487.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.40(\mathrm{PE}: E t O A c 5: 1)$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+13.6\left(\mathrm{c}=8.8 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (R,2E,4E)-7-hydroxy-2-methyl-7-(o-tolyl)hepta-2,4-dienoate (5b)

$65.9 \mathrm{mg}, 240 \mu \mathrm{~mol}, 46 \%$, e.r. $65: 35$, starting from 48.0 mg of 2-methyl benzaldehyde
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.45(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.1 \mathrm{~Hz}, 15.1 \mathrm{~Hz}), 6.10(\mathrm{dt}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 15.1 \mathrm{~Hz}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}), 4.20(\mathrm{q}, 2 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 2.64-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,141.9,137.9,134.6,130.7,127.8,126.6,125.3,70.1$, $60.7,42.0,19.2,14.5,12.8$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na} 297.1467$; Found 297.1468.

Column chromatography: $\mathrm{PE}: E t O A c 5: 1$
$\mathbf{R}_{f}=0.33$ (PE:EtOAc 5:1)
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+17.8\left(\mathrm{c}=10.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (R,2E,4E)-7-hydroxy-7-(4-methoxyphenyl)-2-methylhepta-2,4-dienoate (5c)

$44.1 \mathrm{mg}, 152 \mu \mathrm{~mol}, 38 \%$, e.r. $78: 22$, starting from 54.4 mg of p-anisaldehyde, obtained as $3.6: 1$ mixture of the $2 E$ and $2 Z$ isomer. ${ }^{9}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=7.79-7.72(2 \mathrm{Z}, \mathrm{m}, 1 \mathrm{H}), 7.42-7.36(2 E, \mathrm{~m}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}$, $2 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.31-6.22(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.80(2 \mathrm{E}, \mathrm{m}, 1 \mathrm{H}), 5.78-5.70(2 \mathrm{Z}, \mathrm{m}, 1 \mathrm{H}), 4.47-4.38$ $(\mathrm{m}, 1 \mathrm{H}), 4.04(2 \mathrm{Z}, \mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.03(2 E, \mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.62(2 \mathrm{Z}, \mathrm{m}, 1 \mathrm{H})$, $2.61-2.52(2 Z, \mathrm{~m}, 1 \mathrm{H}), 2.51-2.42(2 E, \mathrm{~m}, 1 \mathrm{H}), 2.41-2.32(2 E, \mathrm{~m}, 1 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 0.99(2 E, \mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.98(2 Z, \mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=168.2(2 Z), 168.1(2 E), 159.62(2 E), 159.60(2 Z), 138.4(2 E)$, $138.3(2 E), 136.8(2 E), 136.7(2 Z), 135.3(2 Z), 132.9(2 E), 128.9(2 E), 127.4(2 Z), 127.3(2 E), 126.6$ (2E), $126.1(2 Z), 114.08(2 E), 114.06(2 Z), 73.4(2 Z), 73.3(2 E), 60.6(2 Z), 60.5(2 E), 54.8(2 E), 54.8$ (2Z), $43.6(2 E), 38.2(2 Z), 14.36(2 E), 14.35(2 Z), 12.8(2 E), 12.7(2 Z)$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na} 313.1416$; Found 313.1404.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.13$ (PE:EtOAc 5:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+8.3\left(\mathrm{c}=10.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

[^4]
Ethyl (R,2E,4E)-7-hydroxy-2-methyl-7-(4-nitrophenyl)hepta-2,4-dienoate (5d)

$56.1 \mathrm{mg}, 184 \mu \mathrm{~mol}, 71 \%$, e.r. $86: 14$, starting from 60.4 mg of p-nitro benzaldehyde.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=8.26-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz})$, 6.49-6.36 (m, 1H), $6.00(\mathrm{dt}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 15.1 \mathrm{~Hz}), 4.96-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.59$ (m, 2H), $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.6,151.2,147.4,137.5,136.2,129.8,127.1,126.7,123.8$, $72.5,60.8,43.2,14.4,12.7$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}$ 328.1161; Found 328.1163.

Column chromatography: $\mathrm{PE}: \mathrm{EtOAc} 4: 1$ to $1: 1$
$\mathbf{R}_{f}=0.08(\mathrm{PE}: E t O A c 5: 1)$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+22.4\left(\mathrm{c}=10.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Orange oil

Ethyl (R,2E,4E)-7-hydroxy-2-methyl-7-(3-(trifluoromethyl)phenyl)hepta-2,4-dienoate (5e)

$85.3 \mathrm{mg}, 260 \mu \mathrm{~mol}, 55 \%$, e.r. $81: 19$, starting from 69.6 mg of 3-trifluoromethyl benzaldehyde.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.65(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 6.49-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.07-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{dd}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, 5.4 \mathrm{~Hz}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 2.68-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.6,144.7,137.5,136.5,130.9\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=32.3 \mathrm{~Hz}\right), 129.6$, $129.2,129.0,126.9,124.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=3.9 \mathrm{~Hz}\right), 124.1\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=272.0 \mathrm{~Hz}\right), 122.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=3.9 \mathrm{~Hz}\right), 73.0$, $60.8,43.3,14.4,12.8$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NaF}_{3}$ 351.1184; Found 351.1184.

Column chromatography: PE:EtOAc $4: 1$ to $2: 1$
$\mathbf{R}_{f}=0.25$ (PE:EtOAc 5:1)
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+20.6\left(\mathrm{c}=10.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (R,2E,4E)-7-hydroxy-2-methyl-7-(naphthalen-2-yl)hepta-2,4-dienoate (5f)

$51 \mathrm{mg}, 184 \mu \mathrm{~mol}, 40 \%$, e.r. 80:20, starting from 62.5 mg of 2-naphthaldehyde.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=7.70-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H})$, $6.32-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.89-5.80(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.53-2.36(\mathrm{~m}, 2 \mathrm{H})$, $1.91-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.99(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.6,141.1,137.9,137.5,133.4,133.2,129.2,128.5,128.1$, $127.8,126.6,126.4,126.1,124.7,124.0,73.9,60.7,43.1,14.4,12.7$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na} 333.1467$; Found 333.1468.

Column chromatography: $\mathrm{PE}: E t O A c 5: 1$
$\mathbf{R}_{f}=0.32(\mathrm{PE}: E t O A c 5: 1)$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+63.2\left(\mathrm{c}=10.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Waxy solid

Ethyl (R,2E,4E,8E)-7-hydroxy-9-iodo-2,8-dimethylnona-2,4,8-trienoate (5g)

$91 \mathrm{mg}, 260 \mu \mathrm{~mol}, 65 \%$, e.r. $89: 11$, starting from 78.4 mg of 3-iodomethacrolein.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.15(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 6.48-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.98$ $(\mathrm{dt}, 1 \mathrm{H}, J=7.4,14.9 \mathrm{~Hz}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.52-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=168.6,149.1,137.6,136.6,129.3,126.9,79.0,75.8,60.7,39.3$, 20.3, 14.5, 12.8 .

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NaI} 373.0277$; Found 373.0275.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.44(\mathrm{PE}: E t O A c 5: 1)$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-228.6\left(\mathrm{c}=10.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Preparation of protected dicobalt aldehyde $\mathbf{4 m}$ and oxidative liberation of bVMAR product $5 \mathrm{~h} \mathbf{:}^{\mathbf{4}}$

Preparation of aldehyde 4h:

To a solution of dicobalt octacarbonyl ($818 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(48 \mathrm{ml} 0.05 \mathrm{M})$ was slowly added 2-butyne diethyl acetal ($380 \mu \mathrm{l}, 2.39 \mathrm{mmol}, 1.00$ equiv) at rt. After stirring over night at this temperature, the reaction mixture was passed through a short plug of basic aluminium oxide and the filtrate was concentrated under reduced pressure. The residue was then dissolved in acetone ($8 \mathrm{ml}, 0.3$ M) and water $(170 \mu \mathrm{l})$ and amberlyst $15(272 \mathrm{mg})$ were added. After stirring for 3 h at rt , the solution was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure. Purification by column chromatography (PE:MTBE 40:1) yielded aldehyde $\mathbf{4 h}(651 \mathrm{mg}, 1.84 \mathrm{mmol}, 77 \%)$ as a red oil, which was used without further purification.

Oxidative liberation of bVMAR product $\mathbf{5 h}$:

After following General Procedure 2 for the bVMAR of KSA 3a with aldehyde $\mathbf{4 h}$, the crude product was passed through a short silica column and the concentrated filtrate was dissolved in acetone (30 ml). To this solution was added ceric ammonium nitrate ($1.10 \mathrm{~g}, 2.00 \mathrm{mmol}, 5.00$ equiv) in acetone (5 ml) at $-78^{\circ} \mathrm{C}$. After 1 h , brine was added and the mixture was warmed to rt . The phases were separated and the aqueous layer was extracted with $\operatorname{MTBE}(3 \times 30 \mathrm{ml})$. The combined organic layers were washed with sat. aq. NaHCO_{3} solution ($1 \times 75 \mathrm{ml}$) and brine (1 x 75 ml), dried over MgSO_{4}. Purification by flash column chromatography yielded the desired bVMAR product $\mathbf{5 h}$.

Ethyl (R,2E,4E)-7-hydroxy-2-methyldeca-2,4-dien-8-ynoate (5h)

$49 \mathrm{mg}, 220 \mu \mathrm{~mol}, 55 \%$, e.r. $90: 10$, starting from 141.6 mg of aldehyde $\mathbf{4 h}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.09(\mathrm{~m}, 1 \mathrm{H})$, $4.49-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.56(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, 3 \mathrm{H}, J=2.1$ $\mathrm{Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}, 7.1 \mathrm{~Hz})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta[\mathrm{ppm}]=168.7,137.9,136.5,129.5,126.7,82.1,79.6,62.0,60.7,41.9$, 14.4, 12.8, 3.7.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na} 245.1154$; Found 245.1148.
Column chromatography: PE:EtOAc 10:1 to 5:1
$\mathbf{R}_{f}=0.43$ (PE:EtOAc 4:1)
$[\alpha]_{\mathrm{D}}{ }^{20}=+19.5\left(\mathrm{c}=8.2 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Colorless oil

Ethyl (S,2E,4E)-7-hydroxy-2-methylundeca-2,4-dienoate (5i)

$68 \mathrm{mg}, 284 \mu \mathrm{~mol}, 71 \%$, e.r. $87: 13$, starting from 34.4 mg of valeraldehyde.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.04(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.74-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.53-1.27(\mathrm{~m}, 9 \mathrm{H}), 0.94-0.89(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,138.3,138.0,129.0,126.3,71.2,60.7,41.5,36.9,28.0$, $22.8,14.5,14.2,12.8$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na} 263.1623$; Found 263.1617.

Column chromatography: PE:EtOAc 10:1
$\mathbf{R}_{f}=0.45$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+7.8\left(\mathrm{c}=20.6 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (S,2E,4E)-7-hydroxy-15-((4-methoxybenzyl)oxy)-2-methylpentadeca-2,4-dienoate (5j)

$87 \mathrm{mg}, 200 \mu \mathrm{~mol}, 50 \%(75 \% \mathrm{brsm})$, e.r. $86: 14$, starting from 111.4 mg of aldehyde $\mathbf{4 j}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.36-$ $6.26(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.41-3.36(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.18(\mathrm{~m}, 12 \mathrm{H}), 0.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.02(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=168.1,159.7,138.9,138.4,131.6,129.4,128.7,126.4,114.1$, $72.8,70.9,70.3,60.5,54.8,41.8,37.5,30.4,30.0,30.0,29.9,26.8,26.0,14.4,12.9$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Na} 455.2773$; Found 455.2773.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.20(\mathrm{PE}: E t O A c 4: 1)$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+4.3\left(\mathrm{c}=7.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Amorphous solid

Ethyl (R,2E,4E)-7-hydroxy-2,8-dimethylnona-2,4-dienoate (5k)

$59 \mathrm{mg}, 261 \mu \mathrm{~mol}, 65 \%$, e.r. $95: 5$, starting from 28.8 mg of isobutyraldehyde.
1.2 mmol scale: $92.7 \mathrm{mg}, 0.41 \mathrm{mmol}, 34 \%$, e.r. $92: 8$, starting from 86.4 mg of isobutyraldehyde.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.15-6.06(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.75-$ $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.7,138.9,138.0,128.8,126.2,75.9,60.7,38.4,33.5,18.9$, 17.5, 14.5, 12.8.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na} 249.1467$; Found 249.1477.
Column chromatography: PE:EtOAc 10:1
$\mathbf{R}_{f}=0.42(\mathrm{PE}: E t O A c 4: 1)$
$[\alpha]_{\mathrm{D}}{ }^{20}=+12.6\left(\mathrm{c}=9.5 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Pale-yellow oil
bVMAR with isobutyraldehyde at 1.2 mmol scale:
To a suspension of N-tosyl-L-tryptophan ($430 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.0 mL), dichlorophenylborane ($156 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 1.00$ equiv) was added carefully at r.t. After stirring for 1 h , the solvent was removed under reduced pressure. The resulting solid OXB was dissolved in valeronitrile (6.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. Isobutyraldehyde ($87 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.00$ equiv) was added, followed by slow addition of the KSA $\mathbf{3 a}$ ($611 \mathrm{mg}, 2.28 \mathrm{mmol}, 1.90$ equiv). After 2 h , the reaction was quenched by addition of a mixture of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / 2 \mathrm{~m} \mathrm{HCl}(5: 1: 0.2,30 \mathrm{~mL})$ and stirred vigorously for 1 h at r.t. To the biphasic mixture was added sat. aq. NaHCO_{3}-solution (15 mL) and EtOAc (60 mL). After phaseseparation, the aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic phases were washed with brine (1 x 100 ml), dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. After chromatographic purification bVMAR product $\mathbf{5 k}(92.1 \mathrm{mg}, 0.41 \mathrm{mmol}, 34 \%$, e.r. 92:8) was obtained as a pale-yellow oil.

Ethyl (R,2E,4E)-7-cyclohexyl-7-hydroxy-2-methylhepta-2,4-dienoate (51)

$47.5 \mathrm{mg}, 172 \mu \mathrm{~mol}, 45 \%$, e.r. $90: 10$, starting from 44.9 mg of cyclohexyl carbaldehyde.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.15-6.06(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.92(\mathrm{~m}, 3 \mathrm{H})$, $1.88-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.42-0.9(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,139.1,138.1,128.8,126.1,75.3,60.7,43.4,38.4,29.3$, 28.1, 26.6, 26.4, 26.2, 14.4, 12.8.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na} 289.1780$; Found 289.1788.

Column chromatography: $\mathrm{PE}: E t O A c 5: 1$
$\mathbf{R}_{f}=0.36(\mathrm{PE}: E t O A c 5: 1)$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+6.2\left(\mathrm{c}=9.2 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (R,2E,4E)-7-hydroxy-2,8,8-trimethylnona-2,4-dienoate (5m)

$62 \mathrm{mg}, 258 \mu \mathrm{~mol}, 65 \%$, e.r. $95: 5$, starting from 34.4 mg of pivaldehyde.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.09(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.93(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,140.2,138.1,128.6,126.1,78.9,60.7,36.1,35.1,25.8$, 14.5, 12.8 .

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na} 263.1623$; Found 263.1630.

Column chromatography: PE:EtOAc 10:1
$\mathbf{R}_{f}=0.55(\mathrm{PE}: E t O A c 4: 1)$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+17.0\left(\mathrm{c}=10 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Colorless oil

$20 \mathrm{mg}, 101 \mu \mathrm{~mol}, 25 \%$, e.r. $92: 8$, starting from 28.8 mg of isobutyraldehyde.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.42(\mathrm{dd}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, 10.8 \mathrm{~Hz}), 5.91-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.76-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 0.76(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=167.2,145.0,141.0,130.8,120.0,75.3,51.1,38.3,33.5,19.0$, 17.2.

HRMS (EI-quadrupole) m/z: [M-C4 $\left.\mathrm{C}_{8} \mathrm{O}\right]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ 126.0681; Found 126.0682 ${ }^{10}$.
Column chromatography: $\mathrm{PE}: \mathrm{EtOAc} 5: 1$
$\mathbf{R}_{f}=0.23$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+17.0\left(\mathrm{c}=10 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Colorless oil

[^5]Methyl (R,2E,4E)-7-hydroxy-8,8-dimethylnona-2,4-dienoate (50)

$61 \mathrm{mg}, 287 \mu \mathrm{~mol}, 72 \%$, e.r. $95: 5$, starting from 34.4 mg of pivaldehyde.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.45(\mathrm{dd}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, 10.8 \mathrm{~Hz}), 5.92-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.81-$ $5.72(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 0.81 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=167.3,145.1,142.2,130.7,119.9,78.3,51.1,35.9,34.9,25.8$.

HRMS (EI-quadrupole) m/z: [M-H2O] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1307; Found 194.1306.

Column chromatography: PE:EtOAc 10:1
$\mathbf{R}_{f}=0.35$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+20.0\left(\mathrm{c}=10 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Colorless oil

Ethyl (2E,4E,7R,8R)-9-((tert-butyldimethylsilyl)oxy)-7-hydroxy-2,8-dimethylnona-2,4-dienoate (5p)

$106 \mathrm{mg}, 297 \mu \mathrm{~mol}, 74 \%$, d.r. $\geq 95: 5$, starting from 81.0 mg of aldehyde $\mathbf{4 n}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.29(\mathrm{~m}, 1 \mathrm{H}), 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 4.07$ $(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.88(2,3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.01$ ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=168.1,139.5,138.5,126.3,72.9,67.7,60.4,39.6,39.1,26.0$, $18.4,14.4,12.9,10.4,-5.4,-5.5$;

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa} 379.2281$; Found 379.2280.

Column chromatography: PE:EtOAc $10: 1$ to $5: 1$
$\mathbf{R}_{f}=0.63$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 2}}=+22.4\left(\mathrm{c}=11.7 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (2E,4E,7R,8S)-9-((tert-butyldimethylsilyl)oxy)-7-hydroxy-2,8-dimethylnona-2,4-dienoate (5q)

$70 \mathrm{mg}, 196 \mu \mathrm{~mol}, 49 \%$, d.r. $90: 10$, starting from 81.0 mg of aldehyde $\mathbf{4 o}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.16(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=4.0,10.1 \mathrm{~Hz}), 3.70-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.58$ $(\mathrm{dd}, 1 \mathrm{H}, J=7.8,10.2 \mathrm{~Hz}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.08(\mathrm{~s}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,139.1,138.4,128.0,125.5,76.2,68.5,60.5,39.2,39.0$, $25.8,18.1,14.3,13.4,12.6,-5.6,-5.7$;

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa} 379.2281$; Found 379.2276.

Column chromatography: PE:EtOAc $10: 1$ to $5: 1$
$\mathbf{R}_{f}=0.63$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 2}}=+18.3\left(\mathrm{c}=10.9 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (2E,4E,7R,9S)-9-((tert-butyldimethylsilyl)oxy)-7-hydroxy-2-methyldeca-2,4-dienoate (5r)

$107 \mathrm{mg}, 301 \mu \mathrm{~mol}, 75 \%$, d.r. $93: 7$, starting from 81.0 mg of aldehyde $\mathbf{4 p}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.07(\mathrm{~m}, 1 \mathrm{H})$, $4.22(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 4.11-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}), 2.41-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91$ $(\mathrm{m}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,138.6,138.3,128.5,126.0,71.1,70.3,60.6,45.2,41.5$, $25.9,24.8,18.0,14.5,12.7,-3.7,-4.7$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa} 379.2281$; Found 379.2279.

Column chromatography: PE:EtOAc 10:1 to 5:1
$\mathbf{R}_{f}=0.44$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 2}}=+26.9\left(\mathrm{c}=13.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

Ethyl (2E,4E,7R,9R)-9-((tert-butyldimethylsilyl)oxy)-7-hydroxy-2-methyldeca-2,4-dienoate (5s)

$78 \mathrm{mg}, 220 \mu \mathrm{~mol}, 55 \%$, d.r. $47: 53^{11}$, starting from 81.0 mg of aldehyde $\mathbf{4 p}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.07(\mathrm{~m}, 1 \mathrm{H})$, 4.24-4.21* $(\mathrm{m}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 2 \mathrm{H}$, major and minor isomer), 4.11-4.05 (m, 2 H , major and minor isomer), 3.91-3.86 (m, 1H), $3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49^{*}(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 3 \mathrm{H})$, 1.67^{*} (ddd, 1H, $\left.J=3.9,10.2,14.2 \mathrm{~Hz}\right), 1.60-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.52^{*}$ (ddd, $\left.1 \mathrm{H}, J=2.1,5.0,14.3 \mathrm{~Hz}\right), 1.30(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89^{*}(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09^{*}(\mathrm{~s}, 3 \mathrm{H}), 0.085^{*}(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=168.7,138.7^{*}, 138.6,138.3,128.5,128.4^{*}, 125.97^{*}, 125.96$, $71.1,70.3,67.9^{*}, 67.7,60.6,45.3,43.8^{*}, 41.8^{*}, 41.5,25.94,25.93^{*}, 24.8,22.8^{*}, 18.1^{*}, 18.0,14.5,12.8$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa} 379.2281$; Found 379.2285.

Column chromatography: PE:EtOAc 10:1 to 5:1
$\mathbf{R}_{f}=0.44$ (PE:EtOAc 4:1)

Appearance: Yellow oil

[^6]
Ethyl (2E,4E,7R,9S)-7-hydroxy-9-((4-methoxybenzyl)oxy)-2-methyldeca-2,4-dienoate (5t)

$109 \mathrm{mg}, 301 \mu \mathrm{~mol}, 75 \%$, d.r. $76: 24$, starting from 83.2 mg of aldehyde $\mathbf{4 q}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H})$, 6.44-6.35 (m, 1H), 6.13-6.03 (m, 1H), $4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.56^{*}(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}$, $J=11.3 \mathrm{~Hz}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.22-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.98^{*}(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.83(\mathrm{~m}, 1 \mathrm{H})$, $3.82-3.76(\mathrm{~m}, 4 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 3 \mathrm{H})$, $1.27^{*}(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=168.74,168.72^{*}, 159.5,159.4^{*}, 138.6,138.3,138.2^{*}, 130.5^{*}$, $130.1,129.6,129.5^{*}, 128.5^{*}, 128.4,126.0^{*}, 125.9,114.1,114.0^{*}, 75.9,72.3^{*}, 71.4,70.3^{*}, 70.1,60.64^{*}$, 60.61, 55.4, 43.4, 42.4*, 41.51, 41.47, 19.8, 19.2*, 14.5, 12.7.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na} 385.1991$; Found 385.1989.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.20(\mathrm{PE}: E t O A c 4: 1)$

Appearance: Yellow oil

Ethyl (2E,4E,7R,9R)-7-hydroxy-9-((4-methoxybenzyl)oxy)-2-methyldeca-2,4-dienoate (5u)

$59 \mathrm{mg}, 164 \mu \mathrm{~mol}, 41 \%$, d.r. $84: 16$, starting from 83.2 mg of aldehyde $\mathbf{4 q}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H})$, 6.42-6.36 (m, 1H), 6.12-6.05 (m, 1H), 4.60* (d, 1H, J=10.8 Hz), $4.56(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}$, $J=11.3 \mathrm{~Hz}), 4.34^{*}(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.83(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.29^{*}$ $(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.24^{*}(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,159.4,138.6,138.2,130.5,129.5,128.5,126.0,114.0$, $72.3,70.3,68.0,60.6,55.4,42.3,41.5,19.2,14.4,12.7$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na} 385.1991$; Found 385.1977.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.15$ (PE:EtOAc 4:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+23.5\left(\mathrm{c}=24.4 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

$64 \mathrm{mg}, 215 \mu \mathrm{~mol}, 54 \%$, d.r. $\geq 95: 5$, starting from 57.7 mg of aldehyde $\mathbf{4 r}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.12-6.02(\mathrm{~m}, 1 \mathrm{H})$, $4.39-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=6.1,8.1 \mathrm{~Hz}), 4.01-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{t}$, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,137.9,137.7,129.1,126.5,109.1,73.6,69.5,68.4,60.7$, 41.7, 39.6, 27.0, 25.8, 14.5, 12.8.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na} 321.1678$; Found 321.1668.

Column chromatography: $\mathrm{PE}: E t O A c 5: 1$
$\mathbf{R}_{f}=0.19$ (PE:EtOAc 2:1)
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+0.95(\mathrm{c}=10.5 \mathrm{mg} / \mathrm{mL})$
Appearance: Yellow oil

$43 \mathrm{mg}, 144 \mu \mathrm{~mol}, 36 \%$, d.r. $\geq 95: 5$, starting from 57.7 mg of aldehyde $\mathbf{4 r}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.46-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.03(\mathrm{~m}, 1 \mathrm{H})$, $4.31-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=8.1,6.0 \mathrm{~Hz}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.56$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.1,7.2 \mathrm{~Hz}), 2.46-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.36$ $(\mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.7,138.08,138.0,128.7,126.2,109.7,75.9,70.6,69.8$, 60.7, 41.3, 39.9, 31.0, 27.0, 25.9, 14.4, 12.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na} 321.1678$; Found 321.1682.

Column chromatography: PE:EtOAc 5:1
$\mathbf{R}_{f}=0.32(\mathrm{PE}: E t O A c 2: 1)$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+4.39\left(\mathrm{c}=11.4 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)$
Appearance: Yellow oil

General procedure 3: Synthesis of Mosher esters using the Mosher's acid chloride

4-DMAP (6.00 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (10.0 equiv) and (S)-MTPA- Cl (6.00 equiv) were added to a solution of the corresponding VMAR-product (usually 20-40 $\mu \mathrm{mol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at r.t. The reaction mixture was stirred for 10 min , then diluted with MTBE. The solution was washed with $\mathrm{NaOH}(1 \mathrm{~m}$, $3 \mathrm{x}), \mathrm{NaHCO}_{3}(3 \mathrm{x}), \mathrm{CuSO}_{4}(1 \mathrm{x})$ and brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The crude Mosher esters were used for e.r. determination via ${ }^{19} \mathrm{~F}-\mathrm{NMR}$.

Representative Mosher esters for determination of absolute stereochemistry

Figure 1. Mosher's ester analysis for the determination of the absolute configuration of bVMAR product 5 g .

Figure 2. Mosher's ester analysis for the determination of the absolute configuration of bVMAR product $\mathbf{5 j}$.

Figure 3. Mosher's ester analysis for the determination of the absolute configuration of bVMAR product $5 \mathbf{5}$.

Figure 4. Mosher's ester analysis for the determination of the absolute configuration of bVMAR product $\mathbf{5 t}$.

Figure 5. Mosher's ester analysis for the determination of the absolute configuration of bVMAR product $5 \mathbf{v}$.

Investigations on the substrate-induced stereocontrol of aldehyde $4 p$ and matched/mismatched cases

Table 1. Lewis acid-dependent distribution syn:anti product distribution for the bVMAR between ketene acetal 3a and β-chiral aldehyde $\mathbf{4 p}$.

NMR Spectra of new compounds

Spectrum 1. ${ }^{1} \mathrm{H}$ spectrum of 3a measured in CDCl_{3} at 400 MHz .

Spectrum 2. ${ }^{13} \mathrm{C}$ spectrum of 3a measured in CDCl_{3} at 101 MHz .

Spectrum 3. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{3 e}$ measured in CDCl_{3} at 400 MHz .

Spectrum 4. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 a}$ measured in CDCl_{3} at 400 MHz .

Spectrum 5. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 a}$ measured in CDCl_{3} at 101 MHz .

Spectrum 6. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 b}$ measured in CDCl_{3} at 400 MHz .

Spectrum 7. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 b}$ measured in CDCl_{3} at 101 MHz .

Spectrum 8. ${ }^{1} \mathrm{H}$ spectrum of 5 c measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 9. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 c}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 101 MHz .

Spectrum 10. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 d}$ measured in CDCl_{3} at 400 MHz .

Spectrum 11. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 d}$ measured in CDCl_{3} at 101 MHz .

Spectrum 12. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 e}$ measured in CDCl_{3} at 400 MHz .

Spectrum 13. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 e}$ measured in CDCl_{3} at 101 MHz .

Spectrum 14. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 f}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 15. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 f}$ measured in CDCl_{3} at 101 MHz .

Spectrum 16. ${ }^{1} \mathrm{H}$ spectrum of 5 g measured in CDCl_{3} at 400 MHz .

Spectrum 17. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 g}$ measured in CDCl_{3} at 101 MHz .

Spectrum 18. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 h}$ measured in CDCl_{3} at 600 MHz .

Spectrum 19. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 h}$ measured in CDCl_{3} at 151 MHz .

Spectrum 20. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 i}$ measured in CDCl_{3} at 400 MHz .

Spectrum 21. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 i}$ measured in CDCl_{3} at 101 MHz .

Spectrum 22. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 j}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 23. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 j}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $101 \mathbf{~ M H z}$.

Spectrum 24. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 k}$ measured in CDCl_{3} at 400 MHz .

Spectrum $25{ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 k}$ measured in CDCl_{3} at 101 MHz .

Spectrum 26. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 I}$ measured in CDCl_{3} at 400 MHz .

Spectrum 27. ${ }^{13} \mathrm{C}$ spectrum of 51 measured in CDCl_{3} at 101 MHz .

Spectrum 28. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 m}$ measured in CDCl_{3} at 400 MHz .

Spectrum 29. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 m}$ measured in CDCl_{3} at 101 MHz .

Spectrum 30. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 n}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 31. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 n}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 101 MHz .

Spectrum 32. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 o}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 33. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 o}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 101 MHz .

Spectrum 34. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 p}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 35. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 p}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 101 MHz .

Spectrum 36. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 q}$ measured in CDCl_{3} at 600 MHz .

Spectrum 37. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 q}$ measured in CDCl_{3} at 151 MHz .

Spectrum 38. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 q}$ for the determination of the diastereomeric ratio; the spectrum was measured in CDCl_{3} at 600 MHz .

Spectrum 39. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 r}$ measured in CDCl_{3} at 400 MHz .

Spectrum 40. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 r}$ measured in CDCl_{3} at 101 MHz .

Spectrum 41. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 r}$ for the determination of the diastereomeric ratio; the spectrum was measured in CDCl_{3} at 600 MHz .

Spectrum 42. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 s}$ measured in CDCl_{3} at 400 MHz .5 s was obtained as a mixture with its diastereomer 5r.

Spectrum 43. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 s}$ measured in CDCl_{3} at 101 MHz . $\mathbf{5 s}$ was obtained as a mixture with its diastereomer $\mathbf{5 r}$.

Spectrum 44. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 s}$ for the determination of the diastereomeric ratio; the spectrum was measured in CDCl_{3} at 600 MHz .

Spectrum 45. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 t}$ measured in CDCl_{3} at 400 MHz .

Spectrum 46. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 t}$ measured in CDCl_{3} at 101 MHz .

Spectrum 47. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 t}$ for the determination of the diastereomeric ratio; the spectrum was measured in CDCl_{3} at 400 MHz .

Spectrum 48. ${ }^{1} \mathrm{H}$ spectrum of 5 u measured in CDCl_{3} at 600 MHz .

Spectrum 49. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 u}$ measured in CDCl_{3} at 101 MHz .

Spectrum 50. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 u}$ for the determination of the diastereomeric ratio; the spectrum was measured in CDCl_{3} at 600 MHz .

Spectrum 51. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 v}$ measured in CDCl_{3} at 400 MHz .

Spectrum 52. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 v}$ measured in CDCl_{3} at 101 MHz .

Spectrum 53. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 w}$ measured in CDCl_{3} at 400 MHz .

Spectrum 54. ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{5 w}$ measured in CDCl_{3} at 101 MHz .

NMR spectra of the Mosher esters for determination of the absolute configuration

Spectrum 55. ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher's ester of bVMAR product $\mathbf{5 g}$ measured in CDCl_{3} at 400 MHz .

Spectrum 56. ${ }^{1} \mathrm{H}$ spectrum of the (S)-Mosher's ester of bVMAR product 5 g measured in CDCl_{3} at 400 MHz .

Spectrum 57. ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher's ester of bVMAR product $\mathbf{5 k}$ measured in CDCl_{3} at 400 MHz .

Spectrum 58. ${ }^{1} \mathrm{H}$ spectrum of the (S)-Mosher's ester of bVMAR product $\mathbf{5 k}$ measured in CDCl_{3} at 400 MHz .

Spectrum 59. ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher's ester of bVMAR product $\mathbf{5 r}$ measured in CDCl_{3} at 400 MHz .

Spectrum 60. ${ }^{1} \mathrm{H}$ spectrum of the (S)-Mosher's ester of bVMAR product $\mathbf{5 r}$ measured in CDCl_{3} at 400 MHz .

Spectrum 61. ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher's ester of bVMAR product $\mathbf{5 t}$ measured in CDCl_{3} at 400 MHz .

Spectrum 62. ${ }^{1} \mathrm{H}$ spectrum of the (S)-Mosher's ester of bVMAR product $5 \mathbf{t}$ measured in CDCl_{3} at 400 MHz .

Spectrum 63. ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher's ester of bVMAR product $\mathbf{5 v}$ measured in CDCl_{3} at 400 MHz .

Spectrum 64. ${ }^{1} \mathrm{H}$ spectrum of the (S)-Mosher's ester of bVMAR product $5 \mathbf{v}$ measured in CDCl_{3} at 400 MHz .

$e e$-determination - part 1: chiral HPLC

Chromatogram 1. Racemic sample of bVMAR product 5a.

No.	RT	Area	Conc 1	BC
1	116,43	471902	82,180	BB
2	126,88	102331	17,820	BB
	574233	100,000		

Chromatogram 2. Enantiomerically enriched sample of bVMAR product 5a.

Chromatogram 3. Racemic sample of bVMAR product $\mathbf{5 g}$.

Chromatogram 4. Enantiomerically enriched sample of bVMAR product $\mathbf{5 g}$.
$e e$-determination - part 2: ${ }^{19} \mathrm{~F}$-NMR-data of the corresponding MTPAtes

Spectrum 65. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 b}$ measured in CDCl_{3} at 376 MHz .

Spectrum 66. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 c}$ measured in CDCl_{3} at 376 MHz .

Spectrum 67. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 d}$ measured in CDCl_{3} at 376 MHz .

Spectrum 68. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 e}$ measured in CDCl_{3} at 376 MHz .

Spectrum 69. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 f}$ measured in CDCl_{3} at 376 MHz .

Spectrum 70. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 h}$ measured in CDCl_{3} at 376 MHz .

Spectrum 71. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of the (S)-Mosher ester of $\mathbf{5 i}$ for the determination of the enantiomeric ratio; the spectrum was measured in CDCl_{3} at 400 MHz .

Spectrum 72. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher ester of $\mathbf{5 j}$ for the determination of the enantiomeric ratio; the spectrum was measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 400 MHz .

Spectrum 73. ${ }^{19}$ F spectrum of the (R)-Mosher ester of $\mathbf{5 k}$ measured in CDCl_{3} at 376 MHz .

Spectrum 74. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher ester of $\mathbf{5 k}$ (obtained from the bVMAR reaction at a 1.2 mmol scale) for the determination of the enantiomeric ratio; the spectrum was measured in CDCl_{3} at 600 MHz .

Spectrum 75. Enlarged view of the ${ }^{1} \mathrm{H}$ spectrum of the (R)-Mosher ester of $\mathbf{5 l}$ for the determination of the enantiomeric ratio; the spectrum was measured in CDCl_{3} at 600 MHz .

Spectrum 76. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 m}$ measured in CDCl_{3} at 376 MHz .

Spectrum 77. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 n}$ measured in CDCl_{3} at 376 MHz .

Spectrum 78. ${ }^{19} \mathrm{~F}$ spectrum of the (R)-Mosher ester of $\mathbf{5 0}$ measured in CDCl_{3} at 376 MHz .

[^0]: ${ }^{1}$ S. Simsek, M. Horzella, M. Kalesse, Org. Lett. 2007, 9, 26, 5637-5639; E. J. Corey, T. P. Loh, J. Am. Chem. Soc. 1991, 113, 8966-8967.
 ${ }^{2}$ P. Koukal, M. Kotora, Chem. Eur. J. 2015, 21, 7408-7412; E. Piers, G. L. Jung, E. H. Ruediger, Can. J. Chem. 1987, 65, 670-682.
 ${ }^{3}$ M. T. Gieseler, M. Kalesse, Org. Lett. 2011, 13, 2430-2432.
 ${ }^{4}$ S. Simsek, Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2009.

[^1]: ${ }^{5}$ This is in accordance with observations List et al. made for similar and isomeric ketene silyl acetals. See page 6 in SI: L. Ratjen, P. García-García, F. Lay, M. E. Beck, B. List, Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions. Angew. Chem. 2011, 123, 780-784; Angew. Chem. Int. Ed. 2011, 50, 754-758.

[^2]: ${ }^{6}$ L. Ratjen, P. García-García, F. Lay, M. E. Beck, B. List, Angew. Chem. 2011, 123, 780-784; Angew. Chem. Int. Ed., 2011, 50, 754-758.

[^3]: ${ }^{7}$ Solvent was removed at r.t. under high vacuum using a standard Schlenk line with cold trap.
 ${ }^{8}$ Formation of the OXB could be tracked by ${ }^{11} \mathrm{~B}-\mathrm{NMR}$: ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ [ppm] = 35.9 (broad s). However, this is not necessary since the formation is reliable and fast.

[^4]: ${ }^{9}$ Assignment of E and Z isomer based on the relative magnitudes of the ${ }^{4} J_{\mathrm{H}, \mathrm{H}}$ between the C 2 Me group and the olefinic proton at C3. See M. Barfield, R. J. Spear, S. Sternhell, Chem. Rev. 1976, 76, 593-624.

[^5]: ${ }^{10}$ We suggest that this fragment originates from a McLafferty-like rearrangement, which takes place between the alcohol moiety and the proximal double bond, and results in the formal loss of isobutyraldehyde

[^6]: ${ }^{11}$ The major diastereomer is the syn-diastereomer $\mathbf{5 r}$.

