Supporting Information

Variable Metal Chelation Modes and Activation Sequence in Pd-

Catalyzed B-H Poly-arylation of Carboranes

Hou-ji Cao, Meng Chen, Fangxiang Sun, Yue Zhao, Changshen Lu, Xiaolei Zhang*, Zhuangzhi Shi* and Hong Yan*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China

Corresponding Author *Email: zhangxiaolei1213@yahoo.com *Email: shiz@nju.edu.cn *Email: hyan1965@nju.edu.cn

Table of contents

1. General Considerations	
2. Experimental Section	
3. References	
4. Crystallographic Data	S58-S59
5. NMR Spectra	

1. General Considerations

Carboranyl aldehydes $1a-c^{S1}$ were synthesized according to literature methods. Unless otherwise noted, all the solvents and commercially available reagents were purchased from commercial sources and used directly. Hexanes, THF and Et₂O were refluxed and distilled over sodium/benzophenone under nitrogen. CH₂Cl₂ and toluene were refluxed and distilled over GaH₂ under nitrogen. Glass-backed Silica Gel 60 thinlayer chromatography (TLC) plates were used as received. Column chromatography was performed on Silica Gel 60 (200–300 or 300–400 Mesh). TLC samples for carborane-containing compounds were stained with 1 wt. % PdCl₂ in 6 M HCl and were developed with heating using a heat gun. Melting points (m. p.) were measured on an X-4 digital melting-point apparatus. Elemental analyses were performed on a Perkin-Elmer 240 analyzer.

Spectroscopic Measurements. ¹H, ¹¹B, ¹³C, ¹⁹F, ³¹P NMR spectra were recorded on Bruker AVANCE III 400 and 500 MHz NMR spectrometers in ambient conditions unless otherwise stated. All chemical shifts were reported in δ units with references to the residual solvent resonances of the deuterated solvents for proton and carbon chemical shifts. Note that H₂O resonances are often present due to high humidity. ¹¹B chemical shifts were measured utilizing external BF₃·Et₂O (δ^{11} B = 0.00 ppm) as reference. ¹⁹F NMR spectra were referenced to fluorobenzene (δ = –113.15 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d =doublet, t = triplet, q = quartet and m = multiplet), coupling constant (*J* values) in Hz and integration. The high-resolution mass spectra (HRMS) were recorded on a Thermo Q Exactive Mass Spectrometer for ESI-MS. Fluorescence spectral measurements were carried out by using a Hitachi F-4600 fluorescence spectrophotometer. Electronic absorption spectra were recorded with Shimadzu UV-3600 spectrophotometers.

X-ray Crystallography. X-ray diffraction data of 3, 5, 6, 7', 8, 9, 11, 13a, 13c, 13k, 15b, 15d, 16, 17, 18 and 25 (CCDC No. 2045712-2045723, 2056888, 2063807, 2112043, 2063808) were collected on a Bruker Apex-II CCD diffractometer or Bruker

D8 Quest diffractometer by means of graphitemonochromated Mo Ka radiation. During the collection of the intensity data, no significant decay was observed. The intensities were corrected for Lorentz polarization effects and empirical absorption by using the SADABS program.^{S2} The structures were solved by intrinsic phasing or direct methods and refined by full-matrix least-squares method on F^2 using the SHELXTL or Olex2 crystallographic software package.^{S3} All non-hydrogen atom positions were determined utilizing the difference Fourier synthesis. The hydrogen atoms were placed at geometrically calculated positions, which were refined using a riding model. All calculations were performed by applying the Bruker SMART program. X-ray data can Cambridge Crystallographic be obtained from the Data Centre via https://www.ccdc.cam.ac.uk/structures/.

2. Experimental Section

2.1 Mechanistic studies

2.1.1 Pd-mediated B-H activation of *p*-carboranyl aldehyde

Scheme S1. Synthesis of bicyclic palladium complex 3.

Procedure for the preparation of *p***-carboranyl imine 2:** A reaction tube (50 mL) with a magnetic stir bar was charged with *p*-carboranyl aldehyde **1a** (3.0 mmol, 516.0 mg), *o*-aminophenol (1.0 equiv., 3.0 mmol, 328.0 mg) and toluene (30.0 mL). The reaction tube was sealed under Ar atmosphere and allowed to stir at 100 °C for 12 hours to form a yellow solution. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The crude residue was purified by flash column chromatography on silica gel (gradient of petroleum ether/ethyl acetate = 40/1) to afford **2**, 742 mg.

2: Yield 90%. Light yellow solid. m. p. 143.5 – 143.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.51 (s, 1H, C**H**=N), 7.19 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 6.98 (dd, J = 8.0, 1.5 Hz, 1H), 6.95 (dd, J = 8.2, 1.4 Hz, 1H), 6.80 (ddd, J = 7.9, 7.3, 1.3 Hz, 1H) (phenyl–**H**), 2.84 (s, 1H, cage C–**H**); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –13.2 (5B), –14.8 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 152.6 (CH=N), 151.9, 132.5, 130.5, 120.0, 115.8, 115.6 (phenyl–**C**), 61.4 (cage–**C**). HRMS (ESI, negative mode): m/z calcd for C₉B₁₀NOH₁₆ [M–H]⁻: 262.2241. Found: 262.2241. Elemental analysis (%) calcd for C₉B₁₀NOH₁₇: C, 41.05; H, 6.51; N, 5.32. Found: C, 41.25; H, 6.41; N, 5.46.

Synthesis of *p*-carboranyl imine bicyclic palladium complex 3: A reaction tube (10 mL) with a magnetic stir bar was charged with 2 (0.2 mmol, 53 .0mg), $Pd(OAc)_2$ (1.0 equiv., 0.2 mmol, 45.0 mg), PPh_3 (1.0 equiv. 0.2 mmol, 52.0 mg) and toluene (2.0 mL). The reaction tube was sealed under Ar atmosphere and allowed to stir at 40 °C for 6 hours. The reaction solution turned from yellow to red. The red reaction mixture was concentrated in *vacuo* and purified by flash chromatography using CH₂Cl₂ as the eluent to obtain **3**.

3: Yield 93%. Yellow solid. m. p. 250.3 – 250.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.87 – 7.78 (m, 6H), 7.47 – 7.39 (m, 9H) (PPh₃–**H**), 7.34 (d, J = 7.4 Hz, 1H, C**H**=N), 7.02 (ddd, *J* = 8.5, 6.9, 1.6 Hz, 1H), 6.91 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.69 (dd, *J* = 8.5, 1.3 Hz,

1H), 6.28 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H) (N–**Ph**–O), 2.30 (s, 1H, cage C–**H**); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –8.3 (3B), –15.3 (7B); ¹³C NMR (101 MHz, CDCl₃): δ 172.1 (d, J = 2.2 Hz, CH=N), 150.3 (d, J = 3.6 Hz), 135.0 (d, J = 12.7 Hz), 133.7, 132.8, 132.2, 131.7, 130.7 (d, J = 2.5 Hz), 128.4 (d, J = 10.9 Hz), 123.5, 116.2 (d, J = 2.3 Hz), 113.0 (phenyl–C), 93.0, 61.0 (cage–C); ³¹P NMR (162 MHz, CDCl₃): δ 30.5. HRMS (ESI, positive mode): m/z calcd for C₂₇B₁₀NOPdPH₃₁ [M+H]⁺: 630.2176. Found: 630.2177. Elemental analysis (%) calcd for C₂₇B₁₀NOPdPH₃₀: C, 51.47; H, 4.80; N, 2.22. Found: C, 51.32; H, 4.94; N, 2.17.

Figure S1. X-Ray structure of 3 (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å] and angels [°]: C1–C13 1.480(3), C13–N1 1.276(3), C1–B2 1.771(3), N1–Pd1 2.0723(17), O2–Pd1 2.1448(14), B2–Pd1 2.030(2), P1–Pd1 2.2492(5), ∠O2–Pd1–B2 163.95(8), ∠N1–Pd1–P1 175.01(5).

2.1.2 Subsequent penta-arylation of 3 with 4-iodobenzoate

Scheme S2. Arylation of 3 to afford 4.

Subsequent Arylation of bicyclic palladium complex 3: A reaction tube (10 mL) with

a magnetic stir bar was charged with **3** (0.1 mmol, 63.0 mg), methyl 4-iodobenzoate (7.5 equiv., 0.75 mmol, 196.5 mg), Ag₃PO₄ (7.5 equiv., 0.75 mmol, 314.0 mg), and HFIP (0.5 mL). The reaction tube was sealed under Ar atmosphere and allowed to stir at 100 °C for 24 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with CH₂Cl₂. The organic phase was quenched with CH₂Cl₂ and concentrated in *vacuo*. The crude reaction mixture was purified by PTLC using petroleum ether/ethyl acetate (3/1) as the eluent to obtain **4**.

4: Yield 39%. White solid. m. p. $302.6 - 302.9 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H, CH=N), 7.71 (d, *J* = 8.4 Hz, 10H), 7.18 (ddd, *J* = 8.4, 7.3, 1.5 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 10H), 6.83 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.77 (ddd, *J* = 8.6, 7.3, 1.4 Hz, 1H), 6.65 (dd, *J* = 8.1, 1.5 Hz, 1H) (phenyl–H), 5.50 (s, 1H, OH), 3.87 (s, 15H, CH₃), 3.59 (s, 1H, cage–CH); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.9 (5B), –15.6 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 166.9 (C=O), 153.1 (CH=N), 148.7, 135.4, 132.6, 131.5, 130.5, 128.7, 120.9, 116.7, 115.4 (phenyl–C), 81.2, 60.4 (cage–C), 52.3 (OCH₃). HRMS (ESI, negative mode): *m/z* calcd for C₄₉B₁₀NO₁₁H₄₇ [M+H]⁺: 933.4152. Found: 933.4143. Elemental analysis (%) calcd for C₄₉B₁₀NO₁₁H₄₆: C, 63.08; H, 4.97; N, 1.50. Found: C, 63.27; H, 5.22; N, 1.38.

2.1.3 Stoichiometric control on the reaction of *p*-carboranyl aldehyde with methyl 4-iosobenzoate

Scheme S3. Reaction of *p*-carboranyl aldehyde (1a) and methyl 4-iodobenzoate.

	X	Yield ^[b]				
entry		5 (%)	6 (%)	7 (%)	8 (%)	9 (%)
1	1	33	16	3	0	0
2	2	17	51	26	1	0
3	3	1	21	38	3	10
4	4	0	22	35	4	17

Table S1. Reaction of *p*-carboranyl aldehyde (1a) and methyl 4-iodobenzoate.^[a]

[a] Reaction procedure: A reaction tube (10 mL) with a magnetic stir bar was charged with *p*-carboranyl aldehyde **1a** (0.1 mmol, 17 mg), methyl 4-iodobenzoate (x equiv., x = 1 to 4), Pd(OAc)₂ (5 mol%), glycine (1.0 equiv.), Ag₃PO₄ (x equiv., x = 1 to 4) and HFIP (0.5 mL). The reaction tube was sealed under Ar atmosphere and allowed to stir at 60 °C for 12 hours. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The crude reaction mixture was purified by preparative TLC (PTLC) using petroleum ether/ethyl acetate (5/1) as the eluent to obtain **5-9**. [b] Yields were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

5: White solid. m. p. 103.1 – 103.6 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.62 (s, 1H, CHO), 7.96 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H) (phenyl–H), 3.91 (s, 3H,

OCH₃), 3.11 (s, 1H, cage C–H); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –3.6 (2B), –13.8 (5B), –15.3 (2B), –16.4 (1B); ¹³C NMR (101 MHz, CDCl₃): δ 185.7 (CHO), 167.1 (C=O), 135.0, 130.9, 129.0 (phenyl–C), 86.0, 64.9 (cage–C), 52.3 (OCH₃). HRMS (ESI, negative mode): *m/z* calcd for C₁₁B₁₀O₃H₁₇ [M–H]⁻: 305.2186. Found: 305.2189. Elemental analysis (%) calcd for C₁₁B₁₀O₃H₁₈: C, 43.13; H, 5.92. Found: C, 43.08; H, 5.76.

Figure S2. X-Ray structure of **5** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.512(2), C13–O1 1.183(2), C1–B2 1.728(2), B2–C14 1.577(2).

6: White solid. m. p. 163.9 – 164.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.48 (s, 1H, CHO), 7.96 (d, J = 8.0 Hz, 4H), 7.67 (d, J = 7.9 Hz, 4H) (phenyl–H), 3.90 (s, 6H, OCH₃), 3.33 (s, 1H, cage C–H); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –3.0 (3B), –13.4 (2B), –15.2 (2B), –16.2(3B); ¹³C NMR (126 MHz, CDCl₃): δ 185.5 (CHO), 167.0 (C=O), 135.0, 134.8, 130.9, 129.0, 128.8, 128.8 (phenyl–C), 87.4, 66.3 (cage–C), 52.3 (OCH₃). HRMS (ESI, negative mode): m/z calcd for C₁₉B₁₀O₅H₂₃ [M–H][–]: 439.2554. Found: 439.2560. Elemental analysis (%) calcd for C₁₉B₁₀O₅H₂₄: C, 51.81; H, 5.49. Found: C, 51.46; H, 5.61.

Figure S3. X-Ray structure of **6** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.510(9), C13–O1 1.174(8), C1–B2 1.745(5), C1–B4 1.745(5), B2–C14 1.568(6), B4–C16 1.568(6).

7: Colorless solid. m. p. 195.3 – 195.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.69 (s, 1H, CHO), 7.97 (d, *J* = 8.3 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 4H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 4H) (phenyl–H), 3.91 (s, 3H), 3.89 (s, 6H) (OCH₃), 3.44 (s, 1H, cage C–H); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –3.6 (5B), –12.4 (2B), –15.7 (3B); ¹³C NMR (100 MHz, CDCl₃): δ 185.5 (CHO), 167.0, 167.0 (C=O), 135.3, 135.0, 131.1, 130.7, 129.1, 128.8 (phenyl–C), 86.7, 65.2 (cage–C), 52.3, 52.3 (OCH₃). HRMS (ESI, negative mode): *m*/*z* calcd for C₂₇B₁₀O₇H₂₉ [M–H]⁻: 573.2922. Found: 573.2925. Elemental analysis (%) calcd for C₂₇B₁₀O₇H₃₀: C, 56.44; H, 5.26. Found: C, 56.05; H, 5.37.

8: White solid. m. p. 219.4 – 219.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.12 (s, 1H, CHO), 7.88 (d, *J* = 8.2 Hz, 4H), 7.68 (d, *J* = 8.3 Hz, 4H), 7.47 (d, *J* = 8.2 Hz, 4H), 7.00 (d, *J* = 8.3 Hz, 4H) (phenyl–H), 3.91 (s, 6H), 3.84 (s, 6H) (OCH₃), 3.48 (s, 1H, cage C–H); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –3.1 (5B), –15.4 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 185.2 (CHO), 167.1, 166.8 (C=O), 135.5, 134.9, 130.9, 130.4, 128.8, 128.7 (phenyl–C), 84.9, 63.0 (cage–C), 52.4, 52.3. (OCH₃). HRMS (ESI, negative mode): *m*/*z* calcd for C₃₅B₁₀O₉H₃₅ [M–H]⁻: 707.3290. Found: 707.3294. Elemental analysis (%) calcd for C₃₅B₁₀O₉H₃₆: C, 59.31; H, 5.12. Found: C, 59.22; H, 4.97.

Figure S4. X-Ray structure of **8** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.512(5), C13–O1 1.175(5), C1–B2 1.742(6), C1–B3 1.723(5), C1–B4 1.742(5), C1–B5 1.747(6), B2–C14 1.576(6), B3–C15 1.569(6), B4–C16 1.576(6), B5–C17 1.579(7).

9: White solid. m. p. 318.5 – 318.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.90 (t, *J* = 1.4 Hz, 1H, C**H**=N), 7.67 (d, *J* = 8.4 Hz, 10H), 7.02 (d, *J* = 8.4 Hz, 10H) (phenyl–**H**), 4.00

(s, 2H, CH₂), 3.85 (s, 15H, OCH₃), 3.53 (s, 1H, cage C–H); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –3.2 (5B), –15.6 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 170.2, 167.2 (C=O), 157.1 (CH=N), 136.5, 135.8, 130.2, 128.3 (phenyl–C), 80.4 (cage–C), 60.6 (CH₂), 60.3 (cage–C), 52.3 (OCH₃). HRMS (ESI, positive mode): *m/z* calcd for C₄₅B₁₀NO₁₂H₄₆ [M+H]⁺: 900.4018. Found: 900.4020. Elemental analysis (%) calcd for C₄₅B₁₀NO₁₂H₄₅: C, 60.06; H, 5.04; N, 1.56. Found: C, 60.18; H, 1.49.

Figure S5. X-Ray structure of **9** (ellipsoids at 30% probability, solvent and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.505(3), C13–N1 1.246(4), C1–B2 1.750(4), C1–B3 1.762(4), C1–B4 1.745(4), C1–B5 1.751(4), C1–B6 1.754(4), B2–C14 1.585(4), B3–C15 1.585(4), B4–C16 1.617(4), B5–C17 1.592(4), B6–C18 1.588(4).

2.1.4 Synthes of B(2,3,5)-(p-F-Ph)₃-p-carboranyl aldehyde 7'.

7' were prepared by a similar procedure to 7 using 3.0 equiv. of 4-fluoroiodobenzene,
3.0 equiv. of Ag₃PO₄ at 60 °C for 12h.

7': Yield 33%. White solid. m. p. 295.8 – 296.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H, CHO), 7.60 – 7.56 (m, 2H), 7.30 – 7.25 (m, 4H), 7.04 – 6.98 (m, 2H), 6.95 – 6.89 (m, 4H) (phenyl–H), 3.38 (s, 1H, cage C–H); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –3.5 (3B), –12.4 (2B), –16.2 (5B); ¹³C NMR (100 MHz, CDCl₃): δ 186.2 (CHO), 164.1 (d, *J* = 249.3 Hz), 163.7 (d, *J* = 249.3 Hz), 137.2 (d, *J* = 7.9 Hz), 137.0 (d, *J* = 7.8 Hz), 115.3 (d, *J* = 20.2 Hz), 115.1 (d, *J* = 20.3 Hz) (phenyl–C), 86.7, 65.0 (cage–C). ¹⁹F NMR (376 MHz, CDCl₃): δ –111.9, –112.1. HRMS (ESI, negative mode): *m/z* calcd for C₂₁B₁₀F₃H₂₂ [M+O–H][–]: 470.2388. Found: 470.2385. Elemental analysis (%) calcd for C₂₁B₁₀OF₃H₂₁: C, 55.50; H, 4.66. Found: C, 55.35; H, 4.78.

Figure S6. X-Ray structure of **7**' (ellipsoids at 30% probability, H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.551(3), C13–O1 1.185(2), B2–C14 1.558(3), B4–C16 1.588(3), B5–C17 1.578(3).

2.1.5 Catalytic performance of 3 in the polyarylation reaction of 1a with methyl 4iodobenzoate

Scheme S4. Catalytic performance of 3.

Catalytic performance of 3: A reaction tube (10 mL) with a magnetic stir bar was charged with **1a** (0.1 mmol, 17.2 mg), **3** (0.005 mmol, 3.2 mg), methyl 4-iodobenzoate (7.5 equiv., 0.75 mmol, 197 mg), glycine (1.0 equiv., 0.1 mmol, 7.5 mg), Ag₃PO₄ (7.5 equiv., 0.75 mmol, 314 mg), and HFIP (1.0 mL). The reaction tube was sealed under Ar atmosphere and allowed to stir at 100 °C for 36 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate and filtered through a celite pad. The celite was washed by ethyl acetate (2 × 10 mL). The combined solvent was removed in *vacuo*. Yields were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

2.1.6 Stoichiometric reaction of di-aryalted intermediate with Pd(OAc)2

Scheme S5. Synthesis of bicyclic palladium complexe 11.

Synthesis of di-arylated *p*-carboranyl-imines 10 and corresponding bicyclic palladium complexes 11. 10 were prepared by similar procedure to 2 and the corresponding bicyclic palladium complex, 11 was synthesized by similar procedure to 3.

10: Yield 58%. Light yellow solid. m. p. 157.5 – 158.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 7.9 Hz, 4H), 7.72 (d, J = 7.8 Hz, 4H) (phenyl–H), 7.13 (s, 1H, CH=N), 7.04 (dd, J = 7.5 Hz, J = 7.8 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 6.56 (dd, J = 7.6 Hz, J = 7.7 Hz, 1H), 6.29 (d, J = 7.8 Hz, 1H) (phenyl–H), 5.57 (s, 1H, OH), 3.91 (s, 6H, OCH₃), 3.31 (s, 1H, cage–CH); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –2.7 (4B), –12.5 (2B), –15.9 (4B); 13C NMR (101 MHz, CDCl₃): δ 167.1 (C=O), 151.9 (CH=N), 151.2, 135.0, 134.7, 133.3, 130.7, 130.3, 129.1, 128.9, 120.0, 115.9, 115.5 (phenyl–C), 85.4, 64.9 (cage–C), 52.3 (OCH₃). HRMS (ESI, negative mode): m/z calcd for C₂₅B₁₀NO₅H₂₈ [M–H]⁻: 531.2940. Found: 531.2941. Elemental analysis (%) calcd for C₂₅B₁₀NO₅H₂₉: C, 56.48; H, 5.50; N, 2.63. Found: C, 56.37; H, 5.41; N, 2.46.

11: Yield 60%. Red solid. m. p. 198.7 – 199.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.04 – 8.03 (m, 2H), 7.89 – 7.82 (m, 8H), 7.80 – 7.78 (m, 4H), 7.48 – 7.41 (m, 9H) (phenyl–H), 7.11 (d, *J* = 7.5 Hz, 1H, CH=N), 6.95 (ddd, *J* = 8.5, 6.9, 1.6 Hz, 1H), 6.65 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.59 (dd, *J* = 8.6, 1.2 Hz, 1H), 6.15 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H) (phenyl–H), 3.95 (s, 3H), 3.88 (s, 3H) (OCH₃), 2.79 (s, 1H, cage–CH); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 6.6 (2B), –1.0 (4B), –11.0 (4B); ¹³C NMR (126 MHz, CDCl₃): δ 172.75, 172.73 (C=O), 167.2 (d, *J* = 10.5 Hz, CH=N), 147.1 (d, *J* = 10.5 Hz), 135.4, 135.0 (d, *J* = 10.5 Hz), 134.6, 133.7 (d, *J* = 1.5 Hz), 133.0, 132.1, 131.7, 130.9 (d, *J* = 2.5 Hz), 130.8, 129.8, 129.1, 128.8, 128.6, 128.5, 123.4, 116.1, 116.1, 112.9 (phenyl–C), 95.8, 64.4 (cage–C), 52.4, 52.2 (OCH₃); ³¹P NMR (202 MHz, CDCl₃): δ 29.67. HRMS (ESI, positive mode): *m*/*z* calcd C₄₃B₁₀NO₅PPdH₄₃ [M+H]⁺: 898.2911. Found: 898.2910. Elemental analysis (%) calcd for C₄₃B₁₀NO₅PPdH₄₂: C, 57.49; H, 4.71; N, 1.56. Found: C, 57.25; H, 4.38; N, 1.49.

Figure S7. X-Ray structure of **11** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å] and angels [°]: C1–C13 1.489(9), C13–N1 1.267(7), C1–B2 1.690(9), C1–B4 1.721(10), C1–B5 1.746(10), N1–Pd1 2.160(5), B5–Pd1 2.097(8), 2.2492(18), N1–Pd1–P1 175.72(14).

2.1.7 Subsequent arylation of 11 with methyl 4-iodobenzoate

Scheme S6. Arylation of 11 with methyl 4-iodobenzoate.

12 were prepared by a similar procedure to 4 using 1.2 equiv. of methyl 4-iosobenzoate,
1.2 equiv. of Ag₃PO₄ at 80 °C for 12h.

12: Yield 30%. Yellow solid. m. p. 225.8 – 226.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 8.2 Hz, 2H), 7.86 (d, *J* = 8.3 Hz, 4H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 4H) (phenyl–H), 7.38 (s, 1H, CH=N), 7.05 (ddd, *J* = 8.7, 7.5, 1.5 Hz, 1H), 6.73 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.60 (ddd, *J* = 7.7, 7.7, 1.3 Hz, 1H), 6.31 (dd, *J* = 8.0, 1.5 Hz, 1H) (phenyl–H), 5.28 (s, 1H, OH), 3.92 (s, 3H), 3.89 (s, 6H) (OCH₃), 3.43 (s, 1H, cage–CH); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –3.6 (4B), –11.2 (2B), –16.0 (4B); ¹³C NMR (101 MHz, CDCl₃): δ 167.02, 166.97 (C=O), 152.0 (CH=N), 150.6, 137.4, 135.1, 134.9, 133.4, 130.9, 130.6, 130.5, 129.2, 128.9, 128.8, 120.2, 115.9, 115.8 (phenyl–C), 84.6, 64.1 (cage–C), 52.3, 52.3 (OCH₃). HRMS (ESI, negative mode): *m*/*z* calcd for C_{33B10}NO₇H₃₄ [M–H]⁻: 664.3344. Found: 664.3349. Elemental analysis (%) calcd for C_{33B10}NO₇H₃₅: C, 59.54; H, 5.30; N, 2.10. Found: C, 59.25; H, 4.98; N, 2.27.

2.1.8 Alternative synthesis of 12 from 7

Scheme S7. Condensation of 7 with *o*-aminophenol to afford 12.

Alternative synthesis of 12 was prepared by similar procedure to 2.

2.1.9 Using aniline as transient directing reagent in the polyarylation reaction of 6 with methyl 4-iodobenzoate

Scheme S8. Reaction of 6 with methyl 4-iodobenzoate using aniline as a transient

directing reagent.

Procedure: A reaction tube (10 mL) with a magnetic stir bar was charged with **6** (0.1 mmol, 44.0 mg), Pd(OAc)₂ (0.01 mmol, 10 mol% 2.4 mg), methyl 4-iodobenzoate (3.6 equiv., 0.36 mmol, 94.3 mg), PhNH₂ (1.0 equiv., 0.1 mmol, 9.3 mg), Ag₃PO₄ (3.6 equiv., 0.36 mmol, 150.7 mg), and HFIP (1.0 mL). The reaction tube was sealed under Ar atmosphere and allowed to stir at 100 °C for 18 hours. Then, the reaction mixture was cooled to room temperature, and charged with toluene (0.3 mL), HOAc (0.2 mL) and stir at 100 °C for 12 hours. Upon completion, the reaction mixture was diluted with ethyl acetate and filtered through a celite pad. The celite was washed by ethyl acetate (2 × 10 mL). The combined solvent was removed in *vacuo*. Yields were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

2.2 Condition screening

2.2.1 Screening of transient direct group, silver salt and solvent.

Table S2. Optimization of Pd(II)-catalyzed B(3,4,5,6)–H tetra-arylation of *o*-carboranyl aldehyde (**1b**).^[a]

Entry	TDG	Silver salt	Solvent	Yield (13a, %) ^[b]
1	T1	AgOAc	HFIP ^[c]	16
2	T1	AgTFA	HFIP	14
3	T1	Ag ₂ CO ₃	HFIP	6
4	T1	Ag ₃ PO ₄	HFIP	58

5	T1	AgBF ₄	HFIP	0
6	T1	AgSbF ₆	HFIP	0
7	T1	AgNTf	HFIP	0
8	T1	AgOTf	HFIP	0
9	T1	AgO ₂ CPh	HFIP	12
10	T1	Ag ₂ O	HFIP	8
11	Τ2	Ag ₃ PO ₄	HFIP	38
12	Т3	Ag ₃ PO ₄	HFIP	0
13	Τ4	Ag ₃ PO ₄	HFIP	16
14	Т5	Ag ₃ PO ₄	HFIP	36
15	Т6	Ag ₃ PO ₄	HFIP	12
16	T7	Ag ₃ PO ₄	HFIP	0
17	T1	Ag ₃ PO ₄	Toluene	0
18	T1	Ag ₃ PO ₄	DCE ^[d]	0
19	T1	Ag ₃ PO ₄	THF	0
20	T1	Ag ₃ PO ₄	1,4-Dioxane	0
21	T1	Ag ₃ PO ₄	CH ₃ CN	0
22	T1	Ag ₃ PO ₄	МеОН	0
23	T1	Ag ₃ PO ₄	TFE	27
24	T1	Ag ₃ PO ₄	CF ₃ CO ₂ H	trace
25 ^[c]	T1	Ag ₃ PO ₄	HFIP	62

[a] Conditions: 1b (0.1 mmol), 4.8 equiv. of 4-tert-butyl-iodobenzene, 20 mol% of Pd(OAc)₂, 1.0 equiv. of transient directing group, 4.8 equiv. of silver salt, 1.0 mL of solvent, 100 °C, sealed under Ar atmosphere, 48 h. [b] Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard. [c] 6.0 equiv. of Ag₃PO₄. [d] DCE: 1,2-dichloroethane.

2.2.2 Further optimization on the reaction conditions

Table S3. Further optimization on the Pd(II)-catalyzed B(3,4,5,6)–H tretraarylation ofo-carboranyl aldehyde (1b).^[a]

Entry	Pd(OAc) ₂ (x mol%)	Additive	Yield (13a, %) ^[b]
1	20 mol%	/	54
2	20 mol%	Na_2CO_3 (0.5 equiv.)	67
3	20 mol%	H ₃ PO ₄ (0.2 equiv.)	30
4	20 mol%	Na ₂ CO ₃ (1.0 equiv.)	89
5	20 mol%	Na_2CO_3 (4.8 equiv.)	n.d. ^[c]
6	20 mol%	Na ₃ PO ₄ (1.0 equiv.)	87
7	20 mol%	Na ₃ PO ₄ (4.8 equiv.)	n.d. ^[c]
8	20 mol%	NaHCO ₃ (1.0 equiv.)	90
9	20 mol%	Na ₂ HPO ₄ (1.0 equiv.)	76
10	10 mol%	NaHCO ₃ (1.0 equiv.)	92 (90) ^[f]
11 ^[d]	10 mol%	NaHCO3 (1.0 equiv.)	92 (90) ^[f]
12	/	NaHCO ₃ (1.0 equiv.)	0
13 ^[e]	10 mol%	NaHCO ₃ (1.0 equiv.)	62

[a] Conditions: **1b** (0.1 mmol), 4-tert-butyl-iodobenzene (0.48 mmol), Pd(OAc)₂ (10-20 mol%), glycine (0.1 mmol), Ag₃PO₄ (0.48 mmol), Additive, HFIP (1.0 mL), 80 °C, sealed under Ar atmosphere, 12 h. [b] Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard. [c] **1b** was decomposed. [d] Optimal condition: **1b** (0.1 mmol), glycine (0.1 mmol), HFIP (1.0 mL), 40 °C, sealed under Ar atmosphere, 1 h; then, 4-tert-butyl-iodobenzene (4.8 equiv.), Pd(OAc)₂ (10 mol%), glycine (1.0 equiv.), Ag₃PO₄ (6.0 equiv.), NaHCO₃ (1.0 equiv.), HFIP (1.0 mL), 80 °C, sealed under Ar atmosphere, 24 h. [e] Sealed under air atmosphere. n.d.: desired product was not detected. [f] Isolated yield.

Figure S8. Decomposition of 1b in the presence of 4.8 equiv. of Na₂CO₃.

2.3 Substrate scope for Pd-catalyzed B(3,4,5,6)-tetra-arylation of *o*-carboranyl aldehyde

General procedure A: A reaction tube (10 mL) with a magnetic stir bar was charged with *o*-carboranyl aldehyde (0.1 mmol), glycine (1.0 equiv. 0.1 mmol, 7.5 mg), HFIP (1.0 mL) under Ar atmosphere and allowed to stir at 40 °C for 1h. Then, aryl iodide (4.8 equiv. 0.48 mmol), silver phosphate (6.0 equiv. 0.60 mmol, 251.0 mg), palladium acetate (10 mol %, 0.01 mmol, 2.2 mg), sodium bicarbonate (1.0 equiv. 0.1 mmol, 8.4 mg), HFIP (1.0 mL) were added and heated at 80 °C for 24 hours. Upon completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of EtOAc. The mixture was filtered through a silica gel plug and concentrated in *vacuo*. The crude reaction mixture was purified on PTLC using petroleum ether/CH₂Cl₂ or petroleum ether/ethyl acetate as the eluent to afford the product.

General procedure B: A reaction tube (10 mL) with a magnetic stir bar was charged with *o*-carboranyl aldehyde (0.1 mmol), 2-aminophenol (1.0 equiv.), HFIP (1.0 mL) under Ar atmosphere and allowed to stir at 40 °C for 1h. Then, aryl iodide (8.0 equiv. 0.80 mmol), silver phosphate (8.0 equiv. 0.8 mmol, 334.9 mg), palladium acetate (20 mol %, 0.01 mmol, 4.5 mg), sodium bicarbonate (1.0 equiv. 0.1 mmol, 8.4 mg), HFIP (1.0 mL) and heated at 80 °C for 48 hours. Upon completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of EtOAc. The mixture was filtered through a silica gel plug and concentrated in *vacuo*. The crude reaction mixture was purified on PTLC using petroleum ether/CH₂Cl₂ or petroleum ether/ethyl acetate as the eluent to afford the product.

Compound data:

13a: Yield 90%. White solid. m. p. 331.2 - 331.5°C. ¹H NMR (500 MHz, CDCl₃): δ 9.55 (s, 1H, CHO), 7.29 (dd, J = 8.3 Hz, 8.3 Hz, 8H), 7.09 (d, J = 8.0 Hz, 4H), 6.95 (d, J = 8.0 Hz, 4H) (phenyl–H), 4.81 (s, 1H, cage C–H), 1.32 (s, 18H), 1.25 (s, 18H) ('Bu–H); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.0 (4B), –3.5 (2B), –9.6 (2B), –14.2 (2B); ¹³C NMR (100 MHz, CDCl₃): δ 184.1 (CHO), 152.7, 151.1, 134.8, 134.7, 124.8, 124.4 (phenyl–C), 73.0, 53.0 (cage–C), 34.7, 34.4 ('Bu–CMe₃), 31.2, 31.2 ('Bu–CH₃). HRMS (ESI, negative mode): *m/z* calcd for C4₃B₁₀OH₅₉ [M–H][–]: 698.5611. Found: 698.5617. Elemental analysis (%) calcd for C4₃B₁₀OH₆₀: C, 73.67; H, 8.63. Found: C, 73.52; H, 8.75.

Figure S9. X-Ray structure of **13a** (ellipsoids at 30% probability, H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.519(5), C13–O1 1.191(4), C1–B3 1.772(6), C1–B4 1.725(6), C1–B5 1.731(6), C1–B6 1.773(6), B3–C14 1.558(6), B4–C15 1.591(6), B5–C16 1.587(6), B6–C17 1.573(6).

13b: Yield 60%. White solid. m. p. 199.4 – 199.7 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.53 (s, 1H, CHO), 7.39 – 7.36 (m, 6H), 7.28 – 7.25 (m, 4H), 7.20 – 7.16 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 4H), 7.01 (d, *J* = 7.2 Hz, 4H) (phenyl–H), 4.88 (s, 1H, cage C–H); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 3.5 (4B), 1.4 (2B), –3.9 (2B), –8.5 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 183.7 (CHO), 135.1, 134.9, 130.0, 128.5, 128.0, 127.7 (phenyl–C), 73.1, 52.5 (cage–C). HRMS (ESI, negative mode): *m/z* calcd for C₂₇B₁₀OH₂₇ [M–H]⁻: 475.3071. Found: 475.3075. Elemental analysis (%) calcd for C₂₇B₁₀OH₂₈: C, 68.04; H, 5.92. Found: C, 67.84; H, 6.11.

13c: Yield 93%. White solid. m. p. 145.2 – 145.7 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.48 (s, 1H, CHO), 7.26 (d, J = 7.8 Hz, 4H), 7.08 (d, J = 7.7 Hz, 4H), 6.90 (dd, J = 8.2

Hz, 8.2 Hz 8H) (phenyl–H), 4.80 (s, 1H, cage C–H), 2.33 (s, 6H), 2.23 (s, 6H) (OCH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 3.1 (4B), 1.2 (2B), –4.2 (2B), –8.8 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 184.1 (CHO), 139.9, 138.1, 135.5, 135.1, 134.9, 128.8, 128.5, 128.3 (phenyl–C), 73.0, 52.4 (cage–C), 21.5, 21.4 (CH₃). HRMS (ESI, negative mode): *m*/*z* calcd for C₃₁B₁₀OH₃₅ [M–H][–]: 531.3697. Found: 534.3705. Elemental analysis (%) calcd for C₃₁B₁₀OH₃₆: C, 69.89; H, 6.81. Found: C, 69.76; H, 6.97.

Figure S10. X-Ray structure of **13c** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.507(5), C13–O1 1.195(4), C1–B3 1.776(5), C1–B4 1.721(5), C1–B5 1.730(5), C1–B6 1.764(6), B3–C14 1.565(6), B4–C15 1.568(6), B5–C16 1.572(5), B6–C17 1.557(6).

13d: Yield 70%. White solid. m. p. 99.7 – 100.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.50 (s, 1H, CHO), 7.22 – 7.11 (m, 8H), 7.00 (d, J = 7.5 Hz, 2H), 6.96 (d, J = 7.5 Hz, 2H), 6.91 (s, 2H), 6.75 (d, J = 6.9 Hz, 2H) (phenyl–H), 4.84 (s, 1H, cage C–H), 2.27 (s, 6H), 2.12 (s, 6H) (CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –2.1 (4B), –3.7 (2B), –9.3 (2B), –13.8 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 183.9 (CHO), 150.8, 137.3,

136.9, 136.6, 136.5, 136.3, 136.3, 136.1, 135.8, 135.6, 132.8, 132.3, 132.2, 132.0, 131.7, 131.2, 131.0, 130.6, 129.9, 128.7, 127.8, 127.4, 127.2, 127.0 (phenyl–C), 73.1, 52.7 (cage–C), 21.55, 21.50 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₃₁B₁₀OH₃₅ [M–H]⁻: 531.3697. Found: 534.3645. Elemental analysis (%) calcd for C₃₁B₁₀OH₃₆: C, 69.89; H, 6.81. Found: C, 69.56; H, 6.95.

13e: Yield 58%. White solid. m. p. 230.7 – 231.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.42 (s, 1H, CHO), 6.99 (s, 2H), 6.96 (s, 4H), 6.82 (s, 2H), 6.64 (s, 4H) (phenyl–H), 4.78 (s, 1H, cage C–H), 2.22 (s, 12H), 2.06 (s, 12H) (CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –2.0 (4B), –3.7 (2B), –9.3 (2B), –13.9 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 184.1 (CHO), 137.1, 136.6, 133.3, 133.1, 131.5, 129.9 (phenyl–C), 73.1, 52.8 (cage–C), 21.4, 21.3 (CH₃). HRMS (ESI, negative mod): *m/z* calcd for C₃₅B₁₀NOH₄₃ [M–H]⁻: 601.4353. Found: 601.4355. Elemental analysis (%) calcd for C₃₅B₁₀NOH₄₄: C, 69.73; H, 7.36. Found: C, 69.99; H, 7.12.

13f: Yield 61%. White solid. m. p. 214.6 – 214.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.44 (s, 1H, CHO), 7.28 (d, J = 8.7 Hz , 4H), 6.93 (d, J = 8.7 Hz, 4H), 6.79 (d, J = 8.7 Hz, 4H), 6.63 (d, J = 8.7 Hz, 4H) (phenyl–H), 4.72 (s, 1H, cage C–H), 3.79 (s, 6H), 3.72 (s, 6H) (OCH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 2.9 (4B), 1.1 (2B), –4.4 (2B), –8.9 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 184.3 (CHO), 161.0, 159.8, 137.0, 136.6, 136.3, 113.7, 113.4, 113.1 (phenyl–C), 72.8 (cage–C), 55.2, 55.1 (CH₃), 52.3

(cage–C). HRMS (ESI, negative mode): *m/z* calcd for C₃₁B₁₀O₅H₃₅ [M–H]⁻: 595.3493. Found: 595.3496. Elemental analysis (%) calcd for C₃₁B₁₀O₅H₃₆: C, 62.40; H, 6.08. Found: C, 62.13; H, 6.04.

13g: Yield 62%. Colorless solid. m. p. 95.1 – 95.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.44 (s, 1H, CHO), 7.20 (d, *J* = 8.6 Hz, 4H), 6.84 (d, *J* = 8.6 Hz, 4H), 6.71 (d, *J* = 8.5 Hz, 4H), 6.56 (d, *J* = 8.5 Hz, 4H) (phenyl–H), 4.68 (s, 1H, cage C–H), 0.97 (s, 18H), 0.94 (s, 18H) ('Bu–H), 0.20 (s, 12H), 0.14 (s, 12H) (CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –2.6 (6B), –9.7 (2B), –14.4 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 184.2 (CHO), 157.3, 156.1, 136.3, 119.6 (phenyl–C), 72.8, 52.7 (cage–C), 25.80, 25.77, 18.38, 18.35 ('Bu–C), –4.22, –4.26 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₅₁B₁₀OSi₄H₈₃ [M–H][–]: 931.6530. Found: 931.6536. Elemental analysis (%) calcd for C₅₁B₁₀OSi₄H₈₄: C, 65.61; H, 9.07. Found: C, 65.33; H, 9.32.

13h: Yield 64%. White solid. m. p. 280.2 – 280.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.48 (s, 1H, CHO), 6.87 (d, J = 1.8 Hz, 2H), 6.78 (dd, J = 8.3, 1.8 Hz, 2H), 6.72 (d, J = 8.2 Hz, 2H), 6.62 (d, J = 1.8 Hz, 2H), 6.58 (d, J = 8.1 Hz, 2H), 6.41 (dd, J = 8.2, 1.8 Hz, 2H) (phenyl–**H**), 4.62 (s, 1H, cage C–**H**), 4.25 – 4.22 (m, 4H), 4.22 – 4.18 (m, 8H), 4.16 – 4.14 (m, 4H) (CH₂); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.2 (6B), –9.7 (2B), –14.1 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 183.9 (CHO), 145.2, 144.0, 143.2, 143.2, 128.7, 128.2, 124.1, 123.7, 117.1, 116.7 (phenyl–**C**), 72.7 (cage–**C**), 64.6, 64.5, 64.3, 64.2 (CH₂), 52.7 (cage–**C**). HRMS (ESI, negative mode): m/z calcd for C₃₅B₁₀O₉H₃₅ [M–H]⁻: 707.3290. Found: 707.3300. Elemental analysis (%) calcd for C₃₅B₁₀O₉H₃₆: C, 59.31; H, 5.12. Found: C, 59.06; H, 5.08.

13i (purity: 88%, based on ¹H NMR): Yield 63%. White solid. ¹H NMR (400 MHz, CDCl₃): δ 9.38 (s, 1H, CHO), 7.47 – 7.41 (m, 4H), 7.26 – 7.22 (m, 4H), 7.21 – 7.16 (m, 4H) (phenyl–H), 6.85 – 6.72 (m, 4H), 4.78 (s, 1H, cage C–H); ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ -1.5 (6B), -8.8 (2B), -13.1 (2B); ¹³C NMR (101 MHz, CDCl₃): δ 183.0 (CHO), 136.4, 136.1, 131.6, 131.4, 125.7, 124.0 (phenyl–C), 72.6, 51.5 (cage–C). HRMS (ESI, negative mode): *m/z* calcd for C₂₇B₁₀OBr₄H₂₃ [M–H][–]: 790.9450. Found: 790.9461.

13j: Yield 48%. White solid. m. p. 214.8 – 215.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (s, 1H, CH=N), 7.21 – 7.15 (m, 8H), 7.05 – 6.98 (m, 5H), 6.89 (d, *J* = 8.4, 4H), 6.67 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.60 (ddd, *J* = 7.6, 7.6, 1.3 Hz, 1H), 6.19 (dd, *J* = 7.9, 1.5 Hz, 1H) (phenyl–H), 4.89 (s, 1H, cage C–H), 1.21 (s, 18H), 1.16 (s, 18H) (CH₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.6 (6B), –9.5 (2B), –13.7 (2B); ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 151.1, 151.1 (phenyl–C), 150.4 (CH=N), 134.7, 134.7, 130.0, 125.2, 124.6, 120.2, 117.6, 115.9 (phenyl–C), 70.5, 57.4 (cage–C), 34.8, 34.6 (CMe₃), 31.3, 31.2 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₄₉B₁₀NOH₆₄ [M–H]⁻: 790.6009. Found: 790.5997. Elemental analysis (%) calcd for C₄₉B₁₀NOH₆₅: C, 74.30; H, 8.27; N, 1.77. Found: C, 74.22; H, 8.18; N, 1.71.

13k: Yield 30%. White solid. m. p. 243.8 – 244.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (s, 1H, C**H**=N), 7.32 (dd, J = 5.8, 5.8 Hz, 4H), 7.20 (ddd, J = 7.6, 7.6 Hz, 1.5 Hz, 1H), 7.01 – 6.94 (m, 8H), 6.88 – 6.81 (m, 5H), 6.77 (ddd, J = 7.6, 7.6 Hz, 1.2 Hz, 1H), 6.44 (dd, J = 7.9, 1.5 Hz, 1H) (phenyl–**H**), 5.02 (br. 2H) (O–**H** + cage C–**H**); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.2 (6B), –9.2 (2B), –13.4 (2B); ¹³C NMR (100 MHz, CDCl₃): δ 164.9 (d, J = 78.5 Hz), 162.4 (d, J = 76.2 Hz) (phenyl–**C**), 151.4 (**C**H=N), 148.2, 136.8 (d, J = 7.8 Hz), 136.5 (d, J = 7.6 Hz), 133.5, 131.2, 120.9, 116.8 (d, J =73.6 Hz), 115.7 (d, J = 20.4 Hz), 115.3 (d, J = 20.3 Hz) (phenyl–**C**), 70.3, 56.3 (cage–**C**); ¹⁹F NMR (471 MHz, CDCl₃): δ –109.71, –112.26. HRMS (ESI, negative mode): m/zcalcd for C₃₃B₁₀NOF₄H₂₈ [M–H]⁻: 642.3110. Found: 642.3113. Elemental analysis (%) calcd for C₃₃B₁₀NOF₄H₂₉: C, 61.96; H, 4.57; N, 2.19. Found: C, 61.78; H, 4.49; N, 2.27.

Figure S11. X-Ray structure of **13k** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.462(13), C13–N1 1.266(11), C1–B3 1.794(16), C1–B4 1.753(14), C1–B5 1.712(13), C1–B6 1.767(14), B3–C14 1.555(13), B4–C15 1.551(14), B5–C16 1.565(15), B6–C17 1.549(15).

131: Yield 32%. White solid. m. p. 214.6 – 214.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.13 (s, 1H, C**H**=N), 7.88 (d, *J* = 8.2 Hz, 4H), 7.73 (d, *J* = 8.3 Hz, 4H), 7.43 (d, *J* = 8.2 Hz, 4H), 7.18 (ddd, *J* = 7.7, 7.7, 1.3 Hz, 1H), 7.09 (d, *J* = 8.3 Hz, 4H), 6.84 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.75 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H), 6.48 (dd, *J* = 8.0, 1.5 Hz, 1H) (phenyl–**H**), 5.26 (br. 2H) (O–**H** + cage C–**H**), 3.89 (s, 6H), 3.85 (s, 6H) (OMe); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –2.4 (5B), –8.8 (3B), –13.3 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 166.9, 166.7 (**C**=O), 151.5 (**C**H=N), 147.1, 134.9, 134.6, 133.0, 131.5, 131.4, 130.3, 129.2, 128.9, 121.1, 117.6, 116.7 (phenyl–**C**), 70.8, 56.0 (cage–**C**), 52.5, 52.3 (OCH₃). HRMS (ESI, negative mode): *m*/*z* calcd for C₄₁B₁₀NO₉H₄₁ [M–H]⁻: 798.3826. Found: 798.3823. Elemental analysis (%) calcd for C₄₁B₁₀NO₉H₄₂: C, 61.49; H, 5.29; N, 1.75. Found: C, 61.71; H, 5.06; N, 1.63.

2.4 Substrate scope for Pd-catalyzed B(2,3,4,5,6)-penta-arylation of *m*-carboranyl aldehydes

General procedure: A reaction tube (10 mL) with a magnetic stir bar was charged with *m*-carboranyl aldehyde (0.1 mmol, 17.2 mg), glycine (1.0 equiv. 0.1 mmol, 7.5 mg), HFIP (1.0 mL) under Ar atmosphere and allowed to stir at 40 °C for 1h. Then, aryl iodide (6.0 equiv. 0.6 mmol), silver phosphate (6.0 equiv. 0.75 mmol, 313.9 mg), palladium acetate (10 mol %, 0.01 mmol, 2.3 mg), sodium bicarbonate (1.0 equiv. 0.1 mmol, 8.4 mg), HFIP (1.0 mL) were added and heated at 80 °C for 36 hours. Upon completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of EtOAc. The mixture was filtered through a silica gel plug and concentrated in *vacuo*. The crude reaction mixture was purified on PTLC using petroleum ether/CH₂Cl₂

or petroleum ether/ethyl acetate as the eluent to afford the desired product.

14a: Yield 66%. White solid. m. p. 298.8 – 299.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.49 (br. 1H, COOH), 8.09 (t, J = 1.8 Hz, 1H, CH=N), 7.06 – 7.03 (m, 10H), 6.85 (d, J = 8.4 Hz, 4H), 6.80 (d, J = 8.4 Hz, 4H), 6.77 (d, J = 8.4 Hz, 2H) (phenyl–H), 4.10 (d, J = 1.8 Hz, 2H, CH₂), 3.67 (s, 1H, cage C–H), 1.263 (s, 9H) 1.258 (s, 18H), 1.254 (s, 18H) ('Bu–CH₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ 5.7 (1B), –1.1 (2B), –6.8 (2B), –11.1 (2B), –13.3 (3B); ¹³C NMR (101 MHz, CDCl₃): δ 169.2 (CO₂H), 159.1 (CH=N), 152.3, 151.4, 151.1, 135.4, 135.1, 134.9, 124.6, 124.4, 124.3 (phenyl–C), 70.0, 59.1 (cage–C), 53.4 (CH₂), 34.68, 34.60, 34.58 ('Bu–CMe₃), 31.34, 31.30, 31.24 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₅₄B₁₀NH₇₄ [M–CO₂–H]⁻: 846.6827. Found: 846.6823. Elemental analysis (%) calcd for C₅₅B₁₀NO₂H₇₅: C, 74.20; H, 8.49; N, 1.57. Found: C, 74.08; H, 8.43; N, 1.51.

Byproduct **16** was isolated from the same crude reaction mixture. **16**: Yield 21%. White solid. m. p. 332.7 - 333.1 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (q, J = 1.6 Hz, 1H, CH=N), 7.01 - 6.99 (m, 10H), 6.91 - 6.88 (m, 8H), 6.82 - 6.79 (m, 2H) (phenyl-H), 3.59 (s, 1H, cage-CH), 3.20 (d, J = 1.6 Hz, 3H) (N-CH₃), 1.25 (s, 36H), 1.24 (s, 9H)

('Bu–CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 4.6 (1B), –1.6 (2B), –6.7 (3B), –11.6 (4B); ¹³C NMR (126 MHz, CDCl₃): δ 154.8 (CH=N), 151.3, 150.5, 150.3, 135.64, 135.58, 135.0, 123.83, 123.80, 123.78 (phenyl–C), 71.5, 53.5 (cage–C), 47.2 (N–CH₃), 34.6, 34.52, 34.50 ('Bu–CMe₃), 31.40, 31.33 31.26 ('Bu–CH₃). HRMS (ESI, positive mode): *m/z* calcd for C₅₄B₁₀NH₇₆ [M+H]⁺: 846.6975. Found: 846.6970. Elemental analysis (%) calcd for C₅₄B₁₀NH₇₅: C, 76.64; H, 8.93; N, 1.66. Found: C, 76.58; H, 8.85; N, 1.69.

Figure S12. X-Ray structure of **16** (ellipsoids at 30% probability, H atoms were omitted for clarity). Selected bond distances [Å] for **16**: C1–C13 1.516(5), C13–N1 1.139(5), C1–B2 1.781(5), C1–B3 1.762(5), C1–B4 1.758(5), C1–B5 1.758(5), C1–B6 1.774(5), B2–C14 1.593(5), B3–C15 1.584(5), B4–C16 1.599(5), B5–C17 1.592(5), B6–C18 1.575(5).

14b: Yield 83%. White solid. m. p. 268.4 – 268.7 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.69 (br. 1H, COOH), 8.07 (t, J = 1.6 Hz, 1H, C**H**=N), 6.91 – 6.79 (m, 18H), 6.71 (d, J = 7.9 Hz, 2H) (phenyl–**H**), 4.04 (d, J = 1.8 Hz, 2H, C**H**₂), 3.68 (s, 1H, cage C–**H**),

2.28 (s, 6H), 2.26(s, 6H), 2.25(s, 3H) (CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 5.2 (1B), -1.1 (2B), -6.3 (3B), -10.7 (2B), -13.1 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 169.0 (CO₂H), 159.1 (CH=N), 139.3, 138.3, 138.0, 135.6, 135.5, 135.1, 128.6, 128.4, 128.3 (phenyl–C), 69.9, 59.3 (cage–C), 53.4 (CH₂), 21.42, 21.38, 21.36 (CH₃). HRMS (ESI, negative mode): *m*/*z* calcd for C₃₉B₁₀NH₄₄ [M–CO₂–H]⁻: 636.4480. Found: 636.4479. Elemental analysis (%) calcd for C₄₀B₁₀NO₂H₄₅: C, 70.66; H, 6.67; N, 2.06. Found: C, 70.33; H, 6.42; N, 2.21.

14c: Yield 58%. White solid. m. p. 153.7 – 153.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.08 (t, J = 1.5 Hz, 1H, CH=N), 7.10 (d, J = 7.6 Hz, 2H), 7.07 – 6.91 (m, 8H), 6.77 – 6.69 (m, 9H), 6.63 (d, J = 7.6 Hz, 1H) (phenyl–H), 4.03 (d, J = 1.6 Hz, 2H, CH₂), 3.74 (s, 1H, cage C–H), 2.054 (s, 6H), 2.046 (s, 3H), 2.04 (s, 6H) (CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 5.5 (1B), –1.1 (2B), –6.4 (3B), –10.7 (2B), –13.0 (2B); ¹¹B {¹H} NMR (101 MHz, CDCl₃): δ –3.2 (5B), –16.2 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 168.9 (CO₂H), 158.9 (CH=N), 136.9, 136.6, 136.6, 136.4, 136.4, 136.2, 136.1, 132.6, 132.1, 129.9, 129.1, 128.8, 127.4, 127.2, 127.1 (phenyl–C), 70.1, 59.1 (cage–C), 53.6 (CH₂), 21.41, 21.38, 21.36 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₃₇B₁₀H₄₁ [M–CHNCH₂CO₂H]⁻: 593.4217. Found: 593.4216. Elemental analysis (%) calcd for C₄₀B₁₀NO₂H₄₅: C, 70.66; H, 6.67; N, 2.06. Found: C, 70.31; H, 6.39; N, 2.28.

14d: Yield 53%. White solid. m. p. 263.7 – 264.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H, CO₂H), 8.00 (t, *J* = 1.8 Hz, 1H, CH=N), 6.92 (s, 2H), 6.87 (s, 2H), 6.84 (s, 1H), 6.57 (s, 8H), 6.48 (s, 2H) (phenyl–H), 3.97 (d, *J* = 1.7 Hz, 2H, CH₂), 3.69 (s, 1H, cage C–H), 2.03 (s, 12H), 2.02 (s, 18H) (CH₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ 5.2 (2B), –1.5 (2B), –6.8 (2B), –11.1 (2B), –13.6 (2B); ¹³C NMR (101 MHz, CDCl₃): δ 168.8 (CO₂H), 159.3 (CH=N), 136.7, 136.4, 136.2, 133.9, 133.7, 133.4, 130.6, 129.9, 129.6 (phenyl–C), 58.7 (cage–C), 53.6 (CH₂), 21.38,21.36, 21.34 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₄₅B₁₀NO₂H₅₄ [M–H]⁻: 748.5163. Found: 748.5172. Elemental analysis (%) calcd for C₄₅B₁₀NO₂H₅₅: C, 72.06; H, 7.39; N, 1.87. Found: C, 72.36; H, 7.84; N, 2.31.

14e: Yield 55%. White solid. m. p. 124.7 – 125.0 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.96 (t, J = 1.7 Hz, 1H, C**H**=N), 6.80 (d, J = 8.6 Hz, 4H), 6.76 (d, J = 8.6 Hz, 4H), 6.67 (d, J = 8.6 Hz, 2H), 6.57 (d, J = 8.5 Hz, 4H), 6.53 (d, J = 8.5 Hz, 4H), 6.52 (d, J = 8.5Hz, 2H) (phenyl–**H**), 3.99 (d, J = 1.7 Hz, 2H, C**H**₂), 3.62 (s, 1H, cage C–**H**), 0.962 (s, 18H), 0.956 (s, 27H) (OTBS–'Bu), 0.174 (s, 12H), 0.166 (s, 12H), 0.161 (s, 6H) (OTBS–CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 4.7 (2B), –2.3 (2B), –6.6 (3B), –11.7 (3B); ¹³C NMR (126 MHz, CDCl₃): δ 168.9 (CO₂H), 159.3 (CH=N), 156.9, 156.2, 156.0, 137.0, 137.0, 136.5, 119.6, 119.4, 119.3 (phenyl–**C**), 69.6, 59.4 (cage–**C**), 53.0 (CH₂), 25.83, 25.81, 25.79, 18.41, 18.39, 18.37 (OTBS–'Bu), –4.26(OTBS–CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₆₅B₁₀NO₇Si₅H₁₀₄ [M–H]⁻: 1258.7688. Found: 1258.7688. C₆₄B₁₀NO₅Si₅H₁₀₄ [M–CO₂–H]⁻: 1216.7767. Found: 1216.7776. Elemental analysis (%) calcd for C₆₅B₁₀NO₇Si₅H₁₀₅: C, 61.91; H, 8.39; N, 1.11. Found: C, 62.16; H, 8.18; N, 1.27.

14f: Yield 44%. White solid. m. p. 96.2 – 96.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.09 (t, J = 1.5 Hz, 1H, CH=N), 7.38 – 7.13 (m, 25H), 7.01 – 6.76 (m, 20H) (phenyl–H), 4.08 (s, 2H, CH₂), 3.96 (d, J = 3.1 Hz, 10H, Bn–CH₂), 3.72 (s, 1H, cage C–H); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 5.4 (1B), –1.1 (2B), –6.5 (2B), –10.9 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 169.3 (CO₂H), 158.7 (CH=N), 142.3, 142.3, 141.4, 141.1, 141.0, 140.9, 140.7, 135.7, 135.6, 135.2, 133.1, 129.1, 129.0, 128.6, 128.5, 128.5, 128.3, 128.1, 126.3, 126.2, 126.1 (phenyl–C), 70.0, 59.4 (cage–C), 53.5 (CH₂), 41.69, 41.66 (Bn–CH₂). HRMS (ESI, negative mode): *m/z* calcd for C₆₉B₁₀NH₆₄ [M–CO₂–H]⁻: 1016.6045. Found: 1016.6041. Elemental analysis (%) calcd for C₇₀B₁₀NO₂H₆₅: C, 79.29; H, 6.18; N, 1.32. Found: C, 78.96; H, 6.23; N, 1.27.

14g: Yield 42%. White solid. m. p. 140.2 – 140.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.23 (s, 1H, C**H**=N), 7.55 (m, 10H), 7.42 – 7.28 (m, 25H), 7.14 (d, *J* = 8.5 Hz, 4H), 7.11 (d, *J* = 8.0 Hz, 4H), 7.03 (d, *J* = 8.1 Hz, 2H) (phenyl–**H**), 4.71 (s, 2H, C**H**₂), 4.88 (s, 1H, cage C–**H**); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ 5.7 (1B), –0.9 (2B), –6.4 (3B), –11.0 (4B); ¹³C NMR (126 MHz, CDCl₃): δ 169.7 (CO₂H), 158.7 (CH=N), 141.8, 141.0, 140.8, 140.5, 140.5, 140.1, 136.2, 135.7, 128.9, 128.9, 127.8, 127.6, 127.5, 127.1, 126.8, 126.2, 126.1 (phenyl–**C**), 70.4, 59.9 (cage–**C**), 53.80 (CH₂). HRMS (ESI, positive mode): *m/z* calcd for C₆₄B₁₀NH₅₄ [M–CO₂–H]⁻: 944.5265. Found: 944.5257. Elemental analysis (%) calcd for C₆₅B₁₀NO₂H₅₅: C, 78.84; H, 5.60; N, 1.41. Found: C, 78.48; H, 5.79; N, 1.32.

14h: Yield 55%. White solid. m. p. 331.8 – 332.6 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.19 (t, J = 1.2 Hz, 1H, CH=N), 7.24 (dd, J = 8.4, 5.9 Hz, 4H), 7.06 (dd, J = 8.4, 6.0 Hz, 4H), 6.98 (dd, J = 8.5, 6.0 Hz, 2H), 6.86 – 6.80 (m, 10H) (phenyl–H), 4.70 (s, 1H, cage C–H), 4.25 (s, 2H, CH₂); ¹⁹F NMR {471 MHz, (CD₃)₂CO)}: δ –112.43, –113.64, –113.93; ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ 5.2 (1B), –1.5 (3B), –6.7 (3B), –10.9 (2B), –13.1 (1B); ¹³C NMR {126 MHz, (CD₃)₂CO)}: δ 169.4 (CO₂H), 164.5 (d, J =41.1 Hz), 164.2, 162.6 (d, J = 40.0 Hz) 162.3 (phenyl–C), 157.6 (CH=N), 138.5 (d, J =7.9 Hz), 138.0 (d, J = 7.7 Hz), 137.4 (d, J = 7.6 Hz), 114.5 (d, J = 7.2 Hz), 114.3 (d, J = 6.9 Hz) (phenyl–C), 71.3, 60.4 (cage–C), 54.8 (CH₂). HRMS (ESI, positive mode): m/z calcd for C₃₄B₁₀NF₅H₂₉ [M–CO₂–H]⁻: 654.3329. Found: 654.3330. Elemental analysis (%) calcd for C₃₅B₁₀NO₂F₅H₃₀: C, 60.08; H, 4.32; N, 2.00. Found: C, 60.39; H, 4.04; N, 1.89.

2.5 Substrate scope for Pd-catalyzed B(2,3,4,5,6)-penta-arylation of *p*-carboranyl aldehydes

General procedure: A reaction tube (10 mL) with a magnetic stir bar was charged with *p*-carboranyl aldehyde (0.1 mmol, 17.2 mg), glycine (1.0 equiv. 0.1 mmol, 7.5 mg), HFIP (1.0 mL) under Ar atmosphere and allowed to stir at 40 °C for 1h. Then, aryl iodide (6.0 equiv. 0.6 mmol), silver phosphate (6.0 equiv. 0.75 mmol, 313.9 mg), palladium acetate (10 mol %, 0.01 mmol, 2.3 mg), sodium bicarbonate (1.0 equiv. 0.1 mmol, 8.4 mg), HFIP (1.0 mL) were added and heated at 80 °C for 36 hours. Upon completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of EtOAc. The mixture was filtered through a silica gel plug and concentrated in *vacuo*. The crude reaction mixture was purified on PTLC using petroleum ether/CH₂Cl₂ or petroleum ether/ethyl acetate as the eluent to afford the product.

15a: Yield 64%. White solid. m. p. 305.2 – 305.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.45 (br, 1H, COOH), 7.90 (t, J = 1.7 Hz, 1H, CH=N), 7.05 (d, J = 7.9 Hz, 10H), 6.83 (d, J = 8.0 Hz, 10H) (phenyl–H), 3.98 (d, J = 1.7 Hz, 2H, CH₂), 3.39 (s, 1H, cage C–H), 1.27 (s, 45H, 'Bu–CH₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –2.9 (5B), –16.2 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 169.2 (CO₂H), 159.2 (CH=N), 169.2, 159.2, 151.3, 135.4, 128.7, 124.2 (phenyl–C), 79.1, 59.5, (cage–C), 58.8 (CH₂), 34.5 (CMe₃), 31.2 ('Bu–CH₃). HRMS (ESI, positive mode): *m*/*z* calcd for C₅₄B₁₀NH₇₄ [M–CO₂–H]⁻: 845.6794. Found: 845.6782. Elemental analysis (%) calcd for C₅₅B₁₀NO₂H₇₅: C, 74.20; H, 8.49; N, 1.57. Found: C, 74.29; H, 8.41; N, 1.64.

15b: Yield 56%. White solid. m. p. 301.5 – 301.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.48 (br. 1H, COOH), 7.97 (t, J = 1.7 Hz, 1H, CH=N), 7.24 (tt, J = 7.6, 1.2 Hz, 5H), 7.05 (dd, J = 7.7, 7.7, Hz, 10H), 6.92 (d, J = 8.4 Hz, 10H) (phenyl–H), 3.96 (d, J = 1.7Hz, 2H, CH₂), 3.46 (s, 1H, cage C–H); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –3.0 (5B), –16.0 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 168.9 (CO₂H), 158.9 (CH=N), 135.7, 131.5, 128.7, 127.6 (phenyl–C), 79.4, 60.1 (cage–C), 59.3 (CH₂). HRMS (ESI, negative mode): m/z calcd for C₃₅B₁₀NO₂H₃₄ [M–H]⁻: 608.3598. Found: 608.3605. Elemental analysis (%) calcd for C₃₅B₁₀NO₂H₃₅: C, 68.94; H, 5.79; N, 2.30. Found: C, 68.87; H, 5.68; N, 2.23.

Figure S13. X-Ray structure of **15b** (ellipsoids at 30% probability, solvent and H atoms were omitted for clarity). Selected bond distances [Å]: C1–C13 1.512(6), C13–N1 1.197(5), C1–B2 1.753(6), C1–B3 1.762(6), C1–B4 1.755(6), C1–B5 1.761(6), C1–B6 1.755(6), B2–C14 1.570(6), B3–C15 1.581(6), B4–C16 1.580(7), B5–C17 1.577(6), B6–C18 1.576(6).

15c: Yield 72%. White solid. m. p. 280.1 – 280.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 1H, C**H**=N), 6.98 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 7.6 Hz, 3H), 6.79 (d, *J* = 7.2 Hz, 5H), 6.71 (dd, *J* = 8.4, 2.0 Hz, 5H), 6.56 (d, *J* = 1.6 Hz, 5H) (phenyl–**H**), 3.89 (s, 2H, C**H**₂), 3.40 (s, 1H, cage C–**H**), 3.28 (s, 15H, C**H**₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.9 (5B), –15.7 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 172.7 (CO₂H), 158.2 (CH=N), 157.4, 133.5, 129.0, 128.3, 120.9, 115.1 (phenyl–**C**), 80.2, 62.4 (cage–**C**), 59.5 (CH₂), 55.0 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₄₀B₁₀NO₂H₄₄ [M–H]⁻: 678.4381. Found: 678.4385. Elemental analysis (%) calcd for C₄₀B₁₀NO₂H₄₅: C, 70.66; H, 6.67; N, 2.06. Found: C, 70.43; H, 6.76; N, 2.11.

15d: Yield 65%. White solid. m. p. 252.1 – 252.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.68 (br. 1H, COOH), 7.82 (t, J = 2.0 Hz, 1H, CH=N), 6.89 (s, 5H), 6.58 (s, 10H) (phenyl–H), 3.87 (d, J = 1.8 Hz, 2H, CH₂), 3.40 (s, 1H, cage C–H), 2.04 (s, 30H, CH₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –3.2 (5B), –16.2 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 169.0 (CO₂H), 159.5 (CH=N), 136.3, 134, 131.6, 129.8 (phenyl–C), 79.6, 60.0 (cage–C), 58.5 (CH₂), 21.3 (CH₃). HRMS (ESI, negative mode): *m/z* calcd for C45B₁₀NO₂H₅₄ [M–H]⁻: 748.5163. Found: 748.5166. Elemental analysis (%) calcd for C45B₁₀NO₂H₅₅: C, 72.06; H, 7.39; N, 1.87. Found: C, 72.32; H, 7.57; N, 2.11.

Figure S14. X-Ray structure of **15d** (ellipsoids at 30% probability and H atoms were omitted for clarity). Selected bond and C–H^{...} π hydrogen bond (blue dotted line) distances [Å]: C1–C13 1.531(6), C13–N1 1.307(6), C1–B2 1.730(6), C1–B3 1.752(6), C1–B4 1.749(6), C1–B5 1.836(6), C1–B6 1.657(6), B2–C14 1.637(7), B3–C15 1.579(6), B4–C16 1.495(6), B5–C17 1.584(7), B6–C18 1.553(6), C19–H19^{...}center 5 3.424, C20–H20^{...}center 1 2.835, C21–H21^{...}center 2 3.301, C22–H22^{...}center 3 3.247, C23–H23^{...}center 4 2.861.

15e: Yield 80%. White solid. m. p. 298.8 – 299.7 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.76 (s, 1H, C**H**=N), 6.99 (d, *J* = 8.3 Hz, 10H), 6.55 (d, *J* = 8.4 Hz, 10H) (phenyl–**H**), 3.75 (s, 2H, C**H**₂), 3.69 (s, 1H, cage C–**H**), 3.53 (s, 15H, OC**H**₃); ¹¹B {¹H} NMR (160 MHz, CDCl₃): δ –4.2 (5B), –17.4 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 175.3 (CO₂H), 160.0 (CH=N), 159.9, 159.4, 156.7, 137.2, 136.9, 136.5, 130.6, 123.9, 113.5, 113.3, 113.2, 113.1, 112.9 (phenyl–C), 79.5, 65.2 (cage–C), 58.5 (CH₂), 54.9 (OCH₃). HRMS (ESI, negative mode): *m/z* calcd for C₄₀B₁₀NO₇H₄₄ [M–H][–]: 758.4126. Found:

758.4137. Elemental analysis (%) calcd for C₄₀B₁₀NO₇H₄₅: C, 63.22; H, 5.97; N, 1.84. Found: C, 63.58; H, 5.69; N, 1.75.

15f: Yield 68%. White solid. m. p. 271.5 – 272.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 1H, C**H**=N), 6.98 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 7.6 Hz, 3H), 6.79 (d, *J* = 7.6 Hz, 5H), 6.71 (dd, *J* = 8.0, 2.0 Hz, 5H), 6.56 (d, *J* = 1.6 Hz, 5H) (phenyl–**H**), 3.89 (s, 2H, C**H**₂), 3.40 (s, 1H, cage C–**H**), 3.28 (s, 15H, OC**H**₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.9 (5B), –15.7 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 172.7 (CO₂H), 158.2 (CH=N), 157.4, 133.5, 129.0, 128.3, 120.9, 115.1 (phenyl–**C**), 80.2, 62.4, (cage–**C**), 59.5 (CH₂), 55.0 (OCH₃). HRMS (ESI, negative mode): *m/z* calcd for C₄₀B₁₀NO₇H₄₄ [M–H]⁻: 758.4126. Found: 758.4133. Elemental analysis (%) calcd for C₄₀B₁₀NO₇H₄₅: C, 63.22; H, 5.97; N, 1.84. Found: C, 63.47; H, 6.32; N, 1.93.

15g: Yield 30%. White solid. m. p. 145.9 – 146.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (t, J = 1.8 Hz, 1H, C**H**=N), 7.56 (d, J = 7.6, 10H), 7.41 – 7.29 (m, 25H), 7.10 (d, J = 8.4, 10H) (phenyl–**H**), 4.02 (d, J = 1.6 Hz, 2H, C**H**₂), 3.55 (s, 1H, cage C–**H**); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.4 (5B), –15.7 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 169.3 (CO₂H), 158.8 (CH=N), 141.2, 141.1, 140.7, 140.5, 140.4, 138.7, 136.3, 130.0, 129.9, 128.94, 128.87, 128.7, 128.0, 127.6, 127.2, 127.1, 126.9, 126.3, 126.1

(phenyl–C), 79.6, 60.8, (cage–C), 59.9 (d, J = 31.8 Hz, CH₂). HRMS (ESI, negative mode): m/z calcd for C₆₅B₁₀O₂NH₅₄ [M–H]⁻: 988.5163. Found: 988.5167. Elemental analysis (%) calcd for C₆₅B₁₀NO₂H₅₅: C, 78.84; H, 5.60; N, 1.41. Found: C, 78.39; H, 5.34; N, 1.62.

15h: Yield 51%. White solid. m. p. 159.6 – 161.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H, C**H**=N), 7.17 (d, *J* = 8.1 Hz, 10H), 6.83 (d, *J* = 8.1 Hz, 10H) (phenyl–**H**), 3.91 (s, 2H, C**H**₂), 3.40 (s, 1H, cage C–**H**); ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ -2.7 (5B), -16.2 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 156.4 (CH=N), 137.3, 136.5, 130.6, 123.6, (phenyl–**C**), 79.8, 62.2 (cage–**C**), 59.4 (CH₂). HRMS (ESI, negative mode): *m/z* calcd for C₃₄B₁₀NBr₅H₂₉ [M–CO₂–H][–]: 959.9164. Found: 959.9163. Elemental analysis (%) calcd for C₃₅B₁₀NO₂Br₅H₃₀: C, 41.86; H, 3.01; N, 1.39. Found: C, 41.07; H, 3.36; N, 1.18.

2.6 Synthetic utilities

Scheme S9. Removing glycine.

Removing of glycine: A reaction tube (10 mL) with a magnetic stir bar was charged with **14a** (0.1 mmol, 89.0 mg)), HFIP (0.8 mL), toluene (0.2 mL) and HOAc (0.08 mL). The reaction mixture was allowed to stir at 80 °C for 12h. Upon completion, the reaction mixture was treated with 5 mL of water. The organic layer was extracted with hexanes

for three times (3 × 10 mL). The crude reaction mixture was purified on preparative TLC using petroleum ether/CH₂Cl₂ (v/v = 5/1) as the eluent to afford the desired product 17 (82.5 mg).

17: Yield 99%. White solid. m. p. 302.3 - 302.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.81 (s, 1H, CHO), 7.04 – 7.01 (m, 10H), 6.88 (d, *J* = 8.5 Hz, 4H), 6.84 (d, *J* = 8.4 Hz, 4H), 6.79 (d, *J* = 8.4 Hz, 2H) (phenyl–H), 3.67 (s, 1H, cage C–H), 1.24 (s, 45H, 'Bu–CH₃); ¹¹B NMR (160 MHz, CDCl₃): δ 3.5 (1B), –1.4 (1B), –3.9 (2B), –5.3 (2B), –6.1 (2B), –7.5 (2B); ¹³C NMR (126 MHz, CDCl₃): δ 188.0 (CHO), 152.0, 151.1, 150.9, 135.5, 135.3, 135.0, 124.4, 124.3, 124.2 (phenyl–C), 73.9, 53.5 (cage–C), 34.62, 34.56, 34.54 ('Bu–CMe₃), 31.33, 31.26 ('Bu–CH₃). HRMS (ESI, negative mode): *m/z* calcd for C₅₃B₁₀OH₇₁ [M–H][–]: 833.6511. Found: 833.6513. Elemental analysis (%) calcd for C₅₃B₁₀OH₇₂: C, 76.40; H, 8.71. Found: C, 76.33; H, 8.79.

Figure S15. X-Ray structure of 17 (ellipsoids at 30% probability, H atoms and solvent were omitted for clarity). Selected bond distances [Å] for 17: C1–C13 1.518(4),

C13-O1 1.104(4), C1-B2 1.756(4), C1-B3 1.762(4), C1-B4 1.726(4), C1-B5 1.755(4), C1-B6 1.748(4), B2-C14 1.560(4), B3-C15 1.577(4), B4-C16 1.582(4), B5-C17 1.569(4), B6-C18 1.577(4).

Scheme S10. Synthesis of 18 from 1a

Synthesis of 18 from 1a: A reaction tube (10 mL) with a magnetic stir bar was charged with *p*-carboranyl aldehyde (0.1 mmol, 17.2 mg), glycine (1.0 equiv. 0.1 mmol, 7.5 mg), HFIP (1.0 mL) under Ar atmosphere and allowed to stir at 40 °C for 1h. Then, aryl iodide (6.0 equiv. 0.6 mmol), silver phosphate (6.0 equiv. 0.75 mmol, 313.9 mg), palladium acetate (10 mol %, 0.01 mmol, 2.3 mg), sodium bicarbonate (1.0 equiv. 0.1 mmol, 8.4 mg), HFIP (1.0 mL) were added and heated at 80 °C for 36 hours. Upon completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of EtOAc. The mixture was filtered through a silica gel plug and concentrated in *vacuo*. The crude reaction mixture was transferred to a reaction tube (10 mL) with a magnetic stir bar. Then HFIP (1.2 mL) and TFA (0.8 mL) were added. The reaction mixture was treated with 5 mL of water. The organic layer was extracted with ethyl acetate for three times (3×10 mL). The crude reaction mixture was purified on preparative TLC using petroleum ether/toluene (v/v = 10/1) as the eluent to afford the desired product **18** (89.0 mg).

18: Yield 61%. Yellow solid. m. p. 404.1 – 405.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.96 (s, 1H, CHO), 7.38 – 7.31 (m, 10H), 7.20 – 7.15 (m, 10H), 6.66 (dd, J = 7.9, 1.5 Hz, 10H), 6.58 (td, J = 7.6, 1.4 Hz, 10H), 6.46 (td, J = 7.7, 1.5 Hz, 10H), 5.85 (dd, J = 8.0, 1.5 Hz, 10H) (phenyl–**H**), 3.68 (s, 1H, cage C–**H**); ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ -3.3 (7B), -15.2 (3B); ¹³C NMR (101 MHz, CDCl₃): δ 186.9 (CHO), 144.1, 140.1, 138.2, 134.0, 130.8, 130.2, 123.5, 121.7, 115.7, 113.1 (phenyl–**C**), 82.5, 60.5 (cage–**C**). HRMS (ESI, negative mode): *m*/*z* calcd for C₉₃B₁₀N₅O₆H₆₆ [M–H]⁻: 1456.6022. Found: 1456.6025. Elemental analysis (%) calcd for C₉₃B₁₀N₅O₆H₆₇: C, 76.58; H, 4.63; N, 4.80. Found: C, 76.21; H, 4.14; N, 4.38.

Figure S16. X-Ray structure of **18** (ellipsoids at 30% probability, H atoms and solvent were omitted for clarity).

Figure S17. Photophysical properties of 18. a: Luminescent photograph taken under UV light (365 nm), and fluorescence spectrum observed in the solid state under ambient condition ($\lambda_{ex} = 340$ nm), the solid-state quantum yield of 12.3%; b: Normalized absorption spectrum in THF (1.0×10^{-5} M) under ambient condition; c: Luminescent photographs taken under UV light (365 nm) and fluorescence spectra with different water volume fraction (V_{H20} / V_{THF} %) of 17 (1.0×10^{-5} M, $\lambda_{ex} = 340$ nm) under ambient condition; d: Luminescence photographs of 17 in different solvents taken under UV light (365 nm).

Note: In order to further study the effect of poly-arylation on lumimescence, we synthesized the tri-arylated compound PCB-3Ph-PXZ (below) for comparison with compound 18.

Scheme S11. Synthesis of PCB-3Ph-PXZ from 1a.

Synthesis of PCB-3Ph-PXZ from 1a: PCB-3Ph-PXZ was prepared by a similar procedure to 7 using 3.0 equiv. of I-Ph-PXZ, 3.0 equiv. of Ag₃PO₄ at 60 °C for 12h. The crude reaction mixture was purified on preparative TLC using petroleum ether/DCM (v/v = 10/1) as the eluent to afford the desired product PCB-3Ph-PXZ (35.9 mg).

PCB-3Ph-PXZ: Yield 38%. Light yellow solid. m. p. 155.8 – 161.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (s, 1H, CHO), 7.93 – 7.84 (m, 2H), 7.67 – 7.56 (m, 4H), 7.38 – 7.31 (m, 2H), 7.26 – 7.21 (m, 4H), 6.76 – 6.57 (m, 14H), 6.54 (td, *J* = 7.6, 1.7 Hz, 4H), 5.93 (dd, *J* = 7.8, 1.6 Hz, 2H), 5.88 (dd, *J* = 7.9, 1.5 Hz, 4H) (phenyl–H), 3.52 (s, 1H, cage C–H); ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ -2.9 (4B), -15.7 (6B); ¹³C NMR (101 MHz, CDCl₃): δ 186.2 (CHO), 144.1, 140.3, 140.0, 138.0, 137.8, 137.6, 134.3, 134.1, 130.4, 130.3, 123.4, 123.4, 121.6, 121.6, 115.6, 113.4, 113.2 (phenyl–C), 86.7, 65.2 (cage–C). HRMS (ESI, negative mode): *m/z* calcd for C₅₇B₁₀N₃O₄H₄₄ [M–H]⁻: 942.4340. Found: 942.4333. Elemental analysis (%) calcd for C₅₇B₁₀N₃O₄H₄₅: C, 72.52; H, 4.80; N, 4.45. Found: C, 71.86; H, 5.04; N, 4.26.

Figure S18. Photophysical properties of PCB-3Ph-PXZ. a: Luminescent photograph taken under UV light (365 nm), and fluorescence spectrum observed in the solid state under ambient condition ($\lambda_{ex} = 340$ nm), the solid-state quantum yield of 0.07%; b: Normalized absorption spectrum in THF (1.0×10^{-5} M) under ambient condition.

Note: penta-Arylation can enhance luminescence in comparison to tri-arylation.

Scheme S12. Late stage modification of drug or drug intermediate

Late stage modification of drug or drug intermediate: A reaction tube (10 mL) with a magnetic stir bar was charged with *p*-carboranyl aldehyde (0.1 mmol, 17.2 mg), glycine (1.0 equiv. 0.1 mmol, 7.5 mg), HFIP (1.0 mL) under Ar atmosphere and allowed to stir at 40 °C for 1h. Then, drug derived or drug intermediated aryl iodide (6.0 equiv. 0.6 mmol), silver phosphate (6.0 equiv. 0.75 mmol, 313.9 mg), palladium acetate (10 mol %, 0.01 mmol, 2.3 mg), sodium bicarbonate (1.0 equiv. 0.1 mmol, 8.4 mg), HFIP (1.0 mL) were added and heated at 80 °C for 36 hours. Upon completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of EtOAc. The mixture was filtered through a silica gel plug and concentrated in *vacuo*. The crude reaction mixture was purified on PTLC using petroleum ether/ethyl acetate as the eluent to afford the product.

19: Yield 61%. White solid. m. p. 78.5 – 79.1 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.74 (t, *J* = 1.4 Hz, 1H, C**H**=N), 7.33 – 7.27 (m, 10H), 7.20 – 7.14 (m, 10H), 6.94 – 6.85 (m, 10H), 6.78 – 6.68 (m, 10H) (phenyl–**H**), 3.88 – 3.92 (q, *J* = 7.1 Hz, 5H, OCOC**H**CH₃), 3.85 (d, *J* = 1.4 Hz, 2H, NC**H**₂CO₂H), 3.39 (s, 1H, cage C–**H**), 2.50 (d, *J* = 7.2 Hz, 10H, PhC**H**₂ⁱPr), 1.91 (hept, *J* = 6.8 Hz, 5H, ⁱPr–C**H**), 1.61 (d, *J* = 7.2 Hz, 15H, OCOCHC**H**₃), 0.95 (d, *J* = 6.6 Hz, 30H, ⁱPr–C**H**₃); ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ -3.3 (5B), -14.9 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 173.2 (OCOCHCH₃), 168.4 (NCH₂CO₂H), 157.0 (CH=N), 151.2, 140.8, 137.2, 136.9, 129.6, 128.4, 127.3, 120.3 (phenyl–**C**), 80.1, 61.0 (cage–**C**), 59.6 (NCH₂CO₂H), 45.3, 45.1, 30.2, 22.5, 18.6 (alkyl **C**). HRMS (ESI, negative mode): *m/z* calcd for C₁₀₀B₁₀NO₁₂H₁₁₄ [M–H]⁻: 1629.9383. Found: 1629.9372. Elemental analysis (%) calcd for C₁₀₀B₁₀NO₁₂H₁₁₅: C, 73.64; H, 7.11; N, 0.86. Found: C, 73.29; H, 7.69; N, 0.53.

20: Yield 63%. m. p. 248.5 – 251.3 °C. White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.80 (t, J = 1.8 Hz, 1H, C**H**=N), 7.01 (d, J = 8.1 Hz, 5H), 6.79 (d, J = 7.9 Hz, 5H), 6.52 (s, 5H) (phenyl–**H**) 3.87 (d, J = 1.8 Hz, 2H, NC**H**₂CO₂H), 3.39 (s, 1H, cage C–**H**), 2.61 – 2.22 (m, 25H), 2.19 – 2.09 (m, 5H), 2.08 – 2.00 (m, 5H), 1.97 – 1.87 (m, 10H), 1.66 – 1.42 (m, 25H), 1.40 – 1.30 (m, 5H), 0.91 (s, 15H) (estrone alkyl C–**H**); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ -4.7 (5B), -16.8 (5B); ¹³C NMR (126 MHz, CDCl₃): δ 220.9 (estrone **C**=O), 169.2 (NCH₂CO₂H), 159.4 (CH=N), 140.0, 136.9, 135.0, 133.3, 128.9, 124.4 (phenyl–**C**), 79.3, 59.9 (cage–**C**), 58.7 (NCH₂CO₂H), 50.6, 48.1, 44.5, 38.2, 35.9, 31.7, 29.4, 26.6, 25.7, 21.7, 14.0 (estrone alkyl **C**). HRMS (ESI, negative mode): *m/z* calcd for C₉₅B₁₀NO₇H₁₁₄ [M–H]⁻: 1489.9638. Found: 1489.9630. Elemental analysis (%) calcd for C₉₅B₁₀NO₇H₁₁₅: C, 76.53; H, 7.77; N, 0.94. Found: C, 76.19; H, 7.34; N, 1.31.

21: Yield 41%. m. p. 113.7 – 114.9 °C. White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (t, J = 1.3 Hz, 1H, C**H**=N), 7.07 (d, J = 8.2 Hz, 5H), 6.82 (dd, J = 8.2, 1.9 Hz, 5H),

6.75 – 6.54 (m, 25H) (phenyl–H), 4.83 (ddt, J = 6.1, 4.3, 2.2 Hz, 5H, OCH), 4.01 – 3.83 (m, 20H), 3.68 (s, 10H) (CH₂), 3.32 (s, 1H, cage C–H), 3.24 (d, J = 16.4, 1H), 3.14 – 3.09 (d, J = 16.4, 1H) (NCH₂CO₂H), 2.14 (m, 10H, CH₂); ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ -3.0 (5B), -15.9 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 169.2 (C=O), 157.8 (CH=N), 155.8, 138.4, 137.8, 135.2, 134.9, 131.8, 129.7, 128.8, 115.3 (phenyl–C), 79.6 (cage–C), 77.2, 73.0, 67.3 (alkyl C), 59.3 (cage–C), 59.1 (NCH₂CO₂H), 38.4, 33.1, 29.5 (alkyl C). HRMS (ESI, negative mode): *m/z* calcd for C₉₀B₁₀NO₁₂Cl₅H₈₉ [M–H]⁻: 1661.5840. Found: 1661.5848. Elemental analysis (%) calcd for C₉₀B₁₀NO₁₂Cl₅H₉₀: C, 65.00; H, 5.46; N, 0.84. Found: C, 65.51; H, 5.01; N, 0.73.

Scheme S13. Stepwise penta-arylation of 1a.

Stepwise penta-arylation of 1a: **22** were prepared by a similar procedure to **7** using 3.0 equiv. of 1-Bromo-4-iodobenzene, 3.0 equiv. of Ag₃PO₄ at 60 °C for 12h. **23** were also prepared by a similar procedure to **7** using 3.0 equiv. of 1-Bromo-4-iodobenzene, 3.0 equiv. of Ag₃PO₄ at 60 °C for 24h

22 (purity: 78%, based on ¹H NMR): Yield 41%. White solid. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (s, 1H, CHO), 7.45 (m, J = 2.4 Hz, 6H), 7.39 – 7.32 (m, 4H), 7.19 – 7.12 (m, J = 8.2 Hz, 4H) (phenyl–H), 3.39 (s, 2H, cage C–H); ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ -3.3 (3B), -15.8 (7B); ¹³C NMR (101 MHz, CDCl₃): δ 185.9 (CHO), 136.8, 136.6, 131.4, 131.2, 128.0, 124.6, 124.2 (phenyl–C), 85.5, 65.0 (cage–C).

HRMS (ESI, negative mode): m/z calcd for C₂₁B₁₀OBr₃H₂₁ [M–H]⁻: 635.0052. Found: 635.0056.

23: Yield 56%. White solid. m. p. 159.6 – 161.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (t, J = 1.3 Hz, 1H, C**H**=N), 7.76 – 7.69 (m, 4H), 7.21 – 7.12 (m, 6H), 7.09 – 7.01 (m, 4H), 6.83 – 6.71 (m, 6H) (phenyl–**H**), 4.01 (d, J = 1.2 Hz, 2H, C**H**₂), 3.87 (s, 6H, OC**H**₃), 3.47 (s, 1H, cage C–**H**); ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 8.3 (1B), -2.2 (1B), -13.7 (2B), -14.7 (2B), -15.7 (2B); ¹³C NMR (101 MHz, CDCl₃): δ 172.8, 167.8 (C=O), 155.9 (CH=N), 137.5, 137.4, 135.9, 130.7, 130.6, 129.9, 128.2, 123.8, 123.7 (phenyl–**C**), 80.4, 62.8 (cage–**C**), 59.7 (CH₂), 52.4 (OCH₃). HRMS (ESI, negative mode): m/z calcd for C₃₉B₁₀NO₆Br₃H₃₅ [M–H]⁻: 962.0982. Found: 962.0981. Elemental analysis (%) calcd for C₃₉B₁₀NO₆Br₃H₃₆: C, 48.67; H, 3.77; N, 1.46. Found: C, 48.18; H, 3.36; N, 1.13.

Scheme S14. Reduction of 13a to 24.

Reduction of 13a with NaBH₄: **13a** (0.1 mmol, 40.0 mg), NaBH₄ (3.0 equiv. 0.3 mmol, 11.3 mg) and THF (2.0 mL) were added into a reaction tube (10 mL) and allowed to stir at 35 °C for 4 h. Upon completion as monitored by TLC, the reaction mixture was treated with 5 mL of saturated NaCl solution. The organic layer was extracted with hexanes for three times (3×10 mL). The crude reaction mixture was purified on

preparative TLC using hexanes/CH₂Cl₂ (v/v = 5/1) as the eluent to afford the desired product **24** (68.2 mg).

24: Yield 97%. White solid. m. p. 336.0 – 336.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.39 (d, J = 8.5 Hz, 4H), 7.29 (d, J = 8.5 Hz, 4H), 7.08 (d, J = 8.0 Hz, 4H), 6.92 (d, J = 8.5 Hz, 4H) (phenyl–**H**), 4.71 (s, 1H, cage C–**H**), 4.47 (d, J = 7.9 Hz, 2H, C**H**₂), 1.30 (s, 18H), 1.26 (s, 18H) ('Bu–C**H**₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.8 (4B), –5.0 (3B), –10.4 (2B), –14.6 (1B); ¹³C NMR (126 MHz, CDCl₃): δ 152.8, 150.9, 135.1, 134.1, 125.5, 124.4 (phenyl–**C**), 72.3, 57.9 (CH₂), 57.7 (cage–**C**), 34.6, 34.4 ('Bu–CMe₃), 31.22, 31.17 ('Bu–CH₃). HRMS (ESI, negative mode): *m/z* calcd for C4₃B₁₀OH₆₁ [M–H]⁻: 702.5695. Found: 702.5692. Elemental analysis (%) calcd for C4₃B₁₀OH₆₂: C, 73.46; H, 8.89. Found: C, 73.40; H, 8.74.

Scheme S15. Amidation of 14a with morpholine.

Amidation of carboxylic acids: To a solution of morpholine (1.0 equiv., 0.1 mmol, 8.7 mg), hydroxybenzotrizole (HOBt, 1.0 equiv., 0.1 mmol, 13.5 mg) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, 1.0 equiv., 0.1 mmol, 19.2 mg) in DCM (0.1 M), **14a** (0.1 mmol, 89.0 mg) was added and the resulting solution was stirred at room temperature for 14 h. After this time, the crude reaction mixture was purified on preparative TLC using petroleum ether/ethyl acetate as the eluent to afford the desired product **25** (93.2 mg).

25: Yield 97%. White solid. m. p. 294.3 – 294.6 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H, CH=N), 7.04 – 7.00 (m, 10H), 6.96 – 6.85 (m, 10H) (phenyl–H), 4.17 (s, 2H, N–CH₂–CO), 3.62 (t, *J* = 4.6 Hz, 2H, N–C₂H₄–O), 3.59 (s, 1H, cage–CH), 3.52 (t, *J* = 4.6 Hz, 2H), 3.32 (t, *J* = 4.6 Hz, 2H), 3.00 (t, *J* = 4.6 Hz, 2H, N–C₂H₄–O), 1.27 (s, 9H), 1.26 (s, 36H) (⁷Bu–CH₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ 5.6 (1B), –1.1 (2B), –6.6 (2B), –11.2 (2B), –13.3 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 166.0 (C=O), 158.2 (CH=N), 157.97, 151.7, 150.8, 150.6, 135.6, 135.3, 135.0, 132.9, 124.1, 124.0 (phenyl–C), 70.6 (cage–C), 66.7, 66.6 (N–C₂H₄–O), 65.5 (N–CH₂–CO), 53.6 (cage–C), 46.6, 42.2 (N–C₂H₄–O), 34.61, 34.55, 34.54 (⁷Bu–CMe₃), 31.40, 31.38 31.32 (⁷Bu–CH₃). HRMS (ESI, positive mode): *m/z* calcd for C₅₉B₁₀N₂O₂H₈₃ [M+H]⁺: 959.7452. Found: 959.7458. Elemental analysis (%) calcd for C₅₉B₁₀N₂O₂H₈₂: C, 73.86; H, 8.62; N, 2.92 Found: C, 73.92; H, 8.71; N, 2.86

Figure S19. X-Ray structure of 25 (ellipsoids at 30% probability, solvent and H atoms were omitted for clarity). Selected bond distances [Å] for 25: C1–C13 1.499(4), C13–N1 1.250(4), C1–B2 1.753(4), C1–B3 1.738(4), C1–B4 1.761(4), C1–B5

1.758(4), C1–B6 1.751(5), B2–C14 1.565(4), B3–C15 1.575(5), B4–C16 1.583(5), B5–C17 1.576(4), B6–C18 1.569(4).

Scheme S16. Peptide synthesis from 14f with glycine tert-butyl ester

Synthesis of dipeptide: To a solution of glycine tert-butyl ester (1.2 equiv., 0.1 mmol, 15.7 mg), HOBt (1.0 equiv., 0.12 mmol, 16.2 mg) and EDC (1.2 equiv., 0.12 mmol, 18.7 mg) in DCM (0.1 M), **14f** (0.1 mmol, 106.0 mg) was added and the resulting solution was stirred at room temperature 14 h. After this time, the crude reaction mixture was purified on preparative TLC using petroleum ether/ethyl acetate as the eluent to afford the desired product **26** (110.7 mg).

26: Yield 94%. Colorless solid. m. p. 89.7 – 89.0 °C. ¹H NMR (400 MHz , CDCl₃) δ : 8.02 (t, *J* = 1.7 Hz, 1H, C**H**=N), 7.35 – 7.11 (m, 25H), 7.00 – 6.71 (m, 20H) (phenyl–**H**), 6.01 (t, *J* = 6.5 Hz, 1H, N**H**), 4.00 (d, *J* = 1.7 Hz, 2H, C**H**₂–CO), 3.90 (s, 4H), 3.89 (s, 6H, Bn–C**H**₂), 3.63 (s, 1H, cage–C**H**), 3.31 (d, *J* = 6.4 Hz, 2H, C**H**₂–CO), 1.47 (s, 9H, ^{*i*}Bu–C**H**₃); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ 5.6 (1B), –1.3 (2B), –6.1 (2B), –10.9 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 169.0, 168.0 (C=O), 157.2 (CH=N), 142.1, 141.2,

141.1, 140.9, 140.7, 135.9, 135.6, 135.3, 133.2, 129.1, 129.0, 128.6, 128.6, 128.5, 128.3, 128.1, 128.0, 126.3, 126.2, 126.1 (phenyl–C), 81.7 ('Bu–CMe₃), 70.5, 62.0 (cage–C), 53.6, 41.75, 41.73, 41.72 (CH₂), 28.3 ('Bu–CH₃). HRMS (ESI, negative mode): m/z calcd for C₇₆B₁₀N₂O₃H₇₅ [M–H]⁻: 1173.6784. Found: 1173.6781. Elemental analysis (%) calcd for C₇₆B₁₀N₂O₃H₇₆: C, 77.78; H, 6.53; N, 2.39. Found: C, 77.44; H, 6.81; N, 2.51.

Scheme S17. Late stage modification of dehydrobietylamine with 15b

Late stage modification of dehydrobietylamine: To a solution of dehydrobietylamine (1.0 equiv., 0.1 mmol, 28.6 mg), HOBt (1.0 equiv., 0.1 mmol, 13.5 mg) and EDC (1.0 equiv., 0.1 mmol, 15.6 mg) in DCM (0.1 M), 15b (0.1 mmol, 61.0 mg) was added and the resulting solution was stirred at room temperature 14 h. After this time, the crude reaction mixture was purified on preparative TLC using petroleum ether/ethyl acetate as the eluent to afford the desired product **27** (79.6 mg).

27: Yield 90%. Colorless solid. m. p. 146.7 – 147.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.96 (s, 1H, CH=N), 7.21 (t, J = 7.4 Hz, 5H, phenyl–H), 7.16 (d, J = 8.2 Hz, 1H, dehydrobietylamine–H), 7.03 (dd, J = 7.6 Hz, 7.6 Hz, 10H, phenyl–H), 6.99 (d, J = 8.5 Hz, 1H, dehydrobietylamine–H), 6.95 (d, J = 8.5 Hz, 10H, phenyl–H), 6.88 (s, 1H, dehydrobietylamine–H), 6.02 (t, J = 6.9 Hz, 1H, NH), 3.93 (d, J = 18.5 Hz, 1H), 3.81 (d, J = 18.5 Hz, 1H) (NHCH₂), 3.42 (s, 1H, cage CH), 2.95 (d, J = 6.9 Hz, 2H), 2.90 – 2.73 (m, 4H), 2.26 (d, J = 7.5 Hz, 1H), 1.91 – 1.87 (m, 1H), 1.71 – 1.60 (m, 4H), 1.22 (d, J = 7.0 Hz, 6H), 1.17 (s, 3H), 1.00 (d, J = 13.0 Hz, 1H), 0.74 (s, 3H) (dehydrobietylamine–H); ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.7 (5B), –16.0 (5B); ¹³C NMR (101 MHz, CDCl₃): δ 168.9 (C=O), 157.5 (CH=N), 147.3, 145.7, 135.8, 135.1, 131.9, 128.5, 127.4, 127.1, 124.2, 123.9 (phenyl–C), 79.9 (cage–C), 62.4 (N–CH₂–CO), 59.8 (cage–C), 50.1, 46.3, 38.3, 37.9, 37.5, 35.8, 33.6, 30.4, 25.6, 24.1, 19.3, 18.5, 18.1 (dehydrobietylamine–C). HRMS (ESI, negative mode): m/z calcd for C₅₅B₁₀N₂OH₆₃ [M–H]⁻: 875.5949. Found: 875.5954. Elemental analysis (%) calcd for C₅₅B₁₀N₂OH₆₄: C, 75.31; H, 7.35; N, 3.19. Found: C, 75.70; H, 7.18; N, 3.06.

Scheme S18. Late stage modification of adapalene

Late stage modification of adapalene: To a solution of adapalene (1.2 equiv., 0.12 mmol, 49.5 mg), DMAP (4-dimethylaminopyridine, 0.1 equiv., 0.01 mmol, 1.2 mg) and DCC (N,N'-dicyclohexylcarbodiimide, 1.5 equiv., 0.15 mmol, 31.0 mg) in CHCl₃ (0.05 M), **17** (0.1 mmol, 70.3 mg) was added and the resulting solution was stirred at 50 °C for 24 h. After this time, the crude reaction mixture was purified on preparative TLC using petroleum ether/DCM as the eluent to afford the desired product **28** (73.4 mg).

28: Yield 67%. Colorless solid. m. p. 208.7 – 209.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (s, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.84 – 7.81 (m, 2H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.62 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.50 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 4H), 7.17 – 7.13 (m, 4H), 7.09 – 7.06 (m, 8H), 7.02 (d, *J* = 8.5 Hz, 1H) (phenyl–**H**), 5.24 (s, 2H, CO₂CH₂), 4.86 (s, 1H, cage C**H**), 3.92 (s, 3H, OC**H**₃), 2.20 (d, *J* = 2.9 Hz, 6H), 2.12 (s, 3H), 1.83 (d, *J* = 3.1 Hz, 6H) (adamantyl–**H**), 1.28 (s, 18H), 1.03 (s, 18H) ('Bu–C**H**₃). ¹¹B {¹H} NMR (128 MHz, CDCl₃): δ –2.9 (5B), –9.7 (3B), –14.3 (2B); ¹³C NMR (101 MHz, CDCl₃): δ 167.0 (C=O), 159.1, 141.5, 139.2, 136.1, 132.8, 131.4, 130.9, 129.8, 128.3, 127.4, 126.6, 126.1, 125.9, 125.8, 124.9, 112.3 (phenyl–**C**), 61.2 (CO₂CH₂), 60.1 (cage–**C**), 55.3 (OCH₃), 40.8 (adamantyl–**C**), 37.4 ('Bu–**C**(CH₃)₃), 37.3 (adamantyl–**C**), 29.3 ('Bu–CH₃ and adamantyl–**C**). HRMS (ESI, negative mode): m/z calcd for C₇₁B₁₀O₃H₈₇ [M–H]⁻: 1097.7661. Found: 1097.7654. Elemental analysis (%) calcd for C₇₁B₁₀O₃H₈₈: C, 77.70; H, 8.08. Found: C, 77.31; H, 7.73.

3. References

(S1) Dozzo, P.; Kasar, R. A.; Kahl, S. B. Simple, High-Yield Methods for the Synthesis of Aldehydes Directly from *o*-, *m*-, and *p*-Carborane and Their Further Conversions. *Inorg. Chem.* **2005**, *44*, 8053-8057.

(S2) Sheldrick, G. M. SADABS, *A Program for Empirical Absorption Correction*; University of Göttingen; Göttingen, Germany, **1998**.

(S3) Sheldrick, G. M. SHELXL-97, *Program for the Refinement of Crystal Structures*; University of Göttingen; Göttingen, Germany, **1997**.

4. Crystallographic data

	3	5	6	7'	8	
Empirical formula	C ₂₇ H ₃₀ B ₁₀ NOPPd	$C_{11}H_{18}B_{10}O_3$	C19H24B10O5	C21H21B10F3O	C35H36B10O9	
Formula wt	629.99	306.35 440.48		454.48	708.74	
Crystal system	Monoclinic	Monoclinic Orthorhombic		Monoclinic	Monoclinic	
Space group	$P2_1/n$	$P2_1/c$	Pbcm	P21/c	P21/c	
a/Å	9.0642(12)	22.9926(11)	6.8374(6)	14.2655(18)	22.445(12)	
b/Å	13.1695(18)	6.5798(3)	18.2868(15)	19.450(3)	8.524(5)	
c/Å	24.860(3)	24.1534(12)	18.8324(16)	8.3140(11)	20.897(11)	
α/deg	90	90	90	90	90	
β/deg	94.902(2)	115.752(2)	90	102.863(5)	116.232(8)	
γ/deg	90	90	90	90	90	
$V/Å^3$	2956.7(7)	3291.2(3)	2354.7(3)	2249.0(5)	3586(3)	
Z	4	8	4	4	4	
$\rho_{calc}[g/cm^3]$	1.415	1.237	1.243	1.342	1.313	
μ [mm ⁻¹]	0.706	0.073	0.400	0.090	0.087	
F(000)	1272.0	1264.0	912.0	928.0	1024	
2θ range (deg)	3.288/54.852	4.928/55.018	8.168/122.258	4.188/50.728	2.202/54.964	
no. of rflns collected	26299	13588	29201	61856	30784	
no. of indep rflns	6684	7466	2682	4095	8077	
GOF on F ²	1.035	1.035	1.202	1.068	1.021	
R1/wR2 [I> 2σ(I)]	0.0272/0.0654	0.0528/ 0.1334	0.1123/0.2766	0.0464/0.1106	0.0882/0.2678	
R1/wR2 (all data)	0.0328/0.0686	0.0828/ 0.1492	0.1419/0.2961	0.0687/0.1199	0.1724/0.3467	
largest peak/hole (e Å ⁻¹)	1.34/-0.53	0.31/-0.25	0.26/-0.21	0.18/-0.23	0.44/-0.31	
van der Waals volume (Å ³)	402.54	200.66	205 70	202.42	607.71	
(calculated by Olex2)	493.34	290.00	393.19	393.42	00/./1	

Table S4. Crystallographic data of compounds 3, 5,	6,	7',	8, 9), 11,	13a,	13c,	13k,	15b,
15d, 16, 17, 18 and 25.								

	9.CH ₂ Cl ₂	11	13 a	13c	13k
Empirical formula	C46H48B10Cl2NO12	C43H42B10NO5PPd	C43H60B10O	C31H36B10O	$C_{66}H_{58}B_{20}F_8N_2O_2$
Formula wt	985.85	898.24	701.01	532.70	1279.34
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P-1	P21/c	C2/c	C2/c	P-1
a/Å	12.9702(13)	15.4750(11)	30.248(6)	24.4616(12)	10.804(5)
b/Å	13.4980(13)	25.5038(19)	12.321(2)	13.4493(6)	11.906(5)
c/Å	16.6031(16)	16.9662(12)	25.333(5)	18.7508(8)	25.209(11)
α/deg	70.165(2)	90	90	90	90.090(9)
β/deg	71.761(2)	102.143(2)	116.221(4)	100.232(2)	87.216(10)
γ/deg	64.698(2)	90	90	90	88.784(11)
$V/Å^3$	2423.3(4)	6546.3(8)	8470(3)	6070.7(5)	3238(2)
Z	2	4	8	8	2

$\rho_{calc} [g/cm^3]$	1.351	0.911	1.099	1.166	1.312
μ [mm ⁻¹]	0.197	0.338	0.060	0.063	0.089
F(000)	1022.0	1832.0	3008.0	2240	1312.0
2θ range (deg)	2.66/55.02	4.028/55.02	4.332/50	4.27/55.096	4.704/48.398
no. of rflns collected	22062	58879	23535	27023	15319
no. of indep rflns	10811	14999	7455	6987	10141
GOF on F ²	1.069	0.979	1.023	1.055	1.071
R1/wR2 [I> $2\sigma(I)$]	0.0834/0.2444	0.0747/0.1846	0.0888/0.1818	0.1041/0.2454	0.1538/0.3544
R1/wR2 (all data)	0.1134/0.2836	0.1714/0.2321	0.1938/0.2224	0.1700/0.2852	0.2215/0.3904
largest peak/hole (e Å ⁻¹)	1.61/-1.30	1.06/-0.93	0.50/-0.30	0.71/-0.46	0.48/-0.45
van der Waals volume (Å ³)	758.14 (exclude	705 16	666 5 1	406.60	529 72
(calculated by Olex2)	CH ₂ Cl ₂)	/03.16	000.34	490.09	536.75

	15b·DMSO	15d	16	17· <i>n</i> -hexane	18	25 ·CHCl ₃
Empirical formula	C37H39B10NO3S	C45H56B10NO2	C54H73B10N	C59H86B10O	C93H67B10N5O6	C60H83B10Cl3N2O2
Formula wt	685.85	751.01	844.23	919.37	1458.61	1067.92
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	P21/c	P222	$P2_1/n$	P-1	P-1	P-1
a/Å	23.4028(15)	20.541(3)	12.427(12)	11.646(2)	10.8160(18)	14.9214(9)
b/Å	10.4909(7)	21.748(3)	37.88(4)	11.847(2)	16.257(3)	15.0111(10)
c/Å	17.9732(13)	21.850(3)	13.129(13)	22.420(4)	21.721(4)	17.2386(13)
a/deg	90	90	90	91.159(3)	100.657(10)	108.538(2)
β/deg	111.455(2)	90	103.168(19)	103.259(3)	92.975(11)	106.645(2)
γ/deg	90	90	90	105.903(3)	92.071(11)	102.932(2)
$V/Å^3$	4106.9(5)	9761(2)	6018(10)	2884.2(9)	3744.3(12)	3290.0(4)
Z	4	4	4	2	2	2
$ ho_{calc} \left[g/cm^3 ight]$	1.109	1.021	0.932	1.059	1.294	1.078
$\mu [mm^{-1}]$	0.113	0.058	0.050	0.058	0.391	0.179
F(000)	1432.0	3184.0	1816.0	996.0	1516.0	1138.0
2θ range (deg)	4.31/55.12	3.304/58.872	3.362/49.998	3.75/55.124	3.608/102.498	4.362/54.996
no. of rflns collected	33051	91128	44669	26724	41699	30658
no. of indep rflns	9417	22548	10558	113177	11880	14961
GOF on F ²	1.043	0.957	1.050	1.013	1.074	1.001
R1/wR2 [I> 2σ(I)]	0.1042/0.2526	0.0683/0.1512	0.0940/0.2610	0.0775/0.1790	0.1008/0.2114	0.0837/0.2288
R1/wR2 (all data)	0.2007/0.2973	0.1428/0.1897	0.1470/0.3200	0.1550/0.2200	0.2533/0.2683	0.1456/0.2717
largest peak/hole (e Å ⁻¹)	1.03/-0.93	0.24/-0.29	0.69/-0.42	0.49/-0.35	0.25/-0.23	1.62/-0.60
van der Waals volume (Å ³)	545.74 (exclude	(00.00	004 50	880.58 (exclude	1240.05	888.59 (exclude
(calculated by Olex2)	DMSO)	089.88	824.38	<i>n</i> -hexane)	1340.05	CHCl ₃)

5. NMR Spectra

5.1 Mechanistic Study

¹H NMR of 2, 500 M, CDCl₃

¹¹B {¹H} NMR of 2, 160 M, CDCI₃

 ^{11}B { $^{1}\text{H}} NMR of 3, 160 M, CDCl_3$

- 30.53

¹H NMR of 4, 500 M, CDCl₃

S66

^{13}C (¹H) NMR of 6, 126 M, CDCl₃

¹H NMR of 7, 500 M, CDCl₃

¹H NMR of 8, 500 M, CDCl₃

^{13}C {¹H} NMR of 8, 126 M, CDCI₃

¹H NMR of 9, 400 M, CDCl₃

^1H NMR of 7', 400 M, CDCl_3

¹¹B {¹H} NMR of 7', 128 M, CDCI₃

S77

¹³C {¹H} NMR of 7', 101 M, CDCI₃

S78

¹H NMR of 10, 400 M, CDCI₃

¹¹B {¹H} NMR of 10, 160 M, CDCI₃

¹³C {¹H} NMR of 10, 101 M, CDCl₃

- 10	15	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	200	÷ ;	10	27	11 85	22	64	
<u>N</u> .	<u> </u>	4 4	က္တတ္ထ	Ö g	φ	Ö. R.	ю. С	4.5	0,0,0	
02	202	96 4	34	80	61	85	233	ထိုလ	400	

^{11}B { $^{1}\text{H}} NMR of 11, 160 M, CDCl_3$

172.7 172.7	167.2	147.1	147.0	135.4	135.0	134.9	134.6	133.7	133.7	133.0	132.1	131.7	130.9	130.8	130.7	129.8	129.1	128.7	128.5	128.4	123.4	116.0	116.0	112.9	95.79	64.36	52.36	52.17
\neg	\vdash	<u>ل</u> ر	1	5	-6-	-	-	-			,	_			_	-		-	-	_	-	-	-					

¹H NMR of 12, 400 M, CDCI₃

$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

B(3,4,5,6)-tetra-arylated-*o*-carborane

^{13}C NMR of 13a, 100 M, CDCl_3

^1H NMR of 13b, 500 M, CDCl_3

^{11}B { $^{1}\text{H}} NMR of 13b, 160 M, CDCl_3$

^{11}B NMR of 13b, 160 M, CDCl₃

8 8 9 2 8 3 7 8 3 7 8 3	44	96 66
0.1 20.0	ώ 4	N 00

^{13}C NMR of 13b, 126 M, CDCl_3

^{11}B NMR of 13c, 160 M, CDCl_3

^{13}C NMR of 13c, 126 M, CDCl_3

^1H NMR of 13d, 500 M, CDCl_3

-1.66 -3.31 -4.20	-8.95 -9.76	-13.29 -14.29
2 5 5	1 /	

^{13}C NMR of 13d, 126 M, CDCl_3

S94

^{13}C {¹H} NMR of 13e, 126 M, CDCl₃

^1H NMR of 13f, 500 M, CDCl_3

^{13}C NMR of 13f, 126 M, CDCl_3

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(ppm

^1H NMR of 13g, 500 M, CDCl_3

 ^{11}B NMR of 13g, 160 M, CDCl_3

~ -2.16
~ -3.88
~ -9.60
~ -14.20

70 60 50 30 20 0 -20 -30 -40 -50 -60 -70 -80 40 10 -10 ppm

^1H NMR of 13h, 500 M, CDCl_3

 ^{11}B NMR of 13h, 128 M, CDCl_3

--2.26 --4.05 --9.73 -14.09

^{13}C {H} NMR of 13h, 126 M, CDCl_3

¹H NMR of 13i, 400 M, CDCl₃

¹¹B NMR of 13i, 128 M, CDCI₃

^{13}C NMR of 13i, 101 M, CDCl_3

¹H NMR of 13j, 400 M, CDCl₃

02	222 222	
ΩÓ		-
1		-

\ -2.31 _-9.52 _-13.16

 $^1\text{H-}^{13}\text{C}$ HSQC of 13j, 400 M, CDCl_3

 ^1H NMR of 13k, 400 M, CDCl_3

 ^{11}B { ^{1}H } NMR of 13k, 128 M, CDCl3

^1H NMR of 13I, 500 M, CDCl_3

- 28 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	89 85
	ຕ່ຕ່
	\leq

¹¹B NMR of 13I, 160 M, CDCI₃

B(2,3,4,5,6)-penta-arylated-*m*-carborane

 ^1H NMR of 14a, 400 M, CDCl_3

 ^{11}B NMR of 14a, 128 M, CDCl_3

¹H NMR of 14b, 500 M, CDCI₃

^{13}C NMR of 14b, 126 M, CDCl_3

 ^1H NMR of 14c, 500 M, CDCl_3

$\begin{array}{c} 8.08\\ -8.08\\ -7.136\\ -7.113\\ -7.03\\ -$

 $^1\text{H-}^{13}\text{C}$ HSQC of 14d, 400 M, CDCl_3

¹H NMR of 14e, 500 M, CDCl₃

 ^{11}B { $^{1}\text{H}} NMR of 14e, 160 M, CDCl_3$

4.72
-2.44
-6.63
-11.66
-12.95

¹H NMR of 14f, 500 M, CDCI₃

 ^{11}B { $^{1}\text{H}} NMR of 14f, 160 M, CDCl_3$

 ^{11}B { $^{1}\text{H}} NMR of 14g, 160 M, CDCl_3$

\ 5.65 --0.87 -6.41 -10.96

¹H NMR of 14h, 500 M, acetone-d₆

 ^{11}B { ^{1}H } NMR of 14h, 160 M, CDCl $_{3}$

¹³C NMR of 14h, 126 M, acetone-d₆

B(2,3,4,5,6)-penta-arylated-*p*-carborane

 ^1H NMR of 15b, 400 M, CDCl_3

^{13}C NMR of 15b, 101 M, CDCl_3

 $^{^{13}\}text{C-}^{1}\text{H}$ HSQC of 15b, 400 M, CDCl_3

 ^1H NMR of 15c, 400 M, CDCl_3

 ^{11}B { $^{1}\text{H}} NMR of 15c, 128 M, CDCl_{3}$

¹H NMR of 15d, 400 M, CDCI₃

 ^{11}B NMR of 15d, 128 M, CDCl_3

¹H NMR of 15e, 500 M, CDCl₃

 ^{11}B { $^{1}\text{H}} NMR of 15e, 160 M, CDCl_3$

¹H NMR of 15f, 400 M, CDCl₃

 ^{11}B {H} NMR of 15f, 128 M, CDCl3

 ^{11}B {H} NMR of 15g, 128 M, CDCl3

¹H NMR of 15h, 400 M, CDCl₃

 ^{11}B { ^{1}H } NMR of 15h, 128 M, CDCl_3

 ^{11}B { $^{1}\text{H}} NMR of 16, 160 M, CDCl_3$

4.63 --1.60 --6.73 -11.57

$^{13}\text{C-}^{1}\text{H}$ HSQC of 16, 500 M, CDCl $_3$

Synthetic utilities

^1H NMR of 17, 500 M, CDCl_3

-1.31 -2.24	-6.32 -7.26 -8.71 -9.69 -10.10 -11.10 -13.22	

¹H NMR of 18, 400 M, CDCI₃

^{13}C NMR of 18, 101 M, CDCl_3

ppm

ppm

¹³C NMR of PCB-3Ph-PXZ, 101 M, CDCl₃

¹³C-¹H HSQC of PCB-3Ph-PXZ, 400 M, CDCI₃

 ^{11}B { $^{1}\text{H}} NMR of 19, 128 M, CDCl_{3}$

---3.28 ---14.87

 ^{11}B {1H} NMR of 20, 128 M, CDCl3

---4.65 ---16.83

¹¹B {¹H} NMR of 24, 128 M, CDCI₃

¹H NMR of 25, 500 M, CDCl₃

 $^{^1\}text{H}$ NMR of 26, 400 M, CDCl_3

S170

S173