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1 MD17

1.1 Details of the fits

1.1.1 ACE fits

The ACE fits used 0.77 Å inner and 4.4 Å outer cut-off for the many-body part and 5.5

Å outer cutoff for the longer range pair potential fitted together with the ACE. The only

exception was naphthalene where the outer cutoffs were doubled to account for the longer

range effects of the extended conjugated system. The loss function used had a weight 30 on

the energies and 1 on the forces when fitting to both in both the isolated atom One-body

and the average energy One-body case.

The regularized linear least squares problem was solved either by rank revealing QR

factorisation or by the iterative LSQR algorithm. To be able to use the LSQR algorithm we

have to rewrite eq (20) in the scaled coordinates Γc by rescaling the design matrix as

L(c) := ‖
(
ΨΓ−1

)(
Γc

)
− t‖2 + λ‖Γc‖2 (1)

Writing the problem in this form allowed us to use the standard implementation of the

algorithm in the IterativeSolvers.jl package.

The exact parameters used for each of the MD17 fits are shown in Table S1, where λ

denotes the weight on the ridge penalty for LSQR or the tolerance parameter for RRQR.
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Table S1: Table of ACE fit parameters

Fit to Dmax
ν Regularization p λ Norm E MAE F MAE

Aspirin
E + F 20, 20, 20, 8 ITLSQ 1.5 0.25 4.4 6.1 19.1
F only 1.2 0.15 8.7 6.1 17.9
Avg E0 1.3 0.15 1.6 5.9 18.7

Azobenzene
E + F 19, 19, 19, 0 RRQR 1.7 5e-8 8.2 3.4 12.8
F only ITLSQ 1.3 0.1 2.2 3.5 10.9
Avg E0 RRQR 1.9 1e-8 96 3.5 14.8

Benzene
E + F 17, 17, 17, 17 RRQR 0.9 1e-8 15.8 0.04 0.5
F only 1.6 1e-7 16.9 0.04 0.5
Avg E0 0.7 1e-8 15.9 0.04 0.5

Ethanol
E +F 20, 20, 20, 8 ITLSQ 1.1 0.25 1.8 1.4 8.4
F only 1.3 0.05 1.4 1.2 7.3
Avg E0 1.2 0.15 0.9 1.4 8.2

Malonaldehyde
E +F 20, 20, 20, 8 ITLSQ 1.35 0.1 3.5 1.9 12.0
F only 1.3 0.05 2.0 1.7 11.1
Avg E0 1.1 0.15 1.5 1.8 11.5

Naphthalene
E +F 20, 20, 20, 16 RRQR 1.9 2e-8 13.2 0.9 5.1
F only 2.4 8e-8 17.4 0.9 5.1
Avg E0 1.6 1e-8 16.2 0.9 5.2

Paracetamol
E +F 18, 18, 18, 0 ITLSQ 1.0 0.1 3.5 4.0 14.9
F only 1.5 0.05 7.0 4.0 12.7
Avg E0 1.2 0.2 1.7 3.8 13.8

Salicylic acid
E +F 20, 20, 20, 8 ITLSQ 1.3 0.2 3.1 2.3 11.2
F only 1.6 0.05 2.1 1.8 9.3
Avg E0 1.1 0.25 1.2 2.2 10.5

Toluene
E +F 20, 20, 20, 16 RRQR 0.9 2e-7 7.5 1.1 6.7
F only 2.0 1e-6 8.6 1.1 6.5
Avg E0 1.9 1e-8 10.7 1.1 6.7

Uracil
E +F 18, 18, 18, 0 ITLSQ 1.3 0.05 4.1 1.4 8.7
F only 1.3 0.05 2.7 1.1 6.6
Avg E0 0.9 0.15 2.0 1.2 7.8
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1.1.2 ANI training

The ANI models were trained using the Torchani framework.1 For the learning we followed

the tutorial in the Documentation using the default parameters for the cutoffs and the

optimization of the weights. We trained two versions of the potential for each molecule, one

where the weights were initialized randomly, and another one where we applied pre-training

by starting from the weights of the ANI-2x model. A comparison of the mean absolute errors

is shown in Table S2. The pre-trained model achieves much lower errors in every case. We

included the pre-trained ANI only in the comparison table in the main manuscript. It is

important to note though, that comparing to the randomly initialised model would be more

fair, as the other models were all trained from scratch.

Table S2: Pre-trained and randomly initialized ANI models. Mean Absolute Error
of the energy (meV) and force (meV / Å) predictions of the pre-trained and randomly
initialized ANI models.

ANI-pre ANI-rand

Aspirin
Energy 16.6 25.4
Force 40.6 75.0

Azobenzene
Energy 15.9 19.0
Force 35.4 52.1

Benzene
Energy 3.3 3.4
Force 10.0 17.4

Ethanol
Energy 2.5 7.7
Force 13.4 45.6

Malonaldehyde
Energy 4.6 9.4
Force 24.5 52.4

Naphthalene
Energy 11.3 16.0
Force 29.2 52.2

Paracetamol
Energy 11.5 18.2
Force 30.4 63.3

Salicylic acid
Energy 9.2 13.5
Force 29.7 53.0

Toluene
Energy 7.7 12.6
Force 24.3 52.9

Uracil
Energy 5.1 8.3
Force 21.4 44.1
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Figure S1: GPU speed up for ANI The timing of force calls per molecule remains constant
using a GPU as long as the system fits into memory. This scaling is in sharp contrast
compared to the CPU performance, which on the other hand could be sped up using parallel
computing.

1.1.3 sGDML

To fit the sGDML models we used the command line tool sgdml all of the sGDML package.2

For example:

sgdml all train1 1000.npz 925 75

1.1.4 GAP

To fit the GAP models we used the gap fit command line tool of the GAP package.3 As

a descriptor a 2B plus double SOAP was used. The 2B descriptor had a cutoff of 6 Å, the

short range SOAP kernel had a 2.5 Å and the longer range SOAP kernel had 4.5 Å cutoff.

For both SOAP kernels we used nmax = 6, lmax = 12 and selected 750 sparse points. The

atom sigma was set to 0.3 and 0.5, and the cutoff transition width to 0.5 and 1.0, for

the short and long ranged SOAP respectively. The zeta parameter was 4, and the delta

0.1 for both of them.
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1.1.5 Classical Force Field

The modified GAFF force field was fit using the ForceBalance program with Amber17.4,5

Bond, angle and dihedral terms were reparametrized, whilst non-bonded and improper terms

remained unchanged. Regularization was not used as overfitting is unlikely given the size of

the dataset and the simplicity of the functional form. Both energies and forces were used

in the fitting process and the weighting of force to energy was set to 1:1. The parameter

optimization was performed using the Newton-Raphson algorithm with a search tolerance

of 0.001.
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1.2 Learning curves
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Figure S2: Force learning curves on the MD17 dataset
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1.3 Normal mode analysis

Figure S3: Normal mode frequency test Normal mode frequencies of the 10 MD17
molecules showing the error of the classical force field along with the ML models.
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Figure S4: Normal mode vector test The value of the dot product of the normal modes
of each of the models with the DFT (ground truths) normal mode vectors is plotted.
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Figure S5: Normal mode vector test The value of the dot product of the normal modes
of each of the models with the DFT (ground truths) normal mode vectors is plotted.
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2 Extrapolation test

Figure S6: Extrapolation energy error
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2.1 The effect of the isolated atom energy

Table S3: The mean absolute error of energies (meV) and forces (meV / A) of ACE models
trained on energies and forces using the average energy shift, the isolated atom energy shift
and trained on forces only and then shifted to minimize training energy error.

ACE with ACE with ACE with
iso E0 average E0 forces only

Aspirin
Energy 6.1 5.9 6.1
Force 19.1 18.7 17.9

Azobenzene
Energy 3.4 3.5 3.6
Force 12.8 14.8 10.9

Benzene
Energy 0.04 0.04 0.04
Force 0.5 0.5 0.5

Ethanol
Energy 1.4 1.4 1.2
Force 8.4 8.2 7.3

Malonaldehyde
Energy 1.9 1.8 1.7
Force 12.0 11.5 11.1

Naphthalene
Energy 0.9 0.9 0.9
Force 5.1 5.2 5.1

Paracetamol
Energy 4.0 3.8 4.0
Force 14.9 13.8 12.7

Salicylic acid
Energy 2.3 2.2 1.8
Force 11.2 10.5 9.3

Toluene
Energy 1.1 1.1 1.1
Force 6.7 6.7 6.5

Uracil
Energy 1.4 1.2 1.1
Force 8.7 7.8 6.6
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3 Large flexible molecule

Figure S7: Dihedral PES with β = 180o
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Figure S8: Dihedral PES with β = 150o
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