Supporting Information

Ruthenium (II) Catalysed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides

Pankaj Pandit Jadhav, Nilesh Machhindra Kahar, Dr. Sudam Ganpat Dawande* Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai-400019, India

Email: sg.dawande@ictmumbai.edu.in

Contents

1. General Method	01
2. General procedures for the synthesis of starting materials.	02
3. Detailed optimization for C6 alkenylation of indole-7-carboxamides.	12
4. General procedure for C6 alkenylation of indole-7-carboxamide.	13
5. Characterization data for C6 alkenylation.	14
6. Preparation of isatin derivatives of alkenyl indole-7-carboxamides	32
$\left.\begin{array}{l}\text { 7. } \begin{array}{l}\text { Preparation of ethyl 3-(1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl) } \\ \text { propionate. }\end{array}\end{array}\right\} 34$	
8. Preparation of methyl 2-(1-benzyl-8-oxo-7-propyl-1,6,7,8- tetrahydropyrrolo [3,4-g]indol-6-yl)acetate.	34
9. Mechanistic studies.	36
10. Crystallographic data of compound 3a	42
11. References.	43
12. NMR Spectra.	43

1. General Method

All the reactions were performed in oven-dried glassware under nitrogen atmosphere. Solvents were dried using standard methods. Chloroform, dichloromethane, 1,2-dichloroethane and toluene were distilled over calcium hydride. Unless otherwise stated, all the commercial reagents, acrylates, styrenes were used as received from Sigma Aldrich, Alfa Aesar, and Spectrochem. Progress of the reaction was monitored by thin layer chromatography (Merck Silica gel 60 F-254, pre-coated plates on alumina). Column chromatographic purifications were performed on Merck silica gel (100-200 mesh). For heating reaction, an oil bath was used as heat source. Melting points were recorded on a digital melting point apparatus and are uncorrected. Spectroscopic characterizations were carried at the Central Instrumentation Facility (CIF), Institute of Chemical Technology Mumbai. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 500 MHz and 400 MHz Agilent FT-NMR spectrometers. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at $101 \mathrm{MHz}, 126 \mathrm{MHz} .{ }^{1} \mathrm{H}-$ NMR chemical shifts are reported in ppm relative to the TMS $(=0)$ and are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts are reported in ppm relative to the residual CDCl_{3} signal $(=77.16)$. IR spectra were recorded on a Shimadzu FT-IR spectrometer. HRMS data was obtained on a Bruker microTOF-QII or Agilent 5975C high resolution mass spectrometers. Single crystal X-ray data was recorded on diffractometer Bruker D8Venture.

2 General procedures for synthesis of starting materials

2.1 Procedure for indole-7-carbaldehydes ${ }^{1}$:

Step-1: To a stirred solution of 2-nitrobenzaldehyde ($3.02 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) in toluene in a 250 ml round bottom flask fitted with a Dean-Stark apparatus added butan-1-ol ($4.58 \mathrm{~mL}, 50 \mathrm{mmol}$, 2.5 equiv), $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}$ ($10.32 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.003$ equiv). The reaction mixture was refluxed for 16 h and cooled to room temperature. To this added saturated solution of NaHCO_{3} and then extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were removed under reduced pressure. The crude product was purified by silica gel flash column chromatography to obtain acetal SI as a viscous oil.

Step-2: Vinyl- magnesium bromide (1M solution in THF, $60 \mathrm{ml}, 60 \mathrm{mmol}, 3.3$ equiv.) was added drop wise to a solution of acetal SI ($18 \mathrm{mmol}, 5 \mathrm{~g}, 1$ equiv.) in dry THF at $-40^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 45 minutes at $-40^{\circ} \mathrm{C}$ and was then warmed to room temperature. To this added aqueous 1 M HCl and the resulting mixture was stirred for 45 minutes. To this added saturated solution of NaHCO_{3} and the resulting solution was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The crude product was purified by using silica gel column chromatography to obtain indole-7-carbaldehyde $\mathbf{S} \mathbf{2}$ as a white solid in $65 \%(1.7 \mathrm{~g})$ yield. The indole-7-carbaldehyde S2-S4 were prepared by following procedure $\mathbf{2 . 1}$
S2,65\%

2.2 Procedure for $\mathbf{C} 3$ chlorination of indole-7-carbaldehydes ${ }^{2}$:

To a stirred solution of indole-7-carbaldehyde ($1 \mathrm{~g}, 6.8 \mathrm{mmol}$, 1.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) under nitrogen atmosphere added N-chlorosuccinimide ($0.904 \mathrm{~g}, 6.8 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred for 3-4 h at room temperature. After the completion of the reaction (monitored by TLC) added 2 M aqueous NaOH solution (20 ml). The product was extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL) and was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was then concentrated under reduced pressure to obtain the crude product which was further purified by column chromatography (using 10\% ethyl acetate/hexane) to give $\mathbf{S 5}$ as a white solid in 80% $(0.980 \mathrm{mg})$ yield.

2.3 General procedure for preparation of \mathbf{N}-protected indole-7-carbaldehydes ${ }^{\mathbf{3}}$:

To a stirred solution of sodium hydride (60% in mineral oil, $18 \mathrm{mmol}, 1.5$ equiv) in THF (15 mL) added indole-7-carbaldehyde ($1.75 \mathrm{~g}, 12 \mathrm{mmol}, 1.0$ equiv) at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes. To this added benzyl chloride ($1.76 \mathrm{~g} .14 \mathrm{mmol}, 1.2$ equiv) drop wise. The reaction mixture was allowed to warm to room temperature and stirred. After completion of reaction added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the resulting solution was extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$), washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated under vacuum to obtain the crude product which was purified by column chromatography (using 10% ethyl acetate/hexane) to afford $\mathbf{S 6}$ as a white solid. The N-alkylated indole-7-carbaldehydes $\mathbf{S 6}$-S12 were prepared by using procedure 2.3

2.4 Procedure for preparation of indole-7-carboxamide (1a-1j):

Step-1: To a solution of $\mathrm{AgNO}_{3}(2.53 \mathrm{~g} .15 \mathrm{mmol}, 1.5$ equiv.) in water added solution of NaOH (5 mmol) $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \mathrm{1:1)}\right.$. To the above solution added 1-benzyl indole-7-carbaldehyde (2.35 g ,
$10 \mathrm{mmol}, 1$ equiv.) and the reaction was stirred at $80^{\circ} \mathrm{C}$ for $10-12 \mathrm{~h}$. Then the reaction mixture was cooled to room temperature and filtered through celite. The filtrate was acidified to $\mathrm{pH}=3$ by 2 N HCl . The resulting solid was collected by filtration and washed with distilled water.

Step-2: In a 100 ml round-bottomed flask containing a solution of 1-benzyl-indole-7-carboxylic acid $\mathbf{S 1 3}$ ($1.55 \mathrm{~g}, 6.17 \mathrm{mmol}, 1$ equiv.) in anhydrous DMF (15 ml) fitted with a reflux condenser and drying tube added 1,1 '-carbonyldiimidazole (CDI) ($1.50 \mathrm{~g}, 9.2 \mathrm{mmol} 1.5$ equiv.) and stirred at $40-50^{\circ} \mathrm{C}$ for 30 min . The mixture was allowed to cool to room temperature and n-propylamine ($0.547 \mathrm{~g}, 9.2 \mathrm{mmol}, 1.5$ equiv) was added, and the resulting mixture was stirred at room temperature. After completion of reaction saturated solution of NaCl was added and the reaction mixture was extracted with dichloromethane. The combined organic solution was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were evaporated under vacuum and the crude residue was purified by flash chromatography to afford products 1.52 g of 1 a as white solid. By following this method indole-7-carboxamide 1a-1h were prepared.

The characterization data for $1 \mathrm{a}-1 \mathrm{j}$ is as follows;

1-benzyl- N -propyl-1H-indole-7-carboxamide (1a): White solid, Yield $=84 \%,(1.52 \mathrm{~g})$; m. p. $=$ $106-108{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate/Hexane:30/70); ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\delta=7.71(\mathrm{~d}$, $J=6.0,1 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.2,2 \mathrm{H}), 6.61(\mathrm{~s}, J=2.4,1 \mathrm{H}), 5.56$ $(\mathrm{m}, 3 \mathrm{H}), 3.20-3.04(\mathrm{t}, 2 \mathrm{H}), 1.45-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=3.8,3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta=169.5,139.0,131.7,131.4,131.3,128.6,127.2,126.4,123.4,122.4,121.4,118.8,102.1,52.1$, 41.9, 22.5, 11.5; IR (neat): 3310, 2962, 2856, 1729, 1648, 1630, 1531, 1280, $1176 \mathrm{~cm}^{-1}$; HRMSESI (m / z) : Calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]: 315.1473$; found: 315.1479.

1-benzyl- N -methyl-1H-indole-7-carboxamide (1b): White solid, Yield $=80 \%$, (1.01 g); m. p. $=$ $108-110^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=7.71(\mathrm{~d}$, $J=7.7,1 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{t}, J=7.8,1 \mathrm{H}), 6.87(\mathrm{~d}, J=5.9,2 \mathrm{H}), 6.61(\mathrm{~d}, J=2.5,1 \mathrm{H}), 5.54(\mathrm{~s}$, $2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=4.7,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=170.2,138.9,131.6$, 131.4, 131.3, 128.5, 127.2, 126.4, 123.4, 122.2, 121.3, 118.9, 102.0, 52.2, 26.9; IR (neat): 3229, 2924, 2857, 1638, 1531, 1495, 1313, $1219 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}$ [M+Na]: 287.1160; found: 287.1155.

1-butyl- N -methyl-1H-indole-7-carboxamide (1c): White solid, Yield $=78 \%(1.23 \mathrm{~g})$; m.p. $=$ $156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta=7.67(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}$, $\mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.26(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=170.5,131.5,131.0$, 130.6, 123.3, 121.7, 121.1, 118.5, 101.5, 48.9, 33.2, 27.0, 20.1, 13.9; IR (neat): 3332, 2932, 2934, 2854, 1718, 1634, $1272 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$: 253.1317; found: 253.1314 .

1-benzyl-5-fluoro- N-propyl-1H-indole-7-carboxamide (1d): White solid, Yield $=75 \%$, $(1.38$ g); m.p. $=118-120{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 20/80); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=$ $7.36(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{dd}, J=2 \mathrm{~Hz}, 2 \mathrm{~Hz} 1 \mathrm{H}), 6.84(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}) 6.56(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=7.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.25(\mathrm{dt}, J=7.7$ $\mathrm{Hz} 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=168.1,157.7,155.3,138.7$, 133.1, 131.9 (d, $J=9.7$), 128.6, 127.3, 126.3, 122.7 (d, $J=7.5$), 109.7 (d, $J=27.1$), 108.00 (d, $J=22.5), 102.2$ (d, $J=4.7$), 52.8, 42.0, 22.5, 11.5; IR (neat): 3222, 2932, 2854 1631, 1547, 1530,

1420, 1255, $772 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) : Calculated for: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]: 333.1380$; found: 333.1374 .

1-ethyl-5-fluoro- N -propyl-1H-indole-7-carboxamide (1e): White solid, Yield = 77\% (1.15 g); m.p. $=116-118{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3) \delta=7.29$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=$ $6.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=6.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{t}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{dd}, J=8.3,7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96(\mathrm{t}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=168.6,157.5,155.2,131.5(\mathrm{~d}, J=9.8)$, 128.9, 122.1 (d, $J=7.7$), 109.3 (d, $J=27.1$), 107.9 (d, $J=22.4$), 101.9, 43.4, 42.0, 22.9, 16.3, 11.5; IR (neat): 3241, 2958, 2924 1629, 1547, 1434, 1380, 1195, $772 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$: 271.1217; found: 271.1218.

1-benzyl-3-chloro- \boldsymbol{N}-methyl-1H-indole-7-carboxamide (1f): White solid, Yield $=73 \%(0.650$ g); m.p. $=138-140{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 20/80); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-D $\mathbf{D}_{\mathbf{6}}$) $\delta=8.29(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.09(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{D}_{\mathbf{6}}\right) \delta=168.3,137.7,130.8,128.9,127.9,127.0,126.3$, 125.8, 124.1, 123.5, 121.0, 119.8, 102.9, 48.5, 26.6; IR (neat): 3343, 2942, 2836, 1658, 1536,

1243, $730 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]: 321.0765$; found: 321.0762.

1-methyl- N-propyl-1H-indole-7-carboxamide (1g): White solid, Yield $=80 \%,(1.18 \mathrm{~g})$; m.p. $=$ $122-124{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=7.65(\mathrm{dd}$, $J=2.02 \mathrm{~Hz} 1 \mathrm{H}), 7.15(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{t}, J=3.0,1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H})$, $3.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.46-3.35(\mathrm{t}, \mathrm{J}=7.2,2 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.93(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta=169.6,132.5,131.3,130.7,123.1,121.8,121.0,118.5,101.4,41.9$, 35.9, 23.0, 11.5; IR (neat): 3318, 2962, 2962, 1712, 1629, 1515, $1290 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$: 239.1155; found: 239.1146 .

N-propyl-1H-indole-7-carboxamide (1h): White solid Yield $=65 \%,(0.610 \mathrm{~g}) ; \mathrm{m} . \mathrm{p} .=110-112$ ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=10.32(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=3 \mathrm{~Hz} 1 \mathrm{H}), 7.08(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}$, $J=3.0,2.4,1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.56(\mathrm{dt}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=168.0,135.6,129.7,125.7,124.7,118.8,118.7$,
$116.3,102.0,41.5,23.1,11.6$; IR (neat): $3424,2942,2825,1694,1636,1523,1268,1134 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]: 225.1000$; found: 225.0994.

$\boldsymbol{N}, \boldsymbol{N}$-dimethyl-1H-indole-7-carboxamide (1i): White solid, Yield $=75 \%,(0.655 \mathrm{~g}) ;$ m.p. $=138$ $140{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate $/$ Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=9.37(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=170.7,135.0,129.2,125.3,123.1,121.6,118.4,117.4,102.4,37.7,37.5 ;$ IR (neat): 3420, 2852, 1669, 1628, 1560, 1270, 1246, $759 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}: 211.0842$ [M+Na]; found: 211.0836.

5-chloro-1-methyl- N-propyl-1H-indole-7-carboxamide (1j): White solid, Yield $=69 \%$, $(1.07$ g); m.p. $=134-136{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane:20/80); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=$ $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.41-3.32(\mathrm{t}, \mathrm{J}=7.5,2 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=168.2,132.6,131.7,131.0,124.0,122.6,122.1,120.9,101.1,42.0,35.9,22.9$,
11.5; IR (neat): $3357,2964,2928,2874,1634,1549,1269,772 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{NaO}$ [M+Na]: 273.0765; found: 273.0759.

2.5 Preparation of acrylates and aryl vinyl sulfones (2):

2.5.1 Preparation of 3-methoxybenzyl acrylate: Prepared by following reported literature procedure ${ }^{4}$.

In oven dried 100 ml round bottom flask the solution of 3-methoxybenzyl alcohol ($5.0 \mathrm{mmol}, 1.00$ equiv) was dissolved in dry $\mathrm{DCM}(15 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then DMAP ($30.5 \mathrm{mg}, 0.250 \mathrm{mmol}$, 0.0500 equiv) and triethyl amine ($5.0 \mathrm{mmol}, 1.10$ equiv) were added. Then acryloyl chloride (0.445 $\mathrm{ml}, 5 \mathrm{mmol}, 1.10$ equiv) was added drop wise and reaction mixture was warmed to room temperature followed by stirring for 4 h . Reaction mixture was quenched by adding water (5 mL) and then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 10 \mathrm{~mL})$. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The crude product was purified by using silica gel column chromatography to obtain as a colorless oil.
2.5.2 Preparation of aryl vinyl sulfones: Prepared by reported literature procedure. ${ }^{5,6}$

In oven dried 100 ml round bottom flask vinyl magnesium bromide (1 M solution in THF, 6 ml , 1.2 equiv.) was added drop wise to a stirred solution of arylesulfonyl chloride (5.0 mmol) in dry THF (20 mL) under nitrogen atmosphere. The reaction mixture was stirred for 15 minutes at $0{ }^{\circ} \mathrm{C}$ and was then warmed to room temperature and stirred for 2 h . To this added aqueous 1 M HCl and stirred for 45 minutes. Then the reaction mixture was quenched by adding saturated aqueous NaHCO_{3} and the resulting solution extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The crude product was purified by using silica gel column chromatography.
3. Detailed optimization C6 alkenylation of indole-7-carboxamides:
3.1 Optimization for C6 alkenylation of indoles using different directing groups:

Directing Groups (DGs)	Observations (yield)
-CHO	No reaction
-COOH	No reaction
-COOMe	No reaction
$\mathbf{- C O N H}^{\mathbf{} \mathbf{P r}}$	$\mathbf{4 5 \%}$

3.2 Optimization for C6 alkenylation of indole-7-carboxamide (3a):

entry	solvent	${ }^{\text {a }}$ Conditions	Yield ${ }^{\text {b }}$ (\%)
1	CHCl_{3}	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 100{ }^{\circ} \mathrm{C}$	45
2	CHCl_{3}	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	68
3	dioxane	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	62
4	THF	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	56
5	toluene	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	65
6	DCE	$\mathbf{A g S b F} 6 / \mathrm{Cu}(\mathrm{OAc})_{2} \mathbf{H}_{2} \mathrm{O} / \mathbf{1 2 0}^{\circ} \mathrm{C}$	90
7	EtOH	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	30
8	DMF	$\mathrm{AgSbF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	15
9	DCE	$\mathrm{AgOTf} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	trace
10	DCE	$\mathrm{NaOAc} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	34
11	DCE	$\mathrm{KPF}_{6} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	25
12	DCE	$\mathrm{AgBF}_{4} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	40
13	DCE	$\mathrm{AgSbF}_{6} / \mathrm{Ag}_{2} \mathrm{CO}_{3} / 120{ }^{\circ} \mathrm{C}$	trace
14	DCE	$\mathrm{AgSbF}_{6} / \mathrm{Ag}_{2} \mathrm{O} / 120{ }^{\circ} \mathrm{C}$	trace
15	DCE	$\mathrm{AgSbF}_{6} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8} / 120{ }^{\circ} \mathrm{C}$	$n \mathrm{r}$
16	DCE	$\mathrm{AgSbF}_{6} / \mathrm{PhI}(\mathrm{OAc})_{2} / 120{ }^{\circ} \mathrm{C}$	$n \mathrm{r}$

${ }^{\text {a }}$ Reaction conditions: indole-7-carboxamide $\mathbf{1 a}(0.2 \mathrm{mmol})$, acrylate $\mathbf{2 a}(0.3 \mathrm{mmol})$, $\left[\mathrm{RuCl}_{2} \text { (pcymene) }\right]_{2}(5.0 \mathrm{~mol} \%)$, additive ($20 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv), solvent (2.0 mL), The experiments were carried out at mentioned temperatures. ${ }^{\mathrm{b}}$ Isolated yield.

4.1 General procedure for $\mathbf{C 6}$ alkenylation of indole-7-carboxamide:

A oven-dried screw cap reaction tube equipped with stir bar was charged with $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ (0.01 mmol), indole-7-carboxamide $\mathbf{1}(0.20 \mathrm{mmol})$, acrylate $2(0.30 \mathrm{mmol}), \mathrm{AgSbF}_{6}(0.04 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{mmol})$. The reaction tube was evacuated and purged with nitrogen followed by the addition of $2 \mathrm{~mL} \mathrm{1,2-dichloroethane}$. and reaction mixture allowed to stir at $120^{\circ} \mathrm{C}$ for 20-24 hrs. The reaction mixture was diluted with ethyl acetate and filtered through a celite pad. The filtrate was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography to obtain $\mathbf{3 a - 3 z}$ as white solids.

4.2 Synthetic procedure for 1 mmol scale synthesis of methyl (E)-3-(1-benzyl-7-(propylcarba

 -moyl)-1H-indol-6-yl)acrylate (3a): A oven-dried screw cap reaction tube equipped with stir bar was charged with $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}$ ($30 \mathrm{mg}, 0.05 \mathrm{mmol}$), indole-7-carboxamide $\mathbf{1}(292 \mathrm{mg}, 1.0$ $\mathrm{mmol})$, acrylate $2(135 \mu \mathrm{~L}, 1.5 \mathrm{mmol}), \mathrm{AgSbF}_{6}(69 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(400 \mathrm{mg}$, $2 \mathrm{mmol})$. The reaction tube was evacuated and purged with nitrogen followed by the addition of 10 mL DCE. The reaction tube then placed in an oil bath and reaction mixture allowed to stir at $120{ }^{\circ} \mathrm{C}$ for 24 hrs . The reaction mixture was diluted with ethyl acetate and filtered through a celite pad. The filtrate was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography to obtain 335 mg of $\mathbf{3 a}$ as a white solid.
5. Characterization data for C6-alkenyl indole-7-carboxamides:

methyl (E)-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3a): White solid, Yield $=90 \%,(67 \mathrm{mg}) ;$ m.p. $=144-146{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate $/$ Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.84(\mathrm{~d}, J=15.7,1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H})$, $7.13(\mathrm{~d}, J=2.3,1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.5,2 \mathrm{H}), 6.60(\mathrm{~d}, J=2.2,1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.8,1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H})$, $5.43(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{t}, J=7.4,2 \mathrm{H}), 1.34(\mathrm{dd}, J=8.4,7.1,2 \mathrm{H}), 0.82(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=167.8,167.3,142.7,138.7,132.7,132.0,131.5,128.8,127.5,125.8$, $125.5,123.0,122.3,118.0,117.5,102.8,51.6,50.9,42.1,22.2,11.5 ;$ IR (neat): 3285, 2959, 2925, 2854, 1725, 1627, 1548, 1453, $1275 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}$

ethyl (E)-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3b): White solid, Yield = 95\% (73 mg); m. p. $=152-154{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.83(\mathrm{~d}, J=15.8,1 \mathrm{H}), 7.64(\mathrm{~d}, J=5.1,1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.1,1 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 4 \mathrm{H})$, $6.87(\mathrm{~d}, J=3.3,2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.7,1 \mathrm{H}), 5.52-5.41(\mathrm{~m}, 3 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 2 \mathrm{H})$, $3.31-2.80(\mathrm{t}, J=7.82 \mathrm{H}), 1.44-1.15(\mathrm{~m}, 5 \mathrm{H}), 0.89-0.76(\mathrm{t}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta=167.8,166.9,142.4,138.8,132.7,131.9,131.5,128.8,127.4,125.8,125.7,122.9,122.4,118.6$, $117.5,102.8,60.4,51.0,42.2,22.3,14.4,11.5$; IR (neat): $3339,2925,2855,1724,1626,1534$, 1495, 1275, $1174 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 413.1836; found: 413.1827.

(tetrahydrofuran-2-yl)methyl(E)-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3c): White solid, Yield $=83 \%(73 \mathrm{mg}) ;$ m.p. $=138-140{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate $/$ Hexane : $20 / 80) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=7.89(\mathrm{~d}, J=15.5,1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1$, $1 \mathrm{H}), 7.35-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=6.4,2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.7,1 \mathrm{H}), 5.51-5.42(\mathrm{~m}$, $3 \mathrm{H}), 4.28-4.06(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=6.7,1 \mathrm{H}), 3.79(\mathrm{~d}, J=6.9,1 \mathrm{H}), 3.15-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.87$ $(\mathrm{m}, 3 \mathrm{H}), 1.73-1.55(\mathrm{t}, 2 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta=167.8,166.9,143.0,138.8,132.7,132.0,131.6,128.8,127.5,125.8,125.7,123.0$, $122.4,118.2,117.6,102.9,76.7,68.6,66.5,51.0,42.3,28.9,25.8,22.3,11.5$; IR (neat): 3283 , 2963, 2873, 1702, 1629, 1536, 1430, 1285, 1245, $1158 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 469.2098$; found: 469.2099.

benzyl (\boldsymbol{E})-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3d): (E/Z mixture 1:0.2), White solid, Yield $=85 \%(76 \mathrm{mg}) ;$ m.p. $=158-160{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70): ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.13$ $(\mathrm{m}, 10 \mathrm{H}), 6.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 3 \mathrm{H}), 5.19(\mathrm{~s}$, $2 \mathrm{H}), 2.89(\mathrm{t}, J=7.62 \mathrm{H}), 1.31-1.20(\mathrm{dt}, J=7.2, J=8.2,2 \mathrm{H}), 0.72(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=167.7,166.5,142.9,138.6,132.6,131.9,128.7,128.6,128.5,128.4,128.2$,
$128.1,128.0,127.3,127.2,125.6,122.3,118.1,117.5,102.7,66.2,50.9,42.1,22.1,11.3$; IR (neat): 3300, 2923, 2853, 1708, 1633, 1531, 1454, 1268, $1158 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 453.2173; found: 453.2171.

3-methoxybenzyl (\boldsymbol{E})-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3e): White solid, Yield $=88 \%(84 \mathrm{mg}) ;$ m. p. $=124-128{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate $/$ Hexane : 40/60) ; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.91(\mathrm{~d}, J=15.3,1 \mathrm{H}), 7.65(\mathrm{~d}, J=6.4,1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.26-7.13$ $(\mathrm{m}, 5 \mathrm{H}), 6.98-6.83(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.5,1 \mathrm{H}), 5.60-5.25(\mathrm{~m}, 3 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=7.6,2 \mathrm{H}), 1.33-1.22(\mathrm{dt}, J=7.5, J=8.42 \mathrm{H}), 0.76(\mathrm{t}, J=8.2,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.8,166.7,159.9,143.1,138.8,137.8,132.9,132.0,131.8,129.7,128.8$, $127.5,125.8,125.7,123.0,122.4,120.5,118.2,117.6,113.9,113.7,102.9,66.2,55.4,51.0,42.2$, 22.3, 11.5; IR (neat): 3319, 2925, 1694, 1651, 1626, 1545, 1269, $1175 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 505.2098$; found: 505.2092.

tert-butyl (E)-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3f): White solid, Yield $=75 \%$ (62 mg); m.p. $=142-144{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.74(\mathrm{~d}, J=15.7,1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.28-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.14(\mathrm{~d}, J=2.9,1 \mathrm{H}), 6.88(\mathrm{~d}, J=6.9,2 \mathrm{H}), 6.61(\mathrm{~d}, J=2.9,1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.7,1 \mathrm{H}), 5.47(\mathrm{~s}$,
$2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=7.2,2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{dd}, J=8.4,7.3,2 \mathrm{H}), 0.82(\mathrm{t}, J=8.3,3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=167.9,166.2,141.3,138.9,132.5,131.7,131.4,128.8,127.4$, 126.1, 125.8, 122.9, 122.4, 121.0, 117.8, 102.8, 80.4, 51.1, 42.2, 28.3, 22.4, 11.6; IR (neat): 3427 , 2921, 2836, 2816, 1692, 1639 1582, 1478, $1242 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 441.2154$; found: 441.2142 .

methyl (E)-3-(1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3g): White solid Yield = $85 \% ~(51 \mathrm{mg}) ;$ m.p. $=156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : $\left.40 / 60\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.88(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.50(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dd}, J=7,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta=168.1,167.5,142.6,132.9,132.1,131.6,125.0,122.9,122.1,117.9,117.2,101.8$, 51.7, $42.1,34.9,22.8,11.6$; IR (neat): $3258,2924,1729,1622,1532,1446,1287,1219 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 323.1372; found: 323.1368.

ethyl (E)-3-(1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3h): White solid, Yield = 90\% (56 mg); m.p. $=140-132{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,
$\left.\mathbf{C D C l}_{3}\right) \delta 7.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=6.8,6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta=168.1,167.0,142.2,132.9,132.1,131.6$, 125.1, 122.8, 122.0, 118.4, 117.8, 101.7, 60.4, 42.1, 34.7, 22.8, 14.4, 11.7; IR (neat): 3221, 2867, 1625, 1636, 1610, 1520, 1220, $1137 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 337.1523$; found : 337.1529.

benzyl (\boldsymbol{E})-3-(1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3i): White solid, Yield = 88\% (68 mg); m.p. $=130-132{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z ,}$ $\left.\mathbf{C D C l}_{3}\right) \delta 7.89(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $6.52-6.32(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=7.4,2 \mathrm{H}), 1.68-1.51(\mathrm{~m}$, $2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=168.0,166.8,142.8,136.2,132.9$, $132.0,131.6,128.6,128.3,128.2,124.9,122.9,122.1,117.9,117.1,101.7,66.2,42.0,34.8,22.7$, 11.6; IR (neat): $3300,3029,2854,2825,1720,1635,1495,1288,1313 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 399.1685$; found: 399.1681.

butyl-3-(1-benzyl-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (3j): (mixture of E / Z isomer (1:0.2), White solid, Yield $=86 \%$ (67 mg) ; m.p. $=142-144{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70) ; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\delta=7.75(\mathrm{~d}, J=15.8,1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.5,1 \mathrm{H}), 7.29-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=6.2,2 \mathrm{H}), 6.61(\mathrm{~d}, J=2.6,1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.7,1 \mathrm{H})$, $5.46(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.63(\mathrm{~d}, J=4.6,2 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{dd}$, $J=14.8,7.5,2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=168.5,167.2,142.4,138.8$, $132.7,132.0,128.8,128.5,127.5,126.4,125.7,122.7,122.5,118.7,117.7,102.8,64.4,51.1,30.9$, 26.8, 19.3, 13.9; IR (neat): 3559, 2958, 2930, 2871, 1702, $16281452,1282,1164 \mathrm{~cm}^{-1}$; HRMSESI (m / z): Calculated for: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 413.1836$; found: 413.1841.

3-methoxybenzyl-3-(1-benzyl-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (3k): (mixture of E / Z isomer (1:0.2), White solid, Yield $=83 \%(76 \mathrm{mg}) ; \mathrm{m} . \mathrm{p} .=156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.78(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.34(\mathrm{~m}, 3 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C D}_{3} \delta=168.4,166.8,159.9,143.1,138.8,137.8,132.9,132.1,131.5,129.7$, $128.8,127.5,125.7,125.6,123.0,122.4,120.4,118.1,117.6,113.8,113.7,102.8,66.1,55.4,51.1$, 26.8; IR (neat): 3287, 2926, 1705, 1627, 1587, 1265, 1246, 1151,774 cm^{-1}; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 477.1785; found: 477.1788.

methyl (E)-3-(1-butyl-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (31): White solid, Yield $=78 \%(48 \mathrm{mg}) ;$ m.p. $=120-124{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3($ Ethyl Acetate $/$ Hexane $: 40 / 60) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{dd}, \mathrm{J}=7.2,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=169.1,167.6,142.8,131.8,131.5$, $125.3,122.6,122.3,118.2,118.1,117.2,102.2,51.7,47.8,33.7,27.0,20.3,13.9 ;$ IR (neat): 3280, 2930, $2874,1710,1625,1505,1432,1282,1164 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 337.1519$; found: 337.1523.

ethyl (E)-3-(1-butyl-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (3m): White solid, Yield $=84 \%(55 \mathrm{mg}) ;$ m.p. $=140-187{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta=7.81(\mathrm{~d}, J=15.3,1 \mathrm{H}), 7.57(\mathrm{~d}, J=6.7,1 \mathrm{H}), 7.34(\mathrm{~d}, J=6.4,1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}$, $1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.6,1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.44-1.16(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=169.1,167.2$, $142.5,131.8,131.7,131.4,125.3,122.6,122.2,118.4,117.2,102.2,60.4,47.8,33.7,26.9,20.3$,
14.4, 13.9; IR (neat): 3284, 2961, 2941, 1705, 1626, 1547, 1431, 1281, $1176 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 351.1680$; found: 351.1678.

3-methoxybenzyl-3-(1-butyl-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (3n): (mixture of E / Z isomer (1:0.2), White solid, Yield $=79 \%$ (66 mg); m.p. $=156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3\right) ~ \delta=7.91(\mathrm{~d}, J=14.4,1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.35$ $(\mathrm{d}, J=21.2,1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3,1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.59-6.33(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=13.2,2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.24$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=169.0,166.9,159.9,143.2$, $137.9,132.0,131.9,131.46,129.7,125.3,122.7,122.3,120.4,118.0,117.2,113.8,113.7,102.3$, 66.2, 55.4, 47.8, 33.7, 27.0, 20.3, 13.9; IR (neat): 3301, 2960, 2929, 2872, 1713, 1625, 1279, 1151 cm^{-1}; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 443.1947$; found: 443.1945.

methyl (\boldsymbol{E})-3-(7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3o): White solid, Yield = 70\% (40 mg); m.p. $=126-128{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $9.59(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-$
$1.63(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.5,167.2,143.4$, 135.1, 130.3, 127.3, 125.9, 123.3, 119.7, 119.4, 119.0, 103.0, 51.9, 42.2, 23.0, 11.6; IR (neat): 3421, 2822, 1668, 1628, 1512, 1241, $1157 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 309.1215$; found : 309.1211.

ethyl (E)-3-(7-(dimethylcarbamoyl)-1H-indol-6-yl)acrylate (3p): White solid, Yield = 61\% (35 mg); m.p. $=134-136{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $=9.01(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ $(\mathrm{d}, J=7.0 \mathrm{~Hz} 1 \mathrm{H}), 6.58-6.39(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=6.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=168.9,167.2,142.6,133.5,130.2$, 127.4, 124.7, 122.0, 120.5, 118.4, 117.9, 103.3, 60.6, 38.7, 35.7, 14.5; IR (neat): 3425, 2832, 1679, 1638, 1552, 1226, $1145 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 309.1215; found : 309.1212.

dodecyl-3-(5-chloro-1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3q): (mixture of E / Z isomer (1:0.2), White solid Yield $=81 \%(80 \mathrm{mg}) ;$ m.p. $=108-110{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l 3}\right) ~ \delta 7.94(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H})$,
$7.07-6.93(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.37(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, J=6.8 \mathrm{~Hz} 1 \mathrm{H}), 4.15(\mathrm{t}, 2 \mathrm{H}) 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.46-3.28(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{dd}, J=14.8,7.4,2 \mathrm{H}), 1.59(\mathrm{dd}, J=14.8,7.5,2 \mathrm{H}), 1.43-1.12(\mathrm{~m}$, $14 \mathrm{H}), 1.04-0.80(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.7,166.8,140.47,133.9,132.7$, $131.4,131.0,125.1,123.4,122.7,120.9,100.9,64.9,42.2,34.9,32.0,29.9,29.8,29.72,29.7,29.5$, 29.4, 28.8, 26.1, 22.8, 22.3, 14.2, 11.6; IR (neat): 3263, 2922, 2852, 1706, 1632, 1546, 1467, 1255, 1172, 771, $721 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 511.2703; found: 511.2698

ethyl (E)-3-(5-chloro-1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3r): (mixture of E / Z isomer (1:0.2), White solid, Yield $=78 \%(54 \mathrm{mg}) ; \mathrm{m} . \mathrm{p} .=124-126{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta=7.95(\mathrm{~d}, J=16.2,1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.05$ $(\mathrm{s}, 1 \mathrm{H}), 6.47-6.34(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=13.8,6.8,2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.3 \mathrm{t}(\mathrm{t}, J=7.6$, $2 \mathrm{H}), 1.71-1.49(\mathrm{t}, J=7.8,2 \mathrm{H}), 1.46-1.17(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta=167.7,166.7,140.5,133.9,132.7,131.4,131.0,125.0,123.5,122.3,122.1,100.9$, 60.6, 42.2, 34.9, 22.3, 14.4, 11.6; IR (neat): 3262, 2963, 2926, 1714, 1628, 1505, 1444, 1263, 1176, $771 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 371.1133$; found: 371.1138.

benzyl (E)-3-(5-chloro-1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3s): White solid, Yield $=76 \%(62 \mathrm{mg})$; m.p. $=160-162{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate $/$ Hexane: $50 / 50$); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98(\mathrm{~d}, J=16.1,1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.44$ $(\mathrm{d}, J=16.3,1 \mathrm{H}), 6.38(\mathrm{~d}, J=5.6,1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.30(\mathrm{t}, J=$ $7.0,2 \mathrm{H}), 1.52(\mathrm{dd}, J=14.1,7.0,2 \mathrm{H}), 0.86(\mathrm{t}, J=7.0,3 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.6$, $166.5,141.1,136.2,134.0,131.5,131.0,128.7,128.3,128.2,125.1,123.3,123.0,122.3,122.1$, 100.9, 66.4, 42.2, 34.9, 22.3, 11.6; IR (neat): 3266, 2962, 1716, 1626, 1546, 1219, 1166, $772 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 411.1473$; found: 411.1475.

3-methoxybenzyl (E)-3-(5-chloro-1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3t):
White solid, Yield $=74 \%(65 \mathrm{mg}) ;$ m.p. $=132-134{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3) $\delta=8.02(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.06$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.35(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.55(\mathrm{dd}, J=6.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.6$, $166.5,159.9,141.1,137.7,134.0,131.6,131.1,129.7,125.2,123.5,123.1,122.4,122.2,120.5$, 113.9, 113.7, 101.0, 66.3, 55.4, 42.3, 35.0, 22.3, 11.6; IR (neat): 3269, 3088, 2963, 28571714 ,

1625, 1568, 1508, 1264, 1168, $772 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{NaO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 463.1401; found: 463.1397.

methyl (E)-3-(1-benzyl-5-fluoro-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3u): (mixture of E / Z isomer (1:0.2), White solid, Yield $=75 \% ~\left(62 \mathrm{mg}\right.$); m.p. $=122-124{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta=7.71(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $12 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, $5.55-5.31(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.17-2.93(\mathrm{t}, J=7.5,2 \mathrm{H}), 1.31(\mathrm{dd}, J=7.7 J=7.4,14.8,2 \mathrm{H}), 0.81$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=167.6,166.9,157.6,138.7,137.2,134.4$, 131.7, 128.9, 128.4, 127.6, 125.7, 122.3 (d, $J=14.5$), 117.0, 115.0, 107.6 (d, $J=24.9$), 102.6, 51.7, 51.1, $42.3,22.2,11.5$; IR (neat): $3287,2962,1711,1628,1542,1433,1265,1166,772 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FKN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}$: 433.1324; found: 433.1310.

ethyl (E)-3-(1-benzyl-5-fluoro-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3v): White solid, Yield $=72 \%(62 \mathrm{mg}) ;$ m.p. $=128-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.67(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.86$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{dd}, J=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.30-2.64 (t, $J=7.2,2 \mathrm{H}), 1.40-1.22(\mathrm{dt}, J=7.1, J=6.55 \mathrm{H}), 0.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=167.2,166.9,157.4,138.6,136.8,134.3,131.7,128.9,128.4,127.5,125.7$, $123.2,122.8,115.0,107.7,102.6,60.5,51.0,42.2,22.2,14.4,11.5$; IR (neat): 3291, 2929, 1705, 1604, 1538, 1264, 1166, 1035, $725 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 431.1742$; found: 431.1738.

benzyl-3-(1-benzyl-5-fluoro-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3w): (mixture of E / Z isomer (1:0.2), White solid, Yield 70% (69 mg); m.p. $=124-126{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z , ~ C D C l} 3$) $\delta=7.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.15$ $(\mathrm{m}, 10 \mathrm{H}), 6.85(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.57-5.34(\mathrm{~m}, 3 \mathrm{H}), 5.19$ (s, 2H), 3.28-2.61 (m, 2H), 1.33-1.15(m, 2H), $0.73(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z ,}$ $\left.\mathbf{C D C l}_{3}\right) \delta=167.0,166.8,157.4,138.6,137.4,136.2,134.4,131.7(\mathrm{~d}, J=10.5), 128.9,128.8,128.6$, $128.4,128.3,128.2,128.1,127.5,125.7,122.9$ (d, $J=14.7), 107.6$ (d, $J=24.7), 102.6(\mathrm{~d}, J=4.8)$, 66.3, 51.0, 42.3, 22.1, 11.5; IR (neat): $3228,2966,2925,1687,1651,1530,1425,1298,1249$, 1164, $772 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 493.1903; found: 493.1898.

3-methoxybenzyl (E)-3-(1-ethyl-5-fluoro-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (3x):

White solid, Yield $=69 \%(63 \mathrm{mg}) ;$ m.p. $=140-142{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3($ Ethyl Acetate $/$ Hexane : $30 / 70) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\delta=7.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.03-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}$, $2 \mathrm{H}), 4.25-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.4,167.1,159.8,157.2$, $154.8,137.8,137.6,132.5,131.5,129.7,128.1,123.0,121.8,120.4,114.2,113.6,107.2,102.2$, 66.2, 55.4, 42.4, 42.2, 22.5, 16.6, 11.6; IR (neat): 3259, 2959, 2933, 1698, 1633, 1587, 1263, 1158 $\mathrm{cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 439.2034$; found : 439.2028.

methyl-3-(1-benzyl-3-chloro-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (3y): (mixture of E / Z isomer (1:0.3), White solid, Yield $=89 \%$ (69 mg); m.p. $=156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=7.71(\mathrm{~d}, J=15.9,1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=6.9,2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.7,1 \mathrm{H}), 5.56(\mathrm{~s}$, $2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, J=4.7,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{D M S O}\right) \delta=167.0$, $166.6,141.9,137.3,130.3,129.0,127.6,126.7,126.5,126.4,125.7,124.7,119.6,118.9,118.3$, 103.4, 52.0, 48.9, 26.2; IR (neat): 3406, 2956, 2921, 2852, 1698, 1651, 1599, 1448, 1243, 1026 cm^{-1}; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{KO}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 421.0721$; found: 421.0716.

ethyl-3-(1-benzyl-3-chloro-7-(methylcarbamoyl)-1H-indol-6-yl)acrylate (3z): (mixture of E / Z isomer (1:0.2), White solid, Yield $=85 \% ~\left(68 \mathrm{mg}\right.$); m.p. $=146-148{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z , ~ C D C l} 3$) $\delta=7.71$ (d, $J=15.8,1 \mathrm{H}$), 7.64 (d, $J=7.5$, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.37-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5,2 \mathrm{H}), 6.39(\mathrm{~d}, J=16.0,1 \mathrm{H}), 5.57(\mathrm{~s}$, $2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta=167.5,166.7,141.6,137.5,129.9,128.9,127.5,127.4,127.3,126.5,124.9,122.8$, $119.8,119.3,119.0,104.5,60.6,48.0,26.8,14.4$; IR (neat): 3352, 2925, 1697, 1661, 1545, 1513, 1291, 1173, $772 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 419.1138$; found: 419.1131.

1-methyl-6-(2-(phenylsulfonyl)vinyl)- N -propyl-1H-indole-7-carboxamide (5a): (mixture of E / Z isomer (1:0.2), White solid Yield $=77 \%(59 \mathrm{mg})$; m.p. $=130-132{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta=7.83(\mathrm{~d}, J=15.4,1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6,1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8,2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.07(\mathrm{~d}, J=17.8,1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=15.2,1 \mathrm{H}), 6.46(\mathrm{~d}, J=23.0,1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{t}, J=6.7,2 \mathrm{H}), 1.78-1.68(\mathrm{dd}$, $J=7.2, J=6.8,2 \mathrm{H}), 1.04(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=167.7,141.1,140.6$, $133.6,133.3,132.3,132.1,129.4,127.7,127.1,123.4,122.9,122.3,117.7,102.0,42.3,35.0,22.8$, 11.8; IR (neat): 3230, 2925, 1634, 1593, 1445, 1285, $1138 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1249$; found: 405.1239 .

1-methyl- N-propyl-6-(2-tosylvinyl)-1H-indole-7-carboxamide (5b): (mixture of E / Z isomer (1:0.2), White solid Yield $=81 \%(64 \mathrm{mg}) ;$ m.p. $=138-140{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 30/70); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) (major isomer) $\delta=7.83(\mathrm{~d}, J=15.4,1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8,2 \mathrm{H})$, 7.56 (d, $J=8.6,1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8,2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6,1 \mathrm{H}), 6.80(\mathrm{~d}, J=15.2$, $1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.6,1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{t}, J=7.7,2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=167.7,144.3,140.1,133.5,132.2$, $130.0,129.8,128.0,127.8,127.5,123.1,123.0,122.1,117.7,101.9,42.3,35.0,22.8,21.7,11.9 ;$ IR (neat): $3233,2925,2873,1634,1590,1430,1229,1128 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 397.1582$; found: 397.1575.

1-benzyl- N -propyl-6-(2-tosylvinyl)-1H-indole-7-carboxamide (5c): (mixture of E / Z isomer), White solid, Yield $=75 \%(71 \mathrm{mg}) ; \mathrm{m} . \mathrm{p} .=166-168{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (Ethyl Acetate $/$ Hexane : 40/60);
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) (major isomer) $\delta=7.83-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.31-$ $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=3.0,1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.6,2 \mathrm{H}), 6.80(\mathrm{~d}, J=15.2,1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.1,1 \mathrm{H})$, $5.53-5.43(\mathrm{t}, 3 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{dd}, J=14.8,7.4,2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3,3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=167.4,144.3,140.1,138.6,133.2,131.5,130.4,130.0,128.9$,
$128.2,127.8,127.7,127.6,125.8,123.6,123.4,122.5,118.0,102.9,51.1,42.4,22.3,21.7,11.7 ;$
IR (neat): 3247, 2929, 1633, 1504, 1399, 1288, 1142, $1082 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z): Calculated for: $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 473.1893; found: 473.1886.

1-methyl- N-propyl-6-styryl-1H-indole-7-carboxamide (5d): (mixture of E / Z isomer 1:0.3), White solid, Yield $=56 \%(36 \mathrm{mg}) ;$ m.p. $=156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate $/$ Hexane : 30/70); ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) (major isomer) $\delta=7.60(\mathrm{~d}, J=15.4,1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5,2 \mathrm{H}), 7.45(\mathrm{~d}$, $J=8.4,1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=6.9,1 \mathrm{H}), 7.08(\mathrm{t}, J=3.5,1 \mathrm{H}), 7.00(\mathrm{~d}, J=3.0,1 \mathrm{H}), 6.47$ (d, $J=3.0,1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=7.22 \mathrm{H}), 1.66-1.58(\mathrm{dt}, J=7.2,8.12 \mathrm{H}), 0.98(\mathrm{t}$, $J=7.9,3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=169.3,138.6,137.8,131.7,129.7,128.8,127.6$, 126.6, 126.4, 125.8, 124.0, 122.1, 116.9, 112.3, 101.6, 42.1, 34.9, 23.0, 11.7; IR (neat): 3258, 2927, 2832, 1675, 1610, 1536, $1236 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) : Calculated for: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 319.1805; found: 319.1797.

(\boldsymbol{E})-4-(2-(1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl)vinyl)phenyl acetate (5e): White solid Yield $=68 \% ~(51 \mathrm{mg}) ;$ m.p. $=150-152{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate $/$ Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.61(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.29(\mathrm{~s}, J=8.7$, $1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=2.9,1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.0,1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.52$
(dd, $J=13.2,6.8,2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4,3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z ,}$ $\left.\mathbf{C D C l}_{3}\right) \delta=169.6,169.9,150.1,135.6,132.5,131.7,129.8,128.6,128.3,127.5,126.6,122.1$, $121.9,120.8,116.9,101.6,42.1,34.9,23.0,21.3,11.7$; IR (neat): $3276,2922,2853,1760,1623$, 1546, 1435, 1218, $1191 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) : Calculated for: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 399.1685; found: 399.1681

4-(2-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)vinyl)phenyl acetate (5f): (mixture of E / Z isomer 1:0.2), White solid, Yield $=56 \%\left(50 \mathrm{mg}\right.$); m.p. $=148-150{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane : 40/60); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta=7.66(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.49-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=6.7,2 \mathrm{H}), 6.60(\mathrm{~d}, J=3.1,1 \mathrm{H}), 5.48(\mathrm{~s}$, $2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.01(\mathrm{t}, J=7.2,2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, J=7.4$, 3H); ${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=169.6,168.8,150.1,139.2,135.5,131.8,131.4,130.1$, $128.8,128.7,128.6,127.4,127.3,126.7,125.8,122.3,121.9,121.0,117.2,102.6,50.9,42.1,22.4$, 21.3, 11.6; IR (neat): 3323, 2942, 2854, 1721, 1670, 1552, 1267, $1142 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 475.1994; found: 475.1987.
6. Preparation of isatin derivatives of alkenyl indole-7-carboxamides (6):

Compounds $\mathbf{3 i}(75 \mathrm{mg}, 0.2 \mathrm{mmol})$ was taken in a 10 mL oven dried Schlenk tube which was equipped with a magnetic stirrer in 1,2-dichloroethane (DCE) (2 mL). Then added (Bis(trifluroacetoxy)iodo) benzene ($172 \mathrm{mg}, 0.4 \mathrm{mmol}$). Then reaction mixture was stirred vigorously for 1 hour at $70{ }^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC) the reaction mixture was filtered through Celite and the filtrate was concentrated. The crude product was purified by column chromatography (ethyl acetate/pet. ether 60%) to give the product $\mathbf{6 a}$ as a yellow solid. Compound $\mathbf{6 b}$ was also prepared by following similar procedure.

benzyl (\boldsymbol{E})-3-(1-methyl-2,3-dioxo-7-(propylcarbamoyl)indolin-6-yl)acrylate (6a): White solid, Yield $=68 \%(55 \mathrm{mg}) ;$ m.p. $=158-160{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate/Hexane: 50/50); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=7.72(\mathrm{~d}, J=15.9,1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9$, $1 \mathrm{H}), 6.54$ (d, $J=15.9,1 \mathrm{H}), 5.24$ (s, 2H), 3.43 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.29$ (s, 3H), 1.65 (dt, $J=14.4,7.2$, 2H), 0.97 ($\mathrm{t}, J=7.4,3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta=181.8,165.4,165.2,158.6,147.9$, $142.1,139.9,135.6,128.8,128.6,128.5,125.6,124.7,122.6,122.1,118.1,67.1,42.3,27.5,22.6$,
11.6; IR (neat): $3264,2961,2924,2853,1739,1739,1633,1545,1439,1254,1156,754 \mathrm{~cm}^{-1}$;

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 407.1607$; found: 407.1604.

benzyl (E)-3-(5-chloro-1-methyl-2,3-dioxo-7-(propylcarbamoyl)indolin-6-yl)acrylate (6b): White solid, Yield $=74 \%(65 \mathrm{mg}) ;$ m.p. $=138-140{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (Ethyl Acetate $/$ Hexane: $50 / 50$); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta=7.70(\mathrm{~d}, J=16.3,1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.51(\mathrm{~d}$, $J=16.1,1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.30-3.26(\mathrm{t}, J=7.32 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dt}, J=8.3,7.3,2 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.3,3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=181.2,165.3,164.5,158.1,145.9,140.5,138.1$, 135.6, 129.5, 128.8, 128.6, 128.5, 127.6, 126.3, 123.2, 118.5, 67.1, 42.3, 27.5, 22.1, 11.5; IR (neat): $3300,3033,2964,2876,1739,1717,1639,1601,1538,1266,1167,779 \mathrm{~cm}^{-1}$; HRMSESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClKN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{K}]^{+}$: 479.0771; found : 479.0774.
7. Preparation of ethyl 3-(1-methyl-7-(propylcarbamoyl)-1H-indol-6-yl) propanoate (7):

To a stirred solution $\mathbf{3 g}(0.1 \mathrm{mmol})$ in methanol $(4 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}$. Then hydrogen gas passed in the solution by using hydrogen balloon. Then reaction mixtures were stirred vigorously for 10 h at room temperature. After completion of reaction the reaction mixture was filtered
through a Celite pad and the filtrate was concentrated. The crude product was purified by column chromatography (silica flash, ethyl acetate/pet. ether 20%) to obtain the product 7 as a white solid. Yield $=84 \%(27 \mathrm{mg}) ;$ m.p. $=96-98^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5$ (Ethyl Acetate/Hexane: 20/80); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta=7.53(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.00-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.0,1 \mathrm{H}), 4.07$ (dd, $J=13.1,6.3,2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=10.9,2 \mathrm{H}), 2.74(\mathrm{t}, J=7.1,2 \mathrm{H})$, $1.74-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta=$ $173.5,169.4,132.5,130.8,130.4,128.6,121.9,121.3,120.0,101.0,60.6,41.9,36.2,34.7,27.7$, $22.8,14.3,11.8$; IR (neat): $3456,2967,1645,1634,1565,1253,1148 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 339.1685 ; found: 339.1678.

8. Preparation of methyl 2-(1-benzyl-8-oxo-7-propyl-1,6,7,8-tetrahydropyrrolo[3,4-g]indol-

 6-yl)acetate (8):

To a well stirred solution of Methyl (E)-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl)acrylate (38 mg, 1 equiv) in dry THF (2 mL) at $0^{\circ} \mathrm{C}$ was added sodium hydride (60% in mineral oil, 1.1 equiv) under N_{2} atmosphere. Then reaction mixtures were stirred for $10-15$ minutes at $0^{\circ} \mathrm{C}$. After completion of reaction (Monitored by TLC), quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated in vacuum to obtain the crude mixture which was further purified by column chromatography (using 10\% ethyl acetate/hexane) giving a white solid with 72% (27 mg) yield. m.p. $=120-122^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5\left(\right.$ Ethyl Acetate/Hexane: 20/80); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=7.77$
$(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.01(\mathrm{~m}, 7 \mathrm{H}), 6.62(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dt}, J=16.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{ddd}, J$ $=4.8,4,8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=6.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.70(\mathrm{dd}, J=6.0,6.0,1 \mathrm{H}), 1.74-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=171.5,168.2,141.8$, $139.7,132.4,130.2,128.7,128.6,128.5,127.2,125.2,116.4,113.2,103.7,56.5,53.6,52.2,42.2$, 38.7, 21.8, 11.5; IR (neat): 1733, 1671, 1605, 1519, 1451, 1259, $1154 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: Calculated for: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 399.1685 ; found: 399.1681

9. Mechanistic Studies:

9.1 Deuterium labeling experiments:

In an oven dried screw cap Schlenk tube equipped with stir bar was purged with nitrogen was charged with 1-butyl-N-methyl-1H-indole-7-carboxamide (0.1 mmol), $\left[\mathrm{RuCl}_{2} \text { (p-cymene) }\right]_{2}$ (5 $\mathrm{mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv). The tube was purged with nitrogen followed by addition of DCE and $\mathrm{D}_{2} \mathrm{O}(1: 1) 2 \mathrm{~mL}$ via syringe. The reaction mixture allowed to stir at $120{ }^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was cooled to room temperature, and the solvents were removed under vacuum. The residue was purified by silica gel column chromatography using ethyl acetate: pet. ether as eluent to afford the deuteriated indole $\mathbf{9}$ in 88% yield. Analysis of $\mathbf{9}$ by ${ }^{1} \mathrm{H}$ NMR shows that the C6, C3 positions of indole results in 80% and 28% of deuterium incorporation. The amide nitrogen also results in 10% deuterium incorporation.

In an oven dried screw cap Schlenk tube equipped with stir bar was purged with nitrogen was charged with 1-butyl-N-methyl-1H-indole-7-carboxamide (0.1 mmol), methyl acrylate (0.15 $\mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv). The tube was purged with nitrogen followed by addition of DCE and $\mathrm{D}_{2} \mathrm{O}(1: 1) 2 \mathrm{~mL}$ via syringe. The reaction mixture allowed to stir at $120^{\circ} \mathrm{C}$ for 24 h . The solution was then cooled to room temperature, and the solvents were removed under vacuum. The residue was purified by silica gel column chromatography using ethyl acetate: pet. ether as eluent to afford C6 alkenyl indole $\mathbf{1 0}$ and the non-alkenyl indole $\mathbf{9}^{\prime}$ in 21% and 61% yield respectively. The compound $\mathbf{1 0}$ and $\mathbf{9}^{\prime}$ were analyzed by ${ }^{1} \mathrm{H}$ NMR. The analysis shows that the C6 alkenyl indole contains 27% deuterium incorporation at C3-position while $\mathbf{9}^{\prime}$ shows 11% and 38% deuterium incorporation at C 6 and C 3 . However, in both $\mathbf{9}^{\prime}$ and $\mathbf{1 0}$ no deuterium incorporation observed at amide nitrogen.

9.2 Identification of intermediates by HRMS analysis:

In an oven-dried $10-\mathrm{mL}$ glass tube with a screw cap containing benzyl (E)-3-(1-benzyl-7-(propylcarbamoyl)-1H-indol-6-yl) 1a (1.0 equiv), benzyl acrylate (1.5 equiv), was evacuated and purged with nitrogen gas. To the tube, were then added $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ (1.0 equiv), $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv), AgSbF_{6} (1.0 equiv) and $\mathrm{DCE}(1.0 \mathrm{~mL}$) via syringes and again the reaction mixture was evacuated and purged with nitrogen. Then, the reaction mixture was allowed to stir at $120^{\circ} \mathrm{C}$. After 10 minute reaction mixture filtered through Celite and the filtrate was diluted with acetonitrile and subjected for LCMS analysis using maXis impact Bruker instrument without any further purification. The LC-MS graph obtained clearly indicates the formation of intermediate II, III and product 3d.

Intermediates	Formula	Calculated	Observed
II	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{ORu}^{+}$	527.1631	527.1626
III	$\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Ru}^{+}$	689.2312	689.2266

Fig: Plausible mechanism for Ru (II) catalysed C6 alkenylation of indole-7-carboxamide

9.3. Intermolecular competition experiments between substituted indole-7-carboxamide

A oven-dried screw cap reaction tube equipped with stir bar was charged with mixture of 1-benzyl-N-propyl-1H-indole-7-carboxamide $\mathbf{1 a}(73.25 \mathrm{mg}, 0.25 \mathrm{mmol})$, 1-benzyl-5-fluoro-N-propyl-1H-indole-7-carboxamide $\mathbf{1 d}(77.50 \mathrm{mg}, 0.25 \mathrm{mmol})$, methyl acrylate $\mathbf{2 a}(21.5 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(7.65 \mathrm{mg}, 5.0 \mathrm{~mol} \%), \operatorname{AgSbF} 6(17.18 \mathrm{mg}, 20 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(99.50 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DCE $(2.0 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h. After that reaction mixture was cooled to room temperature, then the filtered over silica gel pad and washed with DCM. The solvent was removed under reduced pressure. The ratio of products 3a:3u (0.4:1.00) was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

10. Crystallographic data of compound 3a:

(CCDC 1990507)	Compound (3a) (CCDC 1990507)
Data	Ethyl acetate-Pet. Ether
Solvent system for crystal growth	Solvent evaporation
Crystal growth method	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula	376.4560
Formula Weight	0.71073
Wavelength	273 K
Temperature(K)	50%
Ellipsoid contour probability	Space Group

b(A)	15.250(3)
c(A)	10.995(3)
$\alpha\left(^{\circ}\right.$)	90
$\beta\left({ }^{\circ}\right.$	104.076(9)
$\gamma\left({ }^{\circ}\right.$	90
$\mathrm{V}\left(\mathrm{cm}^{3}\right)$	1029.4(4)
Z	2
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.214
$\mu\left(\mathrm{mm}^{-1}\right)$	0.081
F (000)	400.0
θ (max)	25.500
$\mathrm{h}_{\text {min, max }} / \mathrm{k}_{\text {min }, \text { max }} / \mathrm{l}_{\text {min, }}$ max	7,18,13
No. unique ref./ obs. ref.	3825/3818
No. of parameters	259
R(reflections)	0.0711(2347
wR_{2} (reflections)	0.1829(3818)
Data completeness	1.92/1.00

11. References:

[1] Dalpozzo, R.; Bartoli, G. Current Org. Chem. 2005, 9, 163.
[2] Giardinetti, M.; Moreau, X.; Coeffard, V.; Greck, C. Adv. Synth. Catal. 2015, 357, 3501.
[3] Banjare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2019, $21,8138$.
[4] Yamamoto, E.; Hilton, M. J.; Orlandi, M.; Saini, V.; Toste, F. D.; Sigman, M. S. J. Am.Chem. Soc. 2016, 138, 15877.
[5] Kamata, K.; Hirano, T.; Mizuno, N. Chem. Commun. 2009, 3958-3960.
[6] Roy, S.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 2238.

12. NMR Spectra:

