Supporting information

Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation

Yanting Zhang,^{II†} Lei Ran,^{II‡} Yanxue Zhang,^{II†} Panlong Zhai,^{II†} Yunzhen Wu,[†] Junfeng Gao,[‡] Zhuwei Li,[†] Bo Zhang,[†] Chen Wang,[†] Zhaozhong Fan,[†] Xiaomeng Zhang,[†] Jiaqi Cao,[†] Dingfeng Jin,[†] Licheng Sun,^{II⊥} and Jungang Hou^{*†}

[†]State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

[‡]Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, P. R. China.

[®]Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, P. R. China.

[⊥]Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.

These authors contributed equally: Yanting Zhang, Lei Ran, Yanxue Zhang and Panlong Zhai.

Supplementary experimental details.

Chemicals.

Niobium chloride (NbCl₅, 99%), tetramethylammonium hydroxide solution (TMAOH, 25%), sodium borohydride (NaBH₄, 98.0%), sodium hydroxide (NaOH, 99.9%), salicylic acid (C₇H₆O₃, 99.5%), sodium citrate (C₆H₅Na₃O₇, 98%), sodium hypochlorite solution (NaClO, 6~14%), sodium nitroferricyanide dihydrate $(C_5FeN_6Na_2O\cdot 2H_2O,$ 99%), para-(dimethylamino) benzaldehyde (C₉H₁₁NO), hydrazine hydrate (N₂H₄·H₂O, 85%), ammonia chloride (NH₄Cl), ammonium sulfate ((NH₄)₂SO₄, 10% ¹⁵N and 90% ¹⁴N) were purchased from Aladdin Chemistry Co., Ltd. All the materials were of analytical grade and used without further purification. Dimethyl sulfoxide- d_6 (DMSO- d_6) was purchased from Sigma-Aldrich. The ¹⁵N₂ was purchased from Wuhan Newradar Special Gas Co., Ltd. All chemicals were used without any purification and hydrochloric acid (HCl, 12 mol L⁻¹), absolute ethanol, acetone and deionized water with a resistivity of 18.25 M Ω cm⁻¹, were used throughout the experiments.

Synthesis of 2D HNb₃O₈ nanosheets.

The HNb₃O₈ nanosheets were prepared by the hydrothermal synthesis method. Typically, 12 mmol of NbCl₅ was dissolved in 40 mL of absolute ethanol with stirring in a 100 mL flask. Then, 40 mL of TMAOH solution was added dropwise into the above solution under drastically stirring. The mixture solution was transferred into 100 mL Teflon-lined stainless-steel autoclave followed by heated in an oven at 200~240 °C for 12 h. Then the autoclave was cooled to room temperature naturally. The product was washed with acetone, water and ethanol for three times to remove any possible remnants, respectively. Finally, the attained product was dried at 60 °C overnight under vacuum.

Synthesis of 2D B-V₀-HNbO₃ NSs.

TMA⁺-Nb precursors were prepared by hydrothermal process.^[1] 0.2 g TMA⁺-Nb precursors were placed in 6 M HNO₃ solution and sonicated for 30 min. Then, the suspension was stirred for 1 day to ion exchange TMA⁺ to H⁺, leading to the formation of ultrathin HNb₃O₈ nanosheets (2D HNb₃O₈ NSs). After the mixture of 0.4 g HNb₃O₈ NSs and a certain amount of NaBH₄, boron-doped and oxygen-vacancies-confined HNbO₃ (B-V₀-HNbO₃) was

obtained by thermal treatment at different temperatures from 300~600 °C in argon atmosphere. Finally, the dispersed B-V₀-HNbO₃ NSs were produced through the subsequent extraction of the suspension by the ultrasonication approach.

Synthesis of 2D B-HNb₃**O**₈ **NSs.** TMA⁺-Nb precursors were prepared by hydrothermal process.^[1] 0.2 g TMA⁺-Nb precursors were placed in 6 M HNO₃ solution and sonicated for 30 min. Then, the suspension was stirred for 1 day to ion exchange TMA⁺ to H⁺, leading to the formation of ultrathin HNb₃O₈ nanosheets (2D HNb₃O₈ NSs). After the mixture of HNb₃O₈ NSs and a certain amount of H₃BO₃, boron-doped HNb₃O₈ (B-HNb₃O₈) was obtained by thermal treatment at 300~600 °C in argon atmosphere. Finally, the dispersed B-HNb₃O₈ NSs were produced through the subsequent extraction of the suspension by the ultrasonication approach.

Synthesis of 2D V_o-HNb₃O₈ NSs. TMA⁺-Nb precursors were prepared by hydrothermal process.^[1] 0.2 g TMA⁺-Nb precursors were placed in 6 M HNO₃ solution and sonicated for 30 min. Then, the suspension was stirred for 1 day to ion exchange TMA⁺ to H⁺, leading to the formation of ultrathin HNb₃O₈ nanosheets (HNb₃O₈ NSs). Oxygen-vacancies-confined HNb₃O₈ (V_o-HNb₃O₈) was obtained by the room-temperature reduction in a NaBH₄ solution with ethanol as the solvent. Finally, the dispersed V_o-HNb₃O₈ NSs were produced through the subsequent extraction of the suspension by the ultrasonication approach.

Synthesis of HNbO₃ **powders.** HNbO₃ powders were prepared by a molten-salt way and subsequent H⁺–Li⁺ ion-exchange reaction process.^[2] Stoichiometric amounts of Nb₂O₅ and Li₂CO₃ were ground well to obtain uniform mixtures and mixed adequately with Li₂SO₄–Na₂SO₄ (1:1 molar ratio) in a Nb₂O₅–Li₂CO₃/Li₂SO₄–Na₂SO₄ mass ratio of 1 : 2. These mixtures were then heated to 700 °C for 1 h in alumina crucibles. After calcination, the salts were ultrasonically washed with hot distilled water for several times and then dried in air. As-obtained LiNbO₃ powders were dispersed into hot aqueous HNO₃ at 90~100 °C and stirred constantly for 72 h. The resulting HNbO₃ powders were washed and dried.

Synthesis of B-HNbO₃ powders. HNbO₃ powders as the precursors were used by a

molten-salt way and subsequent H^+ –Li⁺ ion-exchange reaction process. After the mixture of HNb_3O_8 powders and a certain amount of H_3BO_3 , boron-doped $HNbO_3$ (B-HNbO₃) powders were obtained by thermal treatment at 300~600 °C in argon atmosphere and the subsequent ultrasonication treatment.

Synthesis of V_o-HNbO₃ powders. HNbO₃ powders as the precursors were used by a molten-salt way and subsequent H^+ –Li⁺ ion-exchange reaction process. Oxygen-vacancies-confined HNbO₃ (V_o-HNbO₃) powders were obtained by was obtained by the room-temperature reduction in a NaBH₄ solution with ethanol as the solvent and the subsequent ultrasonication treatment.

Synthesis of B-V₀-HNbO₃ powders. HNbO₃ powders as the precursors were used by a molten-salt way and subsequent H⁺–Li⁺ ion-exchange reaction process. After the mixture of HNbO₃ NSs and a certain amount of NaBH₄, boron-doped and oxygen-vacancies-confined HNbO₃ (B-V₀-HNbO₃) powders were obtained by thermal treatment at 300~600 °C in argon atmosphere.

Characterization.

Powder X-ray diffraction (XRD) patterns were tested by X-ray diffractometer equipped with graphite monochromatized Cu K_a radiation (λ = 1.54178 Å). SEM images were captured by a field-emission scanning electron microscope (SEM, FEI Nova Nano SEM 450). TEM images were performed on transmission electron microscopy (TEM, FEI TF30). Atomic force microscope (AFM) was performed by DI Innova Multimode SPM platform. N₂ adsorption-desorption curves were obtained by Micromeritics ASAP 2460 surface areas and porosities profiler. Specific surface area was acquired by Brunauer-Emmett-Teller (BET) approach. X-ray photoelectron spectroscopy (XPS, ESCALAB 250) pattern was applied to explore the elements composition and valence states of materials. UV-vis absorption and photoluminescence (PL) spectra were measured by UV-Vis-NIR spectrophotometer (Shimadzu UV-3600 Plus) and fluorescence spectrometer (Horiba, FloroMax-4P). Electron paramagnetic resonance (EPR) tests were performed under ambient room temperature through Bruker 500 spectrometer (Bruker E500).

Photocatalytic tests.

The photocatalytic performance of B-V₀-HNbO₃ NSs was evaluated for photocatalytic N₂ reduction at room temperature. Before the reaction, the photocatalysts were dispersed into pure water and pre-treated for 1 h by ultrasonic treatment. In a typical experiment, the N₂ fixation reaction was performed in a quartz reactor with a peristaltic pump. A 300 W Xenon lamp was employed as the optical light source. The catalyst (10 mg) was dispersed in pure water (20 mL) with sonication treatment for 10 min, bubbling with N₂ flow (30 mL min⁻¹) for 30 min. The reactor was then illuminated and then bubbled high-purity N₂ by the peristaltic pump with continuous stirring. An aliquot of the reaction solution (3.0 mL) was taken out every 1 h, then filtered and centrifuged to remove the residual photocatalyst. The concentration of NH₃ in supernatant was detected by colorimetry (Indophenol blue method) and ion chromatography (IonPac CS16, Dionex). The content of hydrazine (N₂H₄) species was monitored using para-(dimethylamino) benzaldehyde. The amount of oxygen was analyzed by the thermal conductivity detector (TCD) gas chromatograph.

Photoelectrochemical and electrochemical measurements.

The PEC measurements were performed on a CHI 760E electrochemical workstation equipped with the three-electrode cell. Firstly, the original FTO glasses were cleaned with acetone, ethanol and ultra-pure water. The working electrode was coated glass FTO electrode coated with the catalyst, dipcoating the electrode in a slurry consisting of 5 mg photocatalyst, 75 µL of 5 wt% nafion solution and 1 mL of absolute ethanol. The counter electrode was a platinum foil, the reference electrode was a saturated Ag/AgCI electrode, and the electrolyte was 0.5 M Na₂SO₄. The light source was a 300W Xe lamp with the light intensity was 100 mW cm⁻². The I-t curves were measured under chopped illumination at 1.23 V *vs.* RHE. The electrochemical impedance spectroscopy (EIS) measurements were conducted over a frequency range 0.1-10⁵ Hz.

Quantification of ammonia by the indophenol blue method.

The ammonia concentration was spectrophotometrically determined by the indophenol blue method with modification.^[3] In brief, 2 mL of 1 M NaOH solution containing salicylic acid (5 wt%) and sodium citrate (5 wt%) was added into 1 mL of the supernatant after N₂

photocatalytic reduction, followed by addition of 1 mL of 0.05 M NaClO and 200 μ L of C₅FeN₆Na₂O (1 wt%) for 1 h. The absorption spectrum was measured using an UV-vis spectrophotometer. The concentration of indophenol blue was determined using the absorbance at a wavelength of 655 nm. The concentration-absorbance curve was calibrated using standard ammonia chloride solutions with a serious of concentrations. According to the absorbance and standard curve, the concentration of the generated ammonia was obtained.

Quantification of ammonia by the ion chromatograph method.

To confirm the concentration of NH_{4}^{+} precisely, we used the ion chromatograph method (IC).^[4] During detection of NH_{4}^{+} , 30 mM of methane sulfonic acid was used as the eluent solution with a flow rate of 1 mL min⁻¹. The column temperature and self-regenerating suppressor (SRS) current were kept as 40 °C and 89 mA, respectively. 0.5 mL the supernatant was injected through the 25 µL quantitative injection loop to achieve standard analyte peaks for low concentrations of NH_{4}^{+} cations, the retention time of NH_{4}^{+} cations was about 8.7 min. The concentration curve was calibrated using standard ammonia chloride solutions with a serious of concentrations. According to the peak areas and standard curve, the concentration of the generated ammonia was obtained.

Determination of hydrazine.

The hydrazine concentration of the supernatant was estimated by the Watt and Chrisp method.^[5] A mixture of para-(dimethylamino) benzaldehyde (5.99 g), HCl and absolute ethanol was used as a colour reagent. 2 mL of colour reagent was added to the supernatant, and the absorption spectrum was measured using a UV-vis spectrophotometer after 30 min at room temperature. The formation of hydrazine was determined by the absorbance at a wavelength of 455 nm. The concentration-absorbance curves were calibrated using standard hydrazine solutions with a serious of concentrations. According to the absorbance and standard curve, the concentration of the hydrazine was obtained.

¹⁵N₂ isotope labelling experiment.

To confirm that the ammonia and hydrazine detected in the photocatalytic experiments

originated from dissolved N₂, further experiments were performed using ¹⁵N₂.^[6] The ¹⁵N₂ was purchased from Wuhan Newradar Special Gas Co., Ltd. Before the photocatalytic reduction experiment, the reaction tube was charged and discharged with high-purity Ar, followed by pumping it to vacuum. Then the ¹⁵N₂ was purged into the system to reach atmospheric pressure. After ¹⁵N₂ photocatalytic reduction for 5 h under the 300 W Xe lamp, the supernatant was concentrated and the obtained ¹⁵NH₄+ product was identified using ¹H NMR spectroscopy (Bruker AVANCE NEO 600M).

The detection of oxygen gas.

Oxygen gas (O₂) was detected by gas chromatography (GC) equipped with TCD detector using Ar and N₂ as the carrier gas. When the reaction was finished, detecting the amount of O₂ by gas chromatograph.

In-situ infrared spectroscopy tests.

The infrared tests were obtained using *in-situ* infrared cell.^[7] *In-situ* infrared spectra were recorded by Nicolet IS50FT-IR spectrometer (Thermo, USA) with a designed reaction cell. The substrate lying in the center of the designed reaction cell was pre-deposited with a thin layer of B-V₀-HNbO₃ nanosheets. Then an ultra-high vacuum pump was used to pump out all the gases in the reaction cell and adsorbed on the photocatalyst surface. A layer of water molecules which were necessary to provide protons in our functional model was pre-adsorbed on the surface through bubbling a small amount of water vapor before the large amount of molecular nitrogen was pumped in to construct a N₂ atmosphere. At last, visible light was turned on and the IR signal was *in-situ* collected through a MCT detector along with the reaction.

Determination of apparent quantum efficiency and solar-to-ammonia efficiency.

The experiments for determining apparent quantum efficiency (AQE) and solar-to-ammonia (STA) efficiency were performed in pure water without sacrificial reagent. To obtain the AQE, the light was filtered by different monochromatic filters. The AQE was calculated by Equation.

$$AQE = \frac{N_e}{N_p} = \frac{6 \times N_{AM}}{N_p} = \frac{6 \times n_{AM} \times N_A}{\frac{W \times A \times t}{h \times v}} \times 100\%$$

(Equation. S1)

where $N_{\rm e}$, $N_{\rm p}$, and $N_{\rm AM}$ represent the number of reacted electrons, incident photons, and generated ammonia, respectively; $n_{\rm AM}$ represents the molar number of generated ammonia; v, W, A, and t are the incident light frequency, intensity, irradiation area, and time, respectively; $N_{\rm A}$ and h are the Avogadro's constant and Planck constant, respectively.

The simulated AM1.5G sunlight was employed as the light source for measuring STA efficiency. The STA efficiency was determined by Equation.

$$STA = \frac{\Delta G_A \times n_A}{W \times A \times t} \times 100\%$$
 (Equation. S2)

where ΔG_{AM} is the Gibbs free energy for ammonia generation from water and N₂ (339 kJ mol⁻¹); n_{AM} is the molar number of generated ammonia; *W*, *A*, and *t* represent the incident light intensity, irradiation area and time, respectively.

Calculation of band gap.

The band gap was estimated by following Tauc's relation:^[8]

$$(\alpha h v)^2 = \alpha_0 (h v - E_g)$$
 (Equation. S3)

where *h* is Plank constant, *v* is frequency of incident light, α is absorption, E_g is optical band-gap and *n* is a constant. The electrode potential (*v*s. Ag/AgCl) was converted to RHE potential (E_{RHE}) according to Nernst Equation:^[9]

$$E_{RHE} = E_{Ag/AgCl} + 0.059 pH + E_{Ag/AgCl}^{o}$$
(Equation. S4)

 $E^{o}_{Ag/AgCl} = 0.1976V$

where $E_{Ag/AgCl}$ was the applied potential vs. Ag/AgCl (which is the applied bias in this work), and another is the standard electrode potential of the Ag/AgCl at 25°C.

To acquire the band diagram of HNb₃O₈ from UPS spectra, the position of valance band (VB) maximum is obtained from the equation (S5~S6):

$$\varphi = hv - E_{cutoff}$$
 (Equation. S5)
 $E_{VB} = E_F - X$ (Equation. S6)

where φ is the work function; hv = 21.2 eV; $E_{cuttoff}$ is the secondary electron onset obtained from the linear extrapolation of the UPS spectrum; E_F is the energy of the Fermi level, which is equivalent to the negative value for the work function (- $\varphi = E_F$); X is obtained from the extrapolation of the onsets in the UPS spectra.

The EVB is versus vacuum level. According to the relationship between vacuum energy

level and the potential of the normal hydrogen electrode (NHE), the position of VB maximum *versus* NHE is described as the equation (S7):

$$E_{VB}^* = -E_{VB} - 4.5$$
 (Equation. S7)

Thus, the conduction band (CB) minimum potential (E_{CB}) can be easily calculated by the equation (S8):

$$E_{CB} = E_g - E_{VB}$$
 (Equation. S8)

where E_g is the band gap from the Tauc plots by UV-Vis spectra.

Calculation of NH₃ production rate.

The ammonia production rate was calculated using the following equation:

 $C_{NH_3}(\mu mol \ g^{-1}h^{-1}) = N_{NH_3^+} / M_{Photocatalyst} \times T_{Illumination}$ (Equation. S9)

where the N (NH₄⁺) represents the mole numbers of generated ammonia, M_{photocatalyst} is the quality of the photocatalyst used in reaction, T_{Illumination} is the illumination time.

Density functional theory calculation.

The spin-polarized density functional theory (DFT) calculations implemented in the Vienna *ab Initio* Simulation Package (VASP) are employed to obtain the optimized structures, energetic and electronic properties of HNb₃O₈ and HNbO₃ slab models.^[10] The electron exchange–correlation is described by generalized gradient approximation (GGA) with the functional of Perdew, Burke and Ernzerhof (PBE).^[11] The Projector-augmented wave (PAW) was used to descript core electrons.^[12] A plane-wave basis kinetic energy cutoff of 480 eV and a convergence criterion of 10⁻⁴ eV for the total energy and -0.03 eV/Å for the forces were used in our calculations. The Brillouin zone integration was performed using Monkhorst-Pack special k-points mesh of 2×4×1 for HNb₃O₈ slab model and 2×2×1 for HNbO₃ slab model. The van der Waals interaction is also considered by DFT-D3-BJ correction.^[13]

The bulk HNb₃O₈ was optimized.^[14,15] Then, the unit slab model of HNb₃O₈ was obtained by cutting the (010) surface of bulk HNb₃O₈. The unit slab model of HNbO₃ was obtained by cutting the (111) surface of primitive cell HNbO₃. The 2×2 supercell which contained four unit are adopted for HNb₃O₈ and HNbO₃ to simulated the NRR calculations. Especially, the bottom four layers of HNbO₃ are fixed during the structure optimized whereas the top two layers are full relaxed. The B-V₀-HNbO₃ model was obtained by removed a surface O atom and substituted the nearby O atom with B atom. The vacuum space was set to 20 Å to avoid the interaction between two neighboring slabs.

The calculated adsorption energy was defined as:

$$E_{ads} = E_{Total} - E_{Sub} - E_A$$

where E_{Total} is the DFT total energy of the adsorption configuration, while E_{Sub} and E_A are energies of HNb₃O₈ or HNbO₃ slab substrate and the adsorbates, respectively.

The Gibbs free energy (G) of the intermediates of NRR was calculated by using the computational hydrogen electrode (CHE) model.^[16] Based on this method, the G value was determined by the following equation.^[17]

$$G = \Delta E - T\Delta S + \Delta Z P E$$

where ΔE , ΔZPE and ΔS are the differences in DFT total energy, zero-point energy and entropy between the adsorption species and the gas phase molecules. The temperature T is set as 298.15 K. The ΔZPE and ΔS of the NRR intermediate species were computed from their vibrational frequencies using the thermodynamic model within harmonic approximation. During these frequency calculations, all atoms of substrate were fixed whereas the adsorbates are fully relaxed. For gas-phase molecules, their zero-point energy and entropy values were taken from the NIST database.^[18] The most positive ΔG (ΔG_{max}) of the entire NRR process is regarded as the rate-determining step (RDS). The onset potential of the whole reduction process is determined by ΔG_{max} , which can be deduced from U_{onset} = $-\Delta G_{max}/e$.

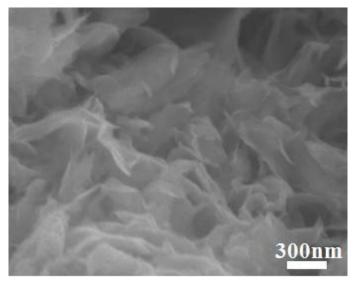


Figure S1. FESEM image of 2D HNb₃O₈ NSs.

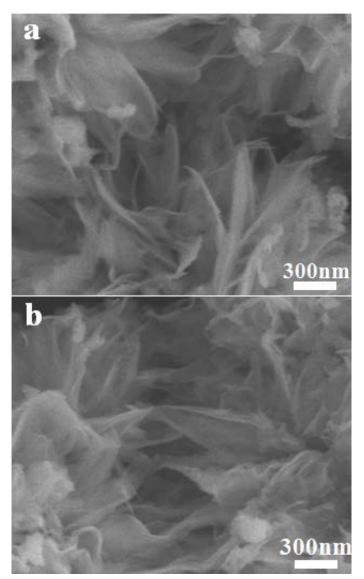
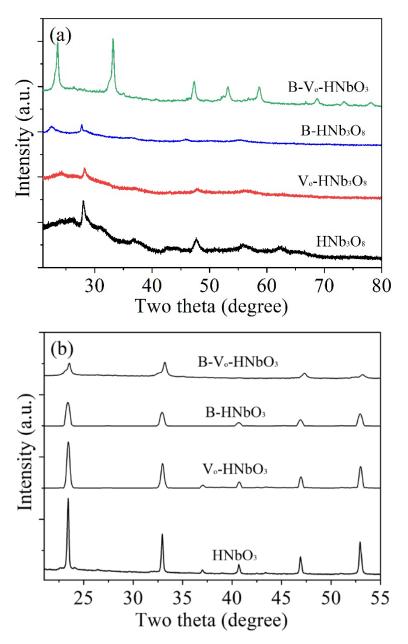



Figure S2. FESEM images of (a) V_0 -HNb₃O₈ NSs and (b) B- V_0 -HNbO₃ NSs.

Figure S3. XRD patterns of (a) HNb₃O₈ nanosheets, V₀-HNb₃O₈ nanosheets, B-HNb₃O₈ nanosheets and B-V₀-HNbO₃ nanosheets by use of HNb₃O₈ nanosheets as the precursor, (b) HNbO₃ powders, V₀-HNbO₃ powders, B-HNbO₃ powders and B-V₀-HNbO₃ powders by use of HNbO₃ powders as the precursor.

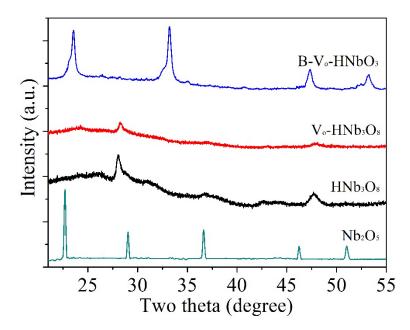


Figure S4. XRD pattern of commercial Nb₂O₅ powders.

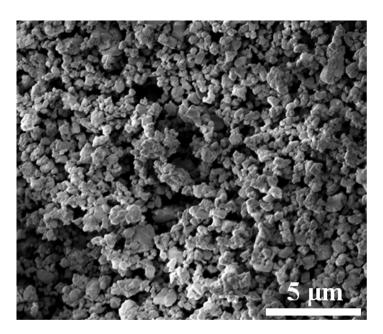
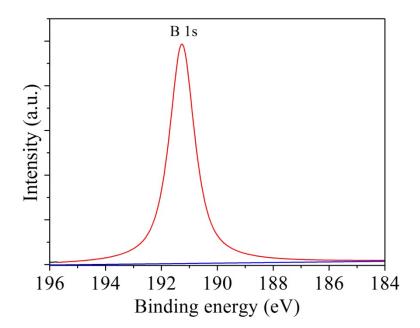
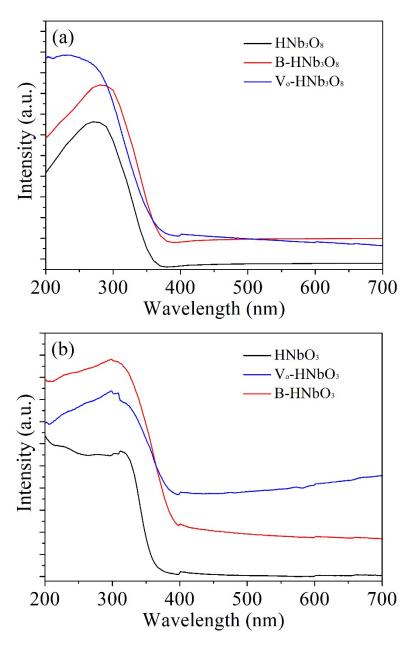
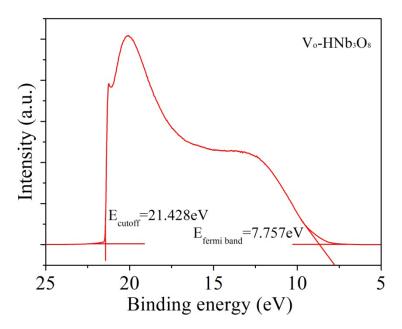
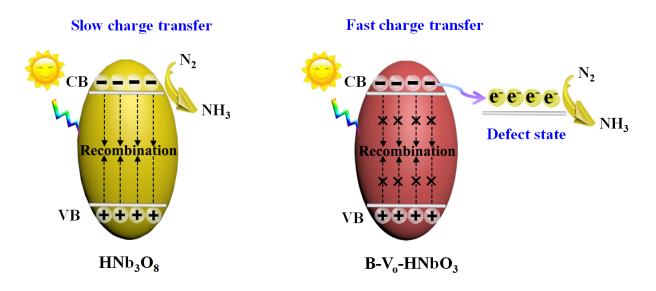
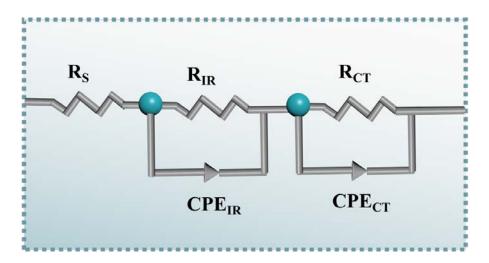
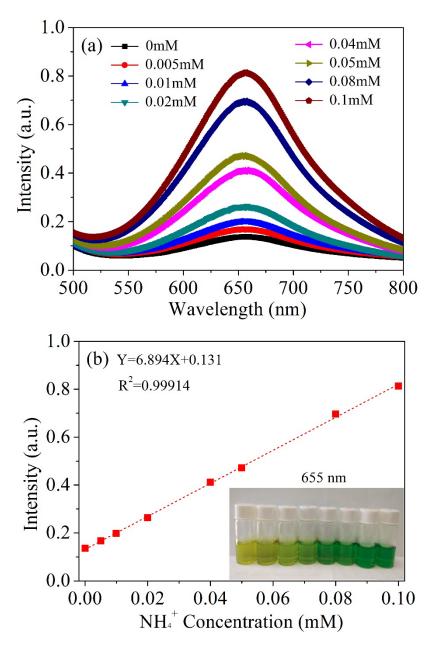




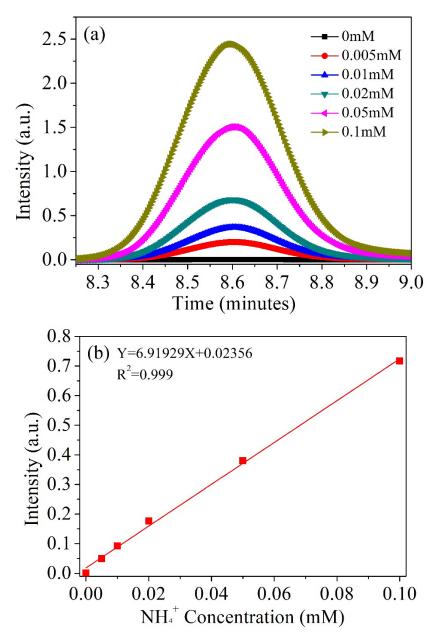
Figure S5. SEM image of $B-V_0-HNbO_3$ powders by use of $HNbO_3$ powders as the precursor.

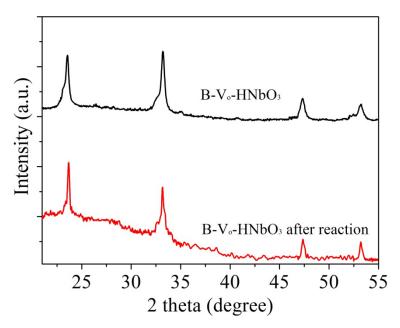
Figure S6. High-resolution B 1s XPS spectra of B-V₀-HNbO₃ NSs under the temperature at 500°C.

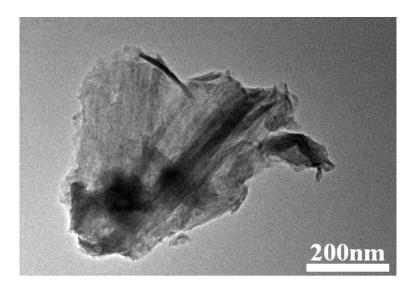
Figure S7. UV-vis absorption spectra of (a) HNb₃O₈, V_o-HNb₃O₈ and B-HNb₃O₈, (b) HNbO₃, V_o-HNbO₃ and B-HNbO₃ materials after thermal treatments by the introduction of boron dopant and oxygen vacancies.

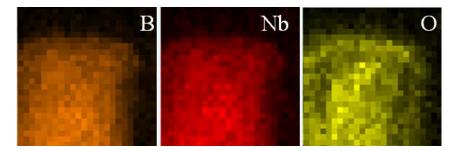




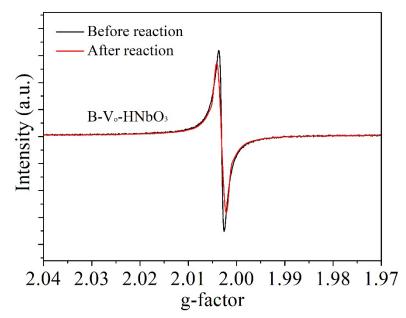

Figure S8. UPS spectra of Vo-HNb3O8 NSs.

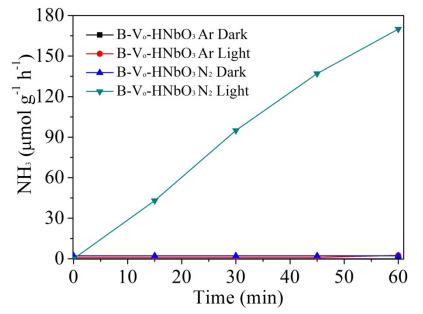

Figure S9. Illustrations of charge transfer and band structures of HNb₃O₈ and B-V₀-HNbO₃ NSs.

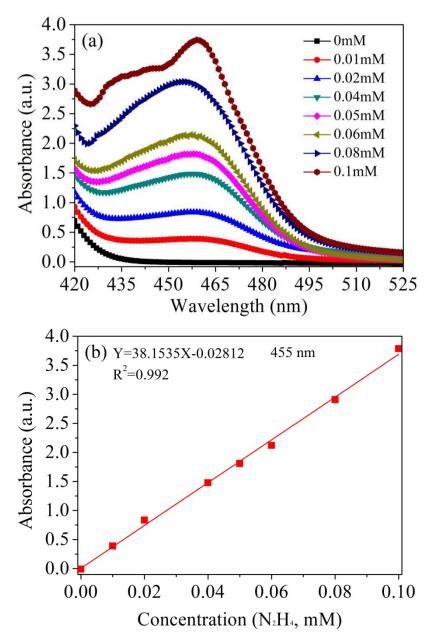

Figure S10. The equivalent circuit used for fitting the impedance data, where R_S represents the series resistance (including the material resistance and contact resistance of the test system), R_{IR} and CPE_{IR} at higher frequencies correspond to the bulk charge trapping resistance and constant phase element, respectively, and the R_{CT} and CPE_{CT} represent the interfacial charge transfer resistance and constant phase element, respectively.

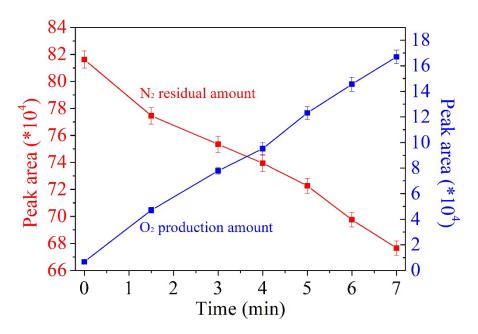

Figure S11. Determination of ammonia by the indophenol blue method. (a) UV-Vis absorption spectra of indophenol assays with NH₄Cl solution after incubated for 1 h at room temperature. (b) The corresponding calibration curve.

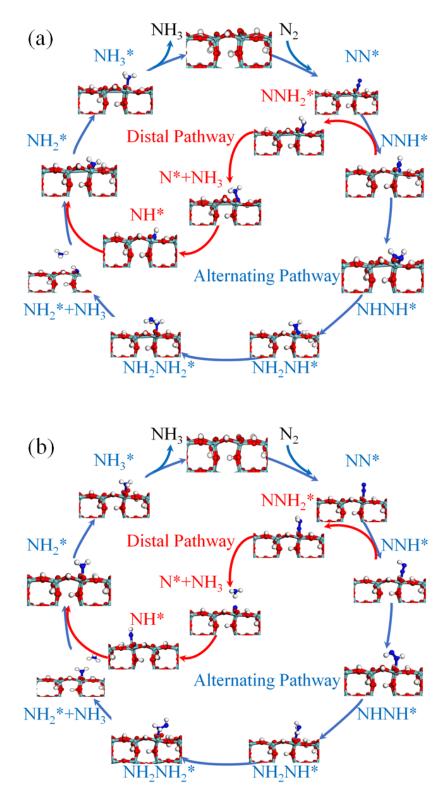

Figure S12. Determination of ammonia by the ion chromatograph method. (a) The ion chromatography data with a series of standard NH₄Cl solutions. (b) The corresponding calibration curve.


Figure S13. XRD patterns of B-V₀-HNbO₃ NSs as the photocatalysts before and after photocatalytic N₂ reduction reactions under light illumination.


Figure S14. TEM image of $B-V_0$ -HNbO₃ NSs as the photocatalysts after photocatalytic N₂ reduction reactions under light illumination.


Figure S15. HAADF-STEM element mappings of B-V₀-HNbO₃ NSs as the photocatalysts after photocatalytic N₂ reduction reactions under light illumination.


Figure S16. Electron paramagnetic resonance (EPR) spectra of $B-V_0-HNbO_3$ NSs as the photocatalysts before and after photocatalytic N₂ reduction reactions.


Figure S17. The photocatalytic NH₃ evolution tests were conducted by applying N₂ and Ar gas during the photocatalytic process under dark and light illumination conditions over B-V₀-HNbO₃ as photocatalyst.

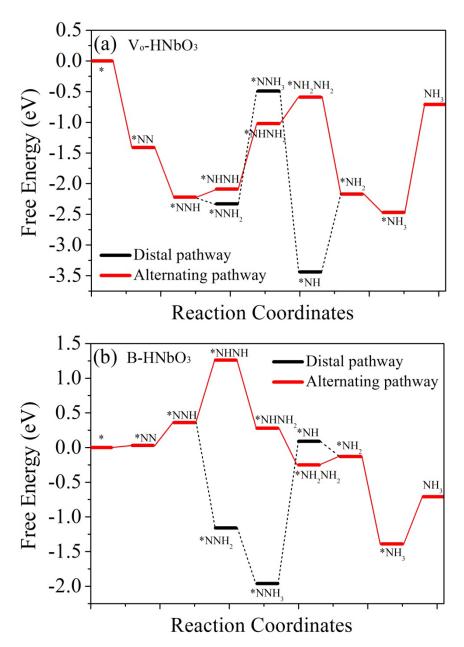

Figure S18. Determination of ammonia by the Watt and Chrisp method. (a) The UV-Vis absorption spectra of series hydrazine solutions after incubated for 30 min at room temperature. (b) The corresponding calibration curve.

Figure S19. The photocatalytic O_2 evolution amount and residual N_2 amount using $B-V_0$ -HNbO₃ NSs as catalyst during one cycle NRR reaction under solar illumination.

Figure S20. Optimized geometric structures of various intermediates (*NN, *NNH, *NHNH, *NH₂NH, *NH₂NH, *NH₂NH₂, *NH₂, and *NH₃) along the reaction path of the NRR that proceeded on (a) V_0 -HNbO₃ and (b) B-HNbO₃.

Figure S21. Free energy diagrams along the reaction path of the NRR that proceeded on (a) V₀-HNbO₃ and (b) B-HNbO₃.

Photocatalyst	Light source	Scavenger	Test method	C(NH ₃)	Ref.
Cu-doped ZnAl-LDH	UV-Vis	None	Nessler's reagent	110	[18]
6% Cu/TiO ₂	UV-Vis	None	Nessler's reagent	78.9	[19]
MoO _{3-x} nanobelts	UV-vis	None	Indophenol blue	1.1	[20]
Mo/W ₁₈ O ₄₉ nanowires	UV-vis	None	Indophenol blue	61.9	[21]
NiS/CdS nanorods	>420 nm	None	Indophenol blue	94.4	[22]
Sb/TiO2 nanosheets	UV-vis	Methanol	Nessler's reagent	32.2	[23]
Au/TiO ₂ nanosheets	>420 nm	Methanol	Nessler's reagent	130.5	[24]
Bi2WO6 nanodisks	UV-vis	None	Nessler's reagent	86	[25]
Ru/TiO2 nanosheets	UV-vis	Ethanol	Nessler's reagent	3.31	[26]
Reduced TiO ₂	>254 nm	2-propanol	Nessler's reagent	2.5	[27]
AgInS ₂ /MXene	>420 nm	Methanol	Nessler's reagent	38.8	[28]
Black Phosphorus /CdS	>420 nm	Methanol	Nessler's reagent	57.64	[29]
Defective ZnCr-LDH	UV-vis	None	Nessler's reagent	33.19	[30]
BiOBr nanosheets	>420 nm	None	Indophenol blue	104.2	[31]
BiOCI nanosheets	UV-vis	Methanol	Indophenol blue	92.4	[32]
Nb2O5/C/Nb2C/g-C3N4	>420 nm	None	Nessler's reagent	31.5	[33]
B-V₀-HNbO₃ nanosheets	UV-vis	None	Nessler's reagent, IC	170	This work

Table S1. Summary of previous types of the photocatalysts for solar N_2 reduction to NH_3 .

References

1. Xiong, J.; Wen, L.; Jiang, F.; Liu, Y.; Liang, S.; Wu, L. Ultrathin HNb₃O₈ Nanosheet: An Efficient Photocatalyst for the Hydrogen Production. *J. Mater. Chem. A* **2015**, *3*, 20627-20632.

 Xu, W.; Gang, C.; Chao, Z.; Yu, Y.; Gang, W. N-Doped Nb₂O₅ Sensitized by Carbon Nitride Polymer-Synthesis and High Photocatalytic Activity under Visible Light. *Eur. J. Inorg. Chem.* 2012, 11, 1742-1749.

3. Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Takayuki, H. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. *J. Am. Chem. Soc.* **2017**, 139, 10929-10936.

4. Chen, X.; Zhang, X.; Li, Y.; Qi, M.; Li, J.; Tang, Z.; Zhou, Z.; Xu, Y. Transition Metal Doping BiOBr Nanosheets with Oxygen Vacancy and Exposed {102} Facets for Visible Light Nitrogen Fixation. *Appl. Catal. B* **2021**, 281, 119516.

5. Watt, G. W.; Chrisp, J. D. J. A. C. Spectrophotometric Method for Determination of Hydrazine. *Anal. Chem.* **1952**, 24, 2006-2008.

6. Li, H.; Gu, S.; Sun, Z.; Guo, F.; Xie, Y.; Tao, B.; He, X.; Zhang, W.; Chang, H. The In-Built Bionic "MoFe Cofactor" in Fe-Doped Two-Dimensional MoTe₂ Nanosheets for Boosting the Photocatalytic Nitrogen Reduction Performance. *J. Mater. Chem. A* **2020**, 8, 13038-13048.

7. Sakamoto, H.; Ohara, T.; Yasumoto, N.; Shiraishi, Y.; Hirai, T. Hot-Electron-Induced Highly Efficient O₂ Activation by Pt Nanoparticles Supported on Ta₂O₅ Driven by Visible Light. *J. Am. Chem. Soc.* **2015**, 137, 9324-9332.

8. Cui, D.; Wang, L.; Ren, K. Band-Gap Engineering of BiOCl with Oxygen Vacancies for Efficient Photooxidation Properties under Visible-Light Irradiation. *J. Mater. Chem. A* **2018**, 6, 2193-2199.

9. Seabold, J. A.; Choi, K. S. Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. *J. Am. Chem. Soc.***2012**, 134, 2186-2192.

10. Kresse, G. G.; Furthmüller J. Efficient Iterative Schemes for *ab Initio* Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B.* **1996**, 54, 11169-11186.

11. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.***1996**, 77, 3865-3868.

12. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B.* **1999**, 59, 1758-1775.

13. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *ab Initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, 132, 154104.

14. Yang, G.; Hou, W.; Feng, X.; Jiang, X.; Guo, J. Density Functional Theoretical Studies on Polyaniline/HNb₃O₈ Layered Nanocomposites. *Adv. Funct. Mater.* **2010**, 17, 3521-3529.

15. Feng, Q. J. M. T. C. Electronic, Optical Properties and Stress-Driven Modulation of Monolayer MNb₃O₈ (M=H,Li,Na,K): An *ab-Initio* Investigation. *Mater. Today Commun.* **2020**, 101867.

16. Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson,
H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *J. Phys. Chem. B*2004, 108, 17886-17892.

17. Guo, X.; Gu, J.; Lin, S.; Zhang, S.; Chen, Z.; Huang, S. Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction *via* Atomically Dispersed Biatom Catalysts. *J. Am. Chem. Soc.* **2020**, 142, 5709-5721.

18. Zhang, S.; Zhao, Y. X.; Shi, R.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang,
T. R. Efficient Photocatalytic Nitrogen Fixation over Cu^{δ+}-Modified Defective ZnAl-Layered Double Hydroxide Nanosheets. *Adv. Energy Mater.* 2020, 10, 1901973.

19. Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L.; Tung, C.; Zhang, T. Tuning Oxygen Vacancies in Ultrathin TiO₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. *Adv. Mater.* **2019**, 31, 1806482.

20. Li, Y.; Xin, C.; Zhang, M.; Zhu, Y.; Ren, W.; Mei, Z.; Meng, G.; Feng, P. Oxygen Vacancy-Rich MoO_{3-x} Nanobelts for Photocatalytic N₂ Reduction to NH₃ in Pure Water. *Catal. Sci. Technol.* 2019, 9, 803-810.

21. Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C.; Wu, X.; Song, L.; Zhu, J.; Xiong, Y. Refining Defect States in W₁₈O₄₉ by Mo Doping: A Strategy for Tuning N₂ Activation towards Solar-Driven Nitrogen Fixation. *J. Am. Chem. Soc.* **2018**, 140, 9434-9443.

22. Gao, X.; An, L.; Qu, D.; Jiang, W.; Chai, Y.; Sun, S.; Liu, X.; Sun, Z. Enhanced Photocatalytic N₂ Fixation by Promoting N₂ Adsorption with a Co-Catalyst. *Sci. Bull.* **2019**, 64, 918-925.

23. Zhao, Z.; Hong, S.; Yan, C.; Choi, C.; Jung, Y.; Liu, Y.; Liu, S.; Li, X.; Qiu, J.; Sun, Z. Efficient Visible-Light Driven N₂ Fixation over Two-Dimensional Sb/TiO₂ Composites. *Chem. Commun.*2019, 55, 7171-7174.

24. Yang, J.; Guo, Y.; Jiang, R.; Qin, F.; Zhang, H; Lu, W.; Wang, J. High-Efficiency "Working-in-Tandem" Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. *J. Am. Chem. Soc.* **2018**, 8497-8508.

25. Zhou, S.; Zhang, C.; Liu, J.; Liao, J.; Kong, Y.; Xu, Y.; Chen, G. Formation of an Oriented Bi₂WO₆ Photocatalyst Induced by *in Situ* Bi Reduction and Its Use for Efficient Nitrogen Fixation. *Catal. Sci. Technol.* **2019**, 9, 5562-5566.

26. Liu, S.; Wang, Y.; Wang, S.; You, M.; Zhao, Z.; Jiang, G.; Qiu, J.; Wang, B.; Sun, Z. Photocatalytic Fixation of Nitrogen to Ammonia by Single Ru Atom Decorated TiO₂ Nanosheets. *ACS Sustain. Chem. Eng.* **2019**, 7, 6813-6820.

27. Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. *J. Am. Chem. Soc.* **2017**, 139, 10929-10936.

28. Qin, J.; Hu, X.; Li, X.; Yin, Z.; Liu, B.; Lam, K. H. J. N. E. 0D/2D AgInS₂/MXene Z-Scheme Heterojunction Nanosheets for Improved Ammonia Photosynthesis of N₂. *Nano Energy* **2019**, 61, 27-35.

29. Shen, Z. K.; Yuan, Y. J.; Wang, P.; Bai, W.; Zou, Z. Few-Layer Black Phosphorus Nanosheets: A Metal-Free Cocatalyst for Photocatalytic Nitrogen Fixation. *ACS Appl. Mater. Interfaces* **2020**, 12, 17343-17352.

Zhao, Y. X.; Zheng, L. R.; Shi, R.; Zhang, S.; Bian, X. N.; Wu, F.; Cao, X. Z.; Waterhouse, G. I.
 N.; Zhang, T. Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic
 N₂ Reduction to NH₃. *Adv. Energy Mater.* 2020, 10, 2002199.

31. Li, H.; Shang, J.; Ai, Z.; Zhang, L. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. *J. Am. Chem. Soc.* **2015**, 137, 6393-6399.

32. Li, H.; Shang, J.; Shi, J. G.; Zhao, K.; Zhang, L. Facet-Dependent Solar Ammonia Synthesis of BiOCl Nanosheets *via* a Proton-Assisted Electron Transfer Pathway. *Nanoscale* **2016**, *8*, 1986-1993.

33. Jiang, H.; Zang, C.; Zhang, Y.; Wang, W.; Yang, C.; Sun, B.; Shen, Y.; Bian, F. 2D MXene-Derived Nb₂O₅/C/Nb₂C/g-C₃N₄ Heterojunctions for Efficient Nitrogen Photofixation. *Catal. Sci. Technol.* **2020**, 10, 5964-5972.