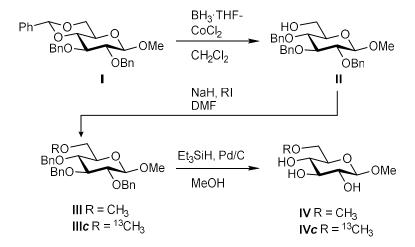
O-Methylation in Carbohydrates: an NMR and MD Simulation Study with Application to Methylcellulose

Alessandro Ruda¹, Göran Widmalm¹, and Jakob Wohlert^{2,3}

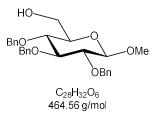
 ¹ Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
² Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
³ Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Supporting Information

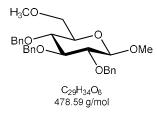

Table of Contents

Chemical synthesis of monosaccharides	S2 - S5
¹ H and ¹³ C NMR spectra of monosaccharides	S6 – S10
Karplus-type relationships	S11 – S12

General methods. Dry acetonitrile (ACN) was purchased from Honeywell Research Chemicals (Bucharest, Romania), and dry *N*,*N*-dimethylformamide (DMF) and dichloromethane (DCM) were purchased from Acros Organics (Morris Plains, NJ, USA). Methanol (MeOH) was dried over 4 Å molecular sieves. Powdered molecular sieves (4 Å) were activated by heating under high vacuum. All reagents were purchased from Sigma-Aldrich (Geel, Belgium) unless otherwise specified and were used as received. A nitrogen flow was used for reactions requiring inert atmosphere. TLC was carried out on silica gel 60 F254 plates (20×20 cm, 0.2 mm thickness) and monitored with UV light (254 - 360 nm) or by a staining solution prepared from ceric ammonium sulfate (2 g) in ethanol (40 mL) and 2 M sulfuric acid (40 mL). Column chromatography was performed on a Biotage Isolera flash chromatography system (Uppsala, Sweden) using KP-Sil or HP-Sil snap silica gel cartridges and purification on Sep-Pak C18 Plus short cartridges, $55 - 105 \mu$ m particle size (Waters, Milford, MA, USA). MQ water was obtained from an Elga Purelab Ultra Genetic Water Purification System (High Wycombe, UK).

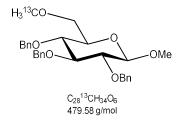

One-dimensional ¹H and ¹³C, 2D ¹H,¹H-COSY and multiplicity-edited ¹H,¹³C-HSQC NMR experiments for the characterization of compounds were recorded in CDCl₃ or D₂O at 298 K on a Bruker AVANCE III HD 400 MHz spectrometer equipped with a 5 mm BBF/H/D 5.0 Z probe or a Bruker AVANCE III 600 MHz spectrometer equipped with a 5 mm TXI inverse Z-Gradient ¹H/³¹P/¹³C probe, respectively. NMR chemical shifts were referenced for protected compounds to internal tetramethylsilane ($\delta_{\rm H}$ 0.0) and for ¹³C to the CDCl₃ solvent peak ($\delta_{\rm C}$ 77.36); for deprotected compounds internal sodium 3-trimethylsilyl-(2,2,3,3-²H₄)-propanoate in D₂O ($\delta_{\rm H}$ 0.0) and external 10% dioxane in D₂O ($\delta_{\rm C}$ 67.4) were used as chemical shift references.

High-resolution mass spectrometry (HRMS) experiments were conducted on Bruker Daltonics micrOTOF or micrOTOFQ spectrometers (Bremen, Germany) using electrospray ionization (ESI) in the positive mode. Samples were prepared using a solution of acetone and H₂O in a 1:1 ratio.

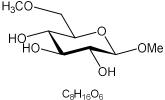

Scheme S1. Synthesis of methyl 6-*O*-methyl-β-D-glucopyranoside.

Methyl 2,3,4-tri-O-benzyl-β-D-glucopyranoside (II)

To a stirred 1 M BH₃•THF solution (2.6 mL – 3 eq) at r.t. containing methyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (**I**, 0.86 mmol – 1 eq) CoCl₂ (2.58 mmol – 3 eq) was added portionwise whereafter stirring continued for 5 min. The mixture was then diluted with EtOAc, filtrated and aq NaBH₄ (0.5 eq) was added. The organic fraction was washed with aq NaHCO₃ solution, water, dried over Na₂SO₄ and concentrated under vacuum to afford a yellow oil. Purification by flash column chromatography (*R_j*: 0.55, dichloromethane/ethyl acetate, 9:1) gave a white powder (85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.25 (*m*, 15H, Ar (Bn)), 4.95 – 4.62 (*m*, 6H, CH₂ (Bn)), 4.35 (*d*, 1H, *J*_{H1,H2} = 7.80 Hz, H-1), 3.88 (*ddd*, 1H, *J*_{H5,H6a} = 2.75 Hz, *J*_{H6a,H6b} = 11.88 Hz, *J*_{H6a,OH} = 5.89 Hz, H-6a), 3.72 (*ddd*, 1H, *J*_{H5,H6b} = 4.54 Hz, *J*_{H6a,H6b} = 11.88 Hz, *J*_{H6a,OH} = 5.89 Hz, H-6a), 3.72 (*ddd*, 1H, *J*_{H2,H3} = 9.01 Hz, *J*_{H3,H4} = 9.00, *J*_{H4,H5} = 9.62 Hz, H-4), 3.57 (*s*, 3H, CH₃), 3.39 (*dd*, 1H, *J*_{H1,H2} = 7.80 Hz, J_{H2,H3} = 9.01 Hz, H-2), 3.37 (*ddd*, 1H, *J*_{H4,H5} = 9.62 Hz, *J*_{H5,H6a} = 2.75 Hz, *J*_{H5,H6b} = 4.54 Hz, *J*_{H5,H6b} = 4.54 Hz, *J*_{H6b,OH} = 7.56 Hz, 1H, OH). ¹³C-NMR (100 MHz, CDCl₃): δ 138.8, 138.7, 138.3, 128.8, 128.7, 128.4, 128.23, 128.18, 128.0, 127.9 (Ar), 105.1 (C1), 84.7 (C3), 82.7 (C2), 77.8 (C4), 76.0 (CH₂), 75.4 (CH₂), 75.3 (C5), 75.1 (CH₂), 62.3 (C6), 57.6 (CH₃). ESI-HRMS: [M + Na]⁺ *m/z* calculated for C₂₈H₃₂O₆Na 487.2091, found 487.2102 (error -1.1 ppm).

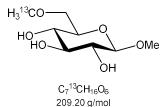

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-methyl-β-D-glucopyranoside (III)

To a solution of methyl 2,3,4-tri-*O*-benzyl- β -D-glucopyranoside (0.52 mmol – 1 eq) in dry DMF (5 mL) NaH (1.3 mmol – 2.5 eq) was added at 0 °C under N₂ atmosphere and the mixture was left under stirring for 2 h. MeI was hence added dropwise (1.04 mmol – 2.0 eq) and stirring continued for 6 h. The reaction was quenched by addition of MeOH, and the mixture was co-evaporated with toluene, diluted with EtOAc and washed with H₂O and brine. The organic fraction was dried over Na₂SO₄ and concentrated under vacuum to afford a yellow oil. The product was purified by flash column chromatography (*R_f*: 0.43, petroleum ether/ethyl acetate, 8:2) to yield a colorless oil (75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.22 (*m*, 15H, Ar (Bn)), 4.96 – 4.57

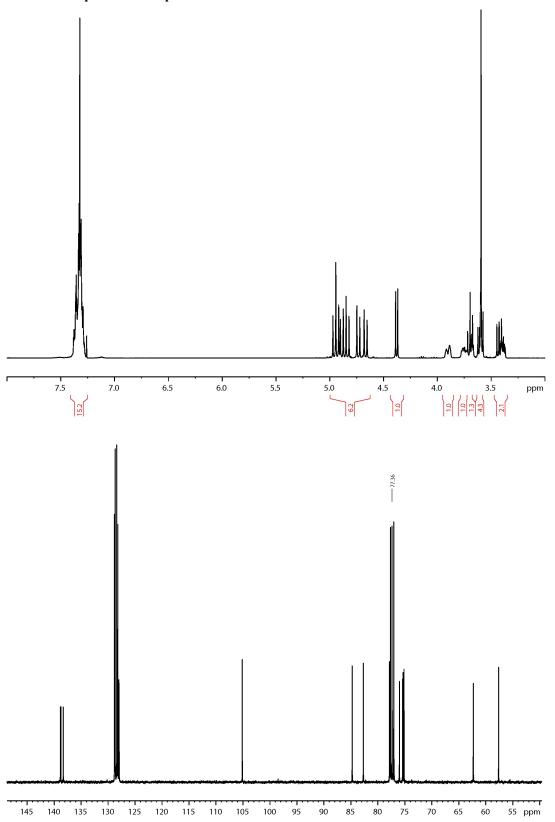

(*m*, 6H, CH₂ (Bn)), 4.30 (*d*, 1H, $J_{H1,H2} = 7.80$, H-1), 3.66 – 3.56 (*nr*, 2H, H-6a, H6b), 3.64 (*nr*, 1H, H-3), 3.60 (*nr*, 1H, H-4), 3.55 (*s*, 3H, CH₃), 3.44 (*dd*, 1H, $J_{H1,H2} = 7.80$, $J_{H2,H3} = 8.65$, H-2), 3.41 (*m*, 1H, $J_{HH} = 2.90$, $J_{HH} = 4.30$, H-5), 3.36 (*s*, 3H, 6-*O*-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 138.8, 138.5, 128.6, 128.3, 128.2, 128.03, 127.98, 127.8, 127.7 (Ar), 105.0 (C1), 84.8 (C3), 82.5 (C2), 77.9 (C4), 75.8 (CH₂), 75.2 (CH₂), 74.93 (CH₂), 74.86 (C5), 71.4 (C6), 59.6 (6-*O*-CH₃), 57.3 (CH₃). ESI-HRMS: [M + Na]⁺ *m/z* calculated for C₂₉H₃₄O₆Na 501.2248, found 501.2265 (error –3.4 ppm).

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-[¹³C]methyl-β-D-glucopyranoside (III*c*)

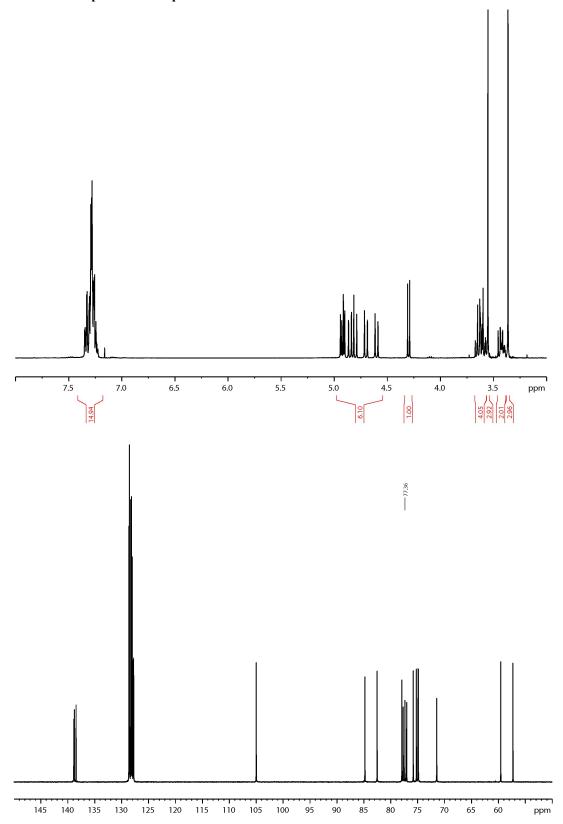
To a solution of methyl 2,3,4-tri-*O*-benzyl-β-D-glucopyranoside (0.52 mmol – 1 eq) in dry DMF (5 mL) NaH (1.3 mmol – 2.5 eq) was added at 0 °C under N₂ atmosphere and the mixture was left under stirring for 2 h. [¹³C]methyl iodide was hence added dropwise (1.04 mmol – 2.0 eq) and stirring continued for 6 h. The reaction was quenched by addition of MeOH, and the mixture was co-evaporated with toluene, diluted with EtOAc and washed with H₂O and brine. The organic fraction was dried over Na₂SO₄ and concentrated under vacuum to afford a yellow oil. The product was purified by flash column chromatography (*Rf*: 0.43, petroleum ether/ethyl acetate 8:2) yielding a colorless oil (79 % yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.23 (*m*, 15H, Ar (Bn)), 4.95 – 4.57 (*m*, 6H, CH₂ (Bn)), 4.30 (*dd*, 1H, *J*_{H1,H2} = 7.78, H-1), 3.64 (*m*, 1H, H-3), 3.63 (*m*, 1H, H-6a), 3.60 (*m*, 1H, H6b), 3.59 (*m*, 1H, H-4), 3.56 (*s*, 3H, CH₃), 3.44 (*dd*, 1H, *J*_{H1,H2} = 7.78, H-2), 3.41 (*m*, 1H, H-5), 3.37 (*d*, 3H, ¹*J*_{CH} = 141 Hz, ¹³CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 139.0, 138.9, 138.5, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 127.92, 127.87 (Ar), 105.1 (C1), 84.9 (C3), 82.6 (C2), 78.0 (C4), 75.9 (CH₂), 75.4 (CH₂), 75.1 (CH₂), 75.0 (*d*, ³*J*_{CC} = 3.8 Hz, C-5), 71.6 (*d*, ²*J*_{CC} = 1.9 Hz, C-6), 59.7 (*6*-*O*-¹³CH₃), 57.4 (CH₃). ESI-HRMS: [M + Na]⁺ *m/z* calculated for C₂₈¹³CH₃₄O₆Na 502.2281, found 502.2306 (error –4.9 ppm).


Methyl 6-*O*-methyl-β-D-glucopyranoside (IV)

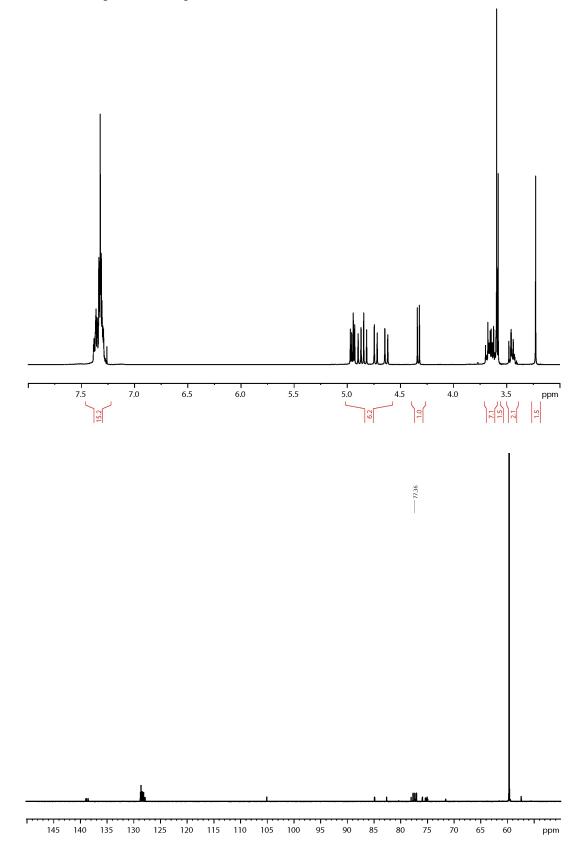
208.21 g/mol

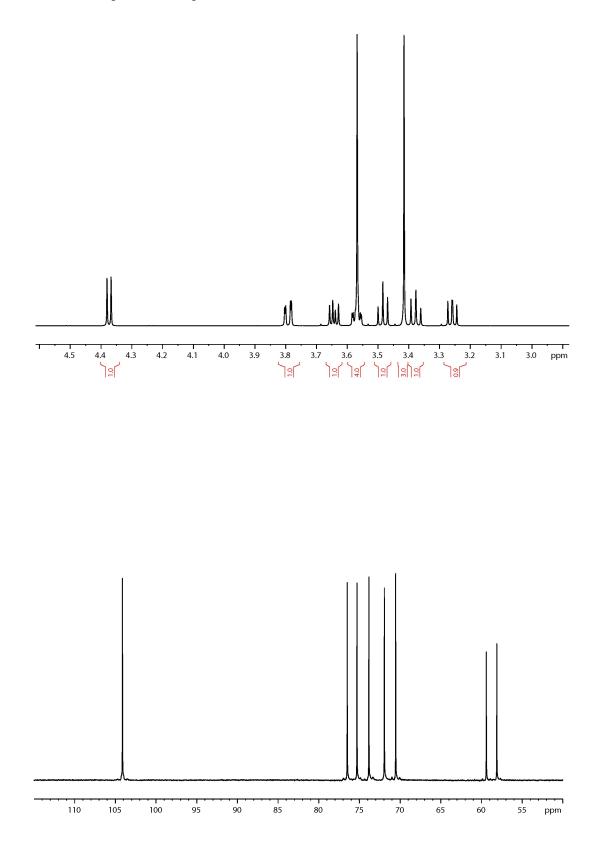

To a solution of methyl 2,3,4-tri-*O*-benzyl-6-*O*-methyl- β -D-glucopyranoside (0.21 mmol – 1 eq) and Pd(OH)₂/C (10% w/w) in methanol (3 mL) at r.t. Et₃SiH (0.63 mmol – 3.0 eq) was added portionwise whereafter the progress of the reaction was monitored by TLC. The mixture was hence filtrated through a short pad of Celite and concentrated under vacuum to afford a white amorphous solid. The crude product was purified by reverse phase chromatography with a t-C18 Sep-Pak® cartridge and isolated by gel permeation chromatography using an ÄKTATM system equipped with a SuperdexTM column (GE Healthcare, Uppsala, Sweden) to yield a white powder quantitatively. ¹H NMR (600 MHz, D₂O): δ 4.375 (*d*, 1H, *J*_{H1,H2} = 8.02 Hz, H-1), 3.793 (*dd*, 1H, *J*_{H5,H6a} = 2.09 Hz, *J*_{H6a,H6b} = -11.26 Hz, H-6a), 3.644 (*dd*, 1H, *J*_{H5,H6b} = 6.35 Hz, *J*_{H6a,H6b} = -11.26 Hz, H-6b), 3.570 (*ddd*, 1H, *J*_{H4,H5} = 9.86, J_{H5,H6a} = 2.09 Hz, *J*_{H5,H6a} = 2.09 Hz, *J*_{H5,H6b} = 6.35 Hz, H-5), 3.569 (*s*, 3H, CH₃), 3.485 (*dd*, 1H, *J*_{H2,H3} = 9.42 Hz, *J*_{H3,H4} = 9.20, H-3), 3.417 (*s*, 3H, 6-*O*-CH₃), 3.379 (*dd*, 1H, *J*_{H3,H4} = 9.20, *J*_{H4,H5} = 9.86, H-4), 3.260 (*dd*, 1H, *J*_{H1,H2} = 8.02 Hz, *J*_{H2,H3} = 9.42 Hz, H-2). ¹³C NMR (150 MHz, D₂O): δ 104.1 (C-1), 76.5 (C-3), 75.3 (C-5), 73.8 (C-2), 71.9 (C-6), 70.5 (C-4), 59.4 (6-*O*-CH₃), 58.1 (CH₃). ESI-HRMS: [M + Na]⁺ *m/z* calculated for C₈H₁₆O₆Na 231.0839, found 231.0845 (error -2.7 ppm).

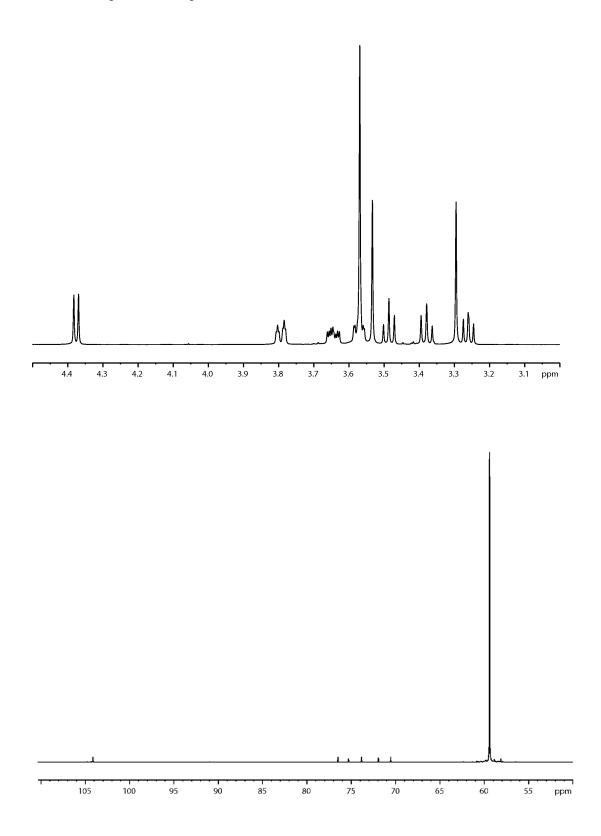
Methyl 6-*O*-[¹³C]methyl-β-D-glucopyranoside (IV*c*)

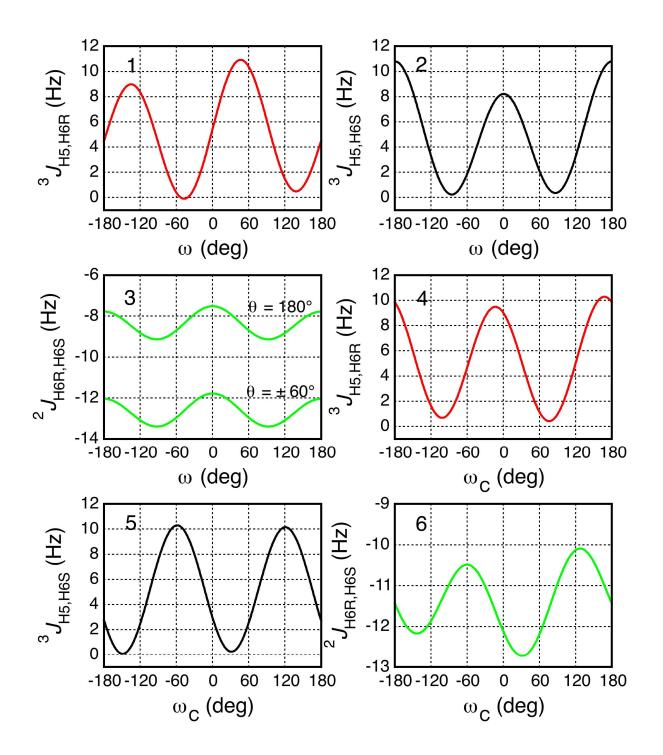


To a solution of methyl 2,3,4-tri-*O*-benzyl-6-*O*-[¹³C]methyl-β-D-glucopyranoside (0.21 mmol – 1 eq) and Pd(OH)₂/C (10% w/w) in methanol (3 mL) at r.t. Et₃SiH (0.63 mmol – 3.0 eq) was added portionwise whereafter the progress of the reaction was monitored by TLC. The mixture was hence filtrated through a short pad of Celite and concentrated under vacuum to afford a white amorphous solid. The crude product was purified by reverse phase chromatography with t-C18 Sep-Pak® cartridges and isolated by gel permeation chromatography using an ÄKTATM system equipped with a SuperdexTM column (GE Healthcare, Uppsala, Sweden) to yield a white powder quantitatively. ¹H NMR (600 MHz, D₂O): δ 4.376 (*d*, 1H, *J*_{H1,H2} = 8.01 Hz, H-1), 3.793 (*ddd*, 1H, *J*_{H5,H6a} = 2.24 Hz, *J*_{H6a,H6b} = -11.28 Hz, *J*_{C,H6a} = 2.69 Hz, H-6a), 3.645 (*ddd*, 1H, *J*_{H5,H6b} = 6.56 Hz, *J*_{H6a,H6b} = -11.28 Hz, *J*_{C,H6b} = 3.16 Hz, H-6b), 3.572 (*ddd*, 1H, *J*_{H4,H5} = 9.78, *J*_{H5,H6a} = 2.24 Hz, *J*_{H5,H6b} = 6.56 Hz, H-5), 3.570 (*s*, 3H, CH₃), 3.486 (*dd*, 1H, *J*_{H2,H3} = 9.44 Hz, *J*_{H3,H4} = 9.22, H-3), 3.415 (*d*, 3H, 6-*O*-1¹³CH₃, ¹*J*_{CH} = 143 Hz), 3.380 (*dd*, 1H, *J*_{H3,H4} = 9.22, *J*_{H4,H5} = 9.78, H-4), 3.261 (*dd*, 1H, *J*_{H1,H2} = 8.01 Hz, *J*_{H2,H3} = 9.44 Hz, H-2). ¹³C NMR (150 MHz, D₂O): δ 104.1 (C-1), 76.4 (C-3), 75.3 (*d*, ³*J*_{CC} = 3.4 Hz, C-5), 73.8 (C-2), 71.9 (*d*, ²*J*_{CC} = 1.5 Hz, C-6), 70.5 (C-4), 59.3 (6-*O*-1¹³CH₃), 58.1 (CH₃). ESI-HRMS: [M + Na]⁺ *m*/*z* calculated for C₇¹³CH₁₆O₆Na 232.0872, found 232.0865 (error 3.1 ppm).

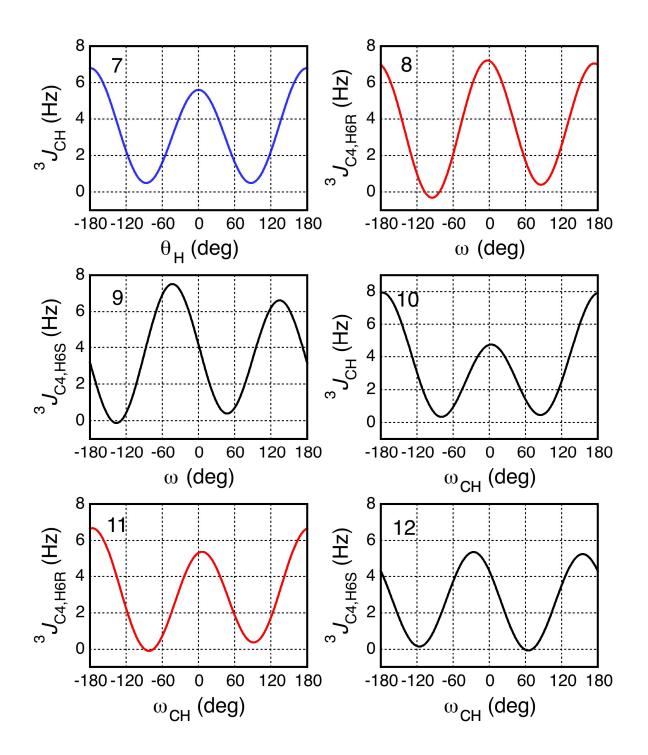

¹H and ¹³C NMR spectra of compound II


¹H and ¹³C NMR spectra of compound III


¹H and ¹³C NMR spectra of compound III*c*



¹H and ¹³C NMR spectra of compound IV



 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound IV c

Karplus-type relationships for eqns 1-6.

Karplus-type relationships for eqns 7 - 12.