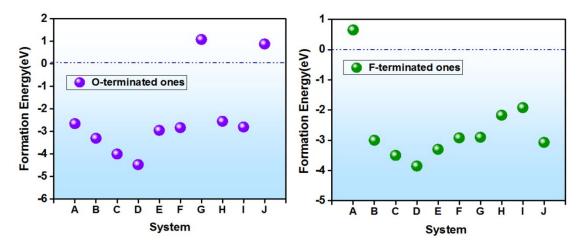
Supporting Information

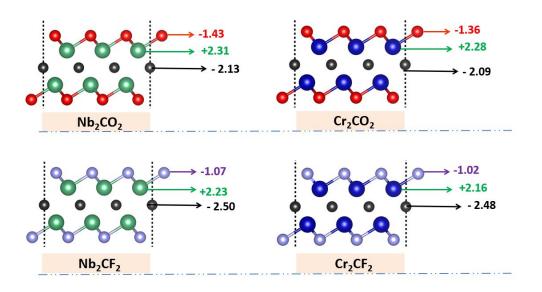
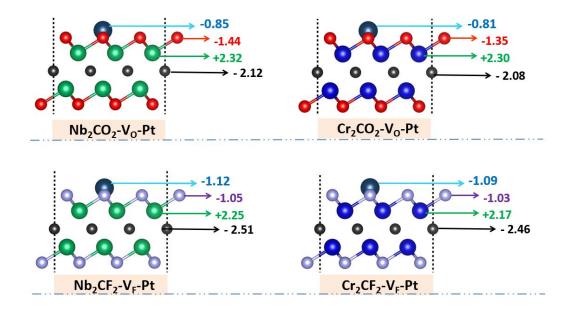
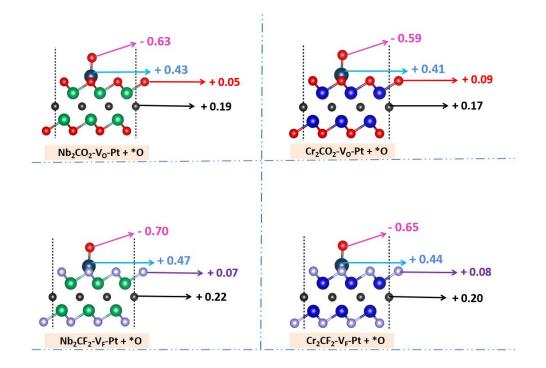

Designing of Efficient Bifunctional ORR/OER Pt Single Atom Catalysts Based on O-terminated MXenes by First Principles Calculations

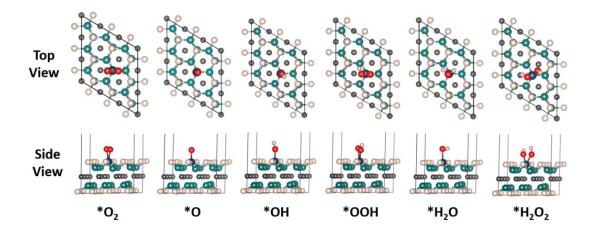
Dongxiao Kan^{a,b}, Dashuai Wang^a, Yingjie Cheng^a, Ruqian Lian^a, Bo Sun^a, Kaiyun Chen^b, Wangtu Huo^b, Yizhan Wang^a, Gang Chen^a, Yingjin Wei^{*a}

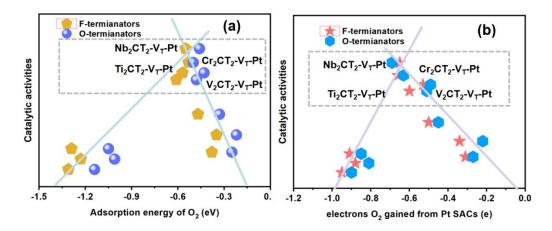
^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, P.R. China. ^bNorthwest Institute for Non-Ferrous Metal Research

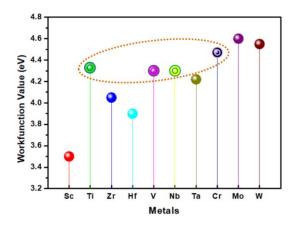
*yjwei@jlu.edu.cn; 86-431-85155126

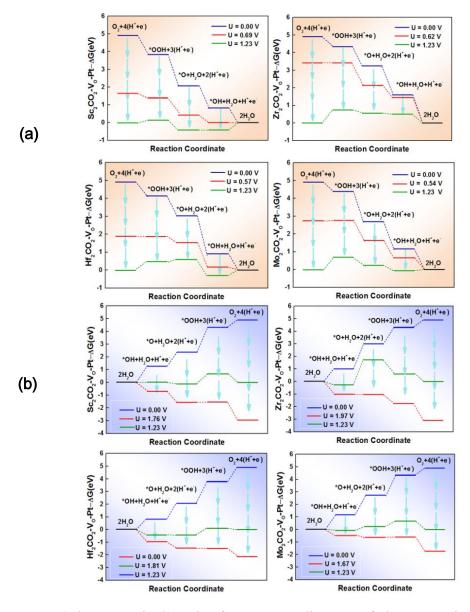
Figure S1 The formation energy of Pt single atom on $M_2CT_2-V_T-Pt$ (T=O; F). A-J represent $Sc_2CT_2-V_T-Pt$, $Ti_2CT_2-V_T-Pt$, $Zr_2CT_2-V_T-Pt$, $Hf_2CT_2-V_T-Pt$, $V_2CT_2-V_T-Pt$, $Nb_2CT_2-V_T-Pt$, $Ta_2CT_2-V_T-Pt$, $Cr_2CT_2-V_T-Pt$, $Mo_2CT_2-V_T-Pt$, $W_2CT_2-V_T-Pt$, respectively.

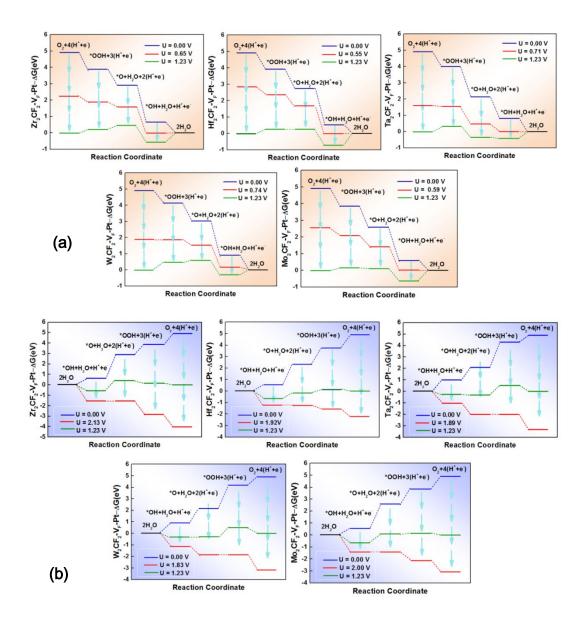




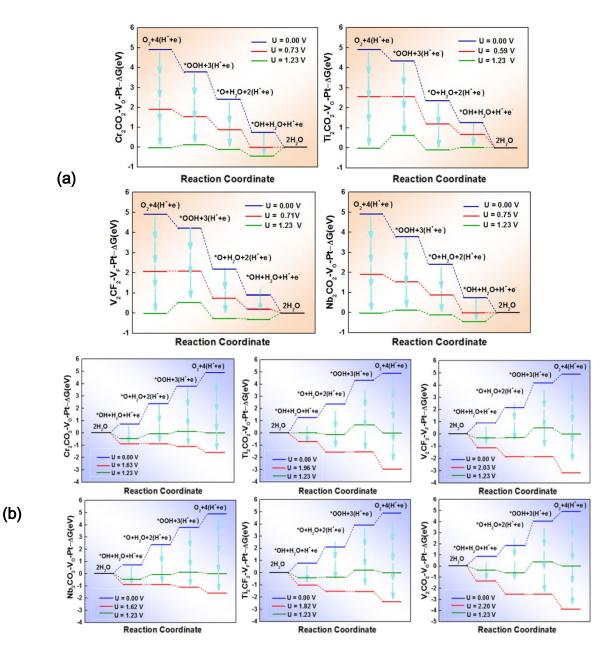

Figure S2 Bader charge populations of Nb₂CO₂, Cr₂CO₂ Nb₂CF₂ and Cr₂CF₂.

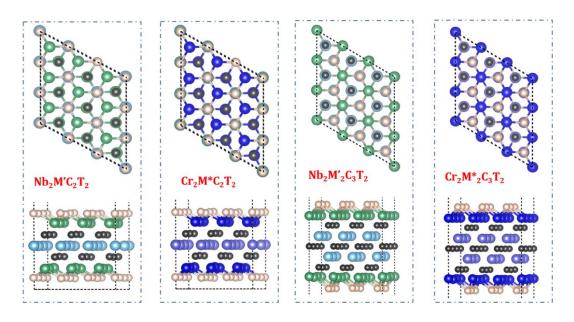

Figure S3 Bader charge populations of Nb₂CO₂-V₀-Pt, Cr₂CO₂-V₀-Pt, Nb₂CF₂-V_F-Pt and Cr₂CF₂-V_F-Pt.

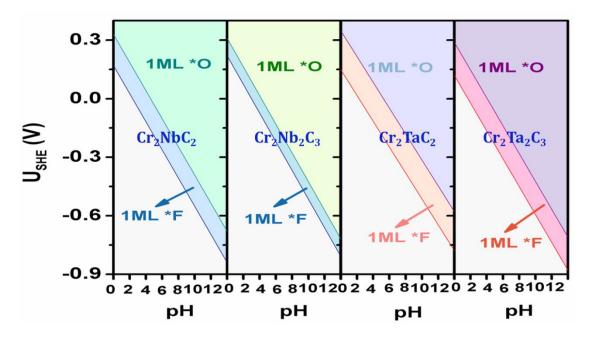

Figure S4 Bader charge populations of the O-atom adsorbed on Nb₂CO₂-V_O-Pt, Cr₂CO₂-V_O-Pt, Nb₂CF₂-V_F-Pt and Cr₂CF₂-V_F-Pt.

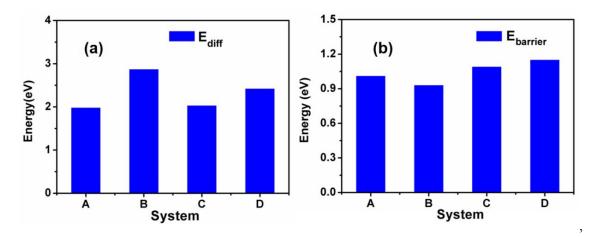

Figure S5 The geometric structures of O₂, O-atom, OH, OOH, H₂O and H₂O₂ adsorbed on the surface of Pt SACs.

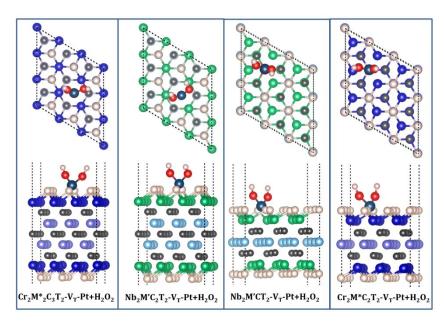

Figure S6 The relationship between catalytic activities and O_2 binding strength to Pt SACs, including (a) the adsorption energy of O_2 and (b) the electrons that O_2 gained.


Figure S7 The work function values of the submetals in M_2CT_2 - V_T -Pt (M= Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; T=O, F).


Figure S8 (a-b, respectively) The free energy diagram of the O-terminated Pt SACs $(Hf_2CO_2-V_0-Pt, Zr_2CO_2-V_0-Pt, Mo_2CO_2-V_0-Pt)$ for the elementary ORR and OER steps, where the submetals are Zr, Hf, Ta, W and Mo, respectively.


Figure S9 (a-b, respectively) The free energy diagram of F-terminated Pt SACs (Zr_2CF_2 -V_F-Pt, Hf₂CF₂-V_F-Pt, Ta₂CF₂-V_F-Pt, W₂CF₂-V_F-Pt, Mo₂CF₂-V_F-Pt) for the elementary ORR and OER steps.


Figure S10 The free energy diagram of (a) $Cr_2CO_2-V_0-Pt$, $Ti_2CO_2-V_0-Pt$, $V_2CF_2-V_F-Pt$, $Nb_2CO_2-V_0-Pt$ for the elementary ORR steps, and (b) $Cr_2CO_2-V_0-Pt$, $Ti_2CO_2-V_0-Pt$, $V_2CF_2-V_F-Pt$, $Nb_2CO_2-V_0-Pt$, $Ti_2CF_2-V_F-Pt$, $V_2CO_2-V_0-Pt$ for the elementary OER steps.


Figure S11 The geometric structures of the selected bimetal MXenes ($Cr_2M_2^*C_3T_2$, Nb₂M'₂C₃T₂, NbM'C₂T₂, Cr₂M*C₂T₂).

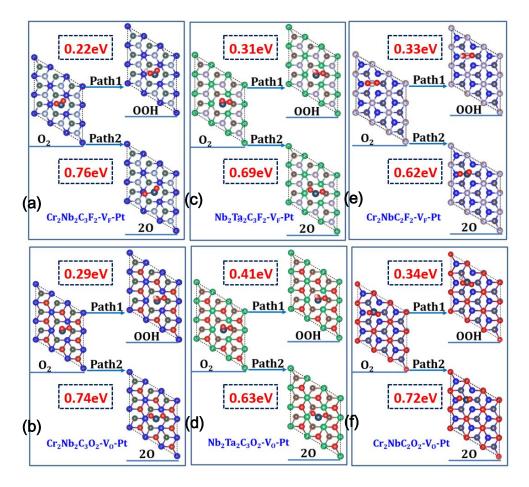

Figure S12 Surface Pourbaix diagrams of Cr₂NbC₂, Cr₂Nb₂C₃, Cr₂TaC₂ and Cr₂Ta₂C₃ with different functional groups.

Figure S13 (a) The diffusion energy and (b) the energy barrier of Pt single atom on the Cr-based MXenes, A-D are Cr₂NbC₂O₂-V₀-Pt, Cr₂Nb₂C₃O₂-V₀-Pt, Cr₂Ta₂C₃O₂-V₀-Pt and Cr₂TaC₂O₂-V₀-Pt, respectively.

Figure S14 Geometric structures of H_2O_2 adsorbed on the surface of the bimetal Pt SACs $(Cr_2M*_2C_3T_2-V_T-Pt, Nb_2M'_2C_3T_2-V_T-Pt, NbM'C_2T_2-V_T-Pt, Cr_2M*C_2T_2-V_T-Pt).$

Figure S15 The reaction competition of O₂ hydrogenation (path 2) or dissociation (path 1) at the first step of ORR. a)-f) represent $Cr_2Nb_2C_3F_2-V_F-Pt$, $Cr_2Nb_2C_3O_2-V_O-Pt$, $Nb_2Ta_2C_3F_2-V_F-Pt$, $Nb_2Ta_2C_3O_2-V_O-Pt$, and $Cr_2NbC_2F_2-V_F-Pt$, $Cr_2NbC_2O_2-V_O-Pt$, respectively.

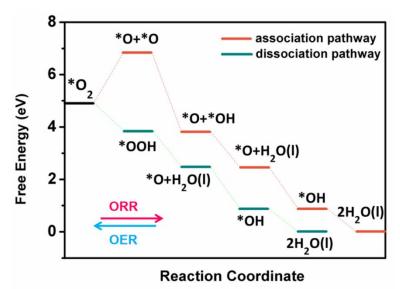


Figure S16 The thermodynamic processes of ORR on $Cr_2Nb_2C_3O_2$ -V₀-Pt, including association and dissociation pathways.

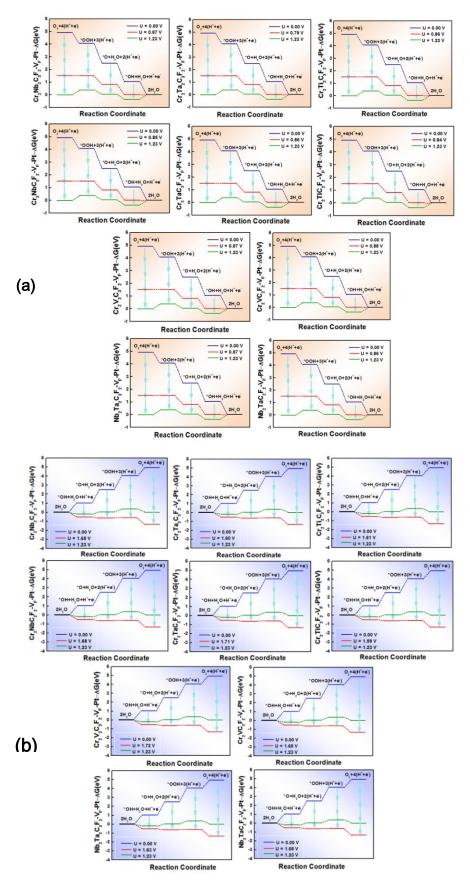


Figure S17 (a-b, respectively) The free energy diagram of the F-terminated bimetal Pt

SACs $(Cr_2Nb_2C_3F_2-V_F-Pt, Cr_2Ta_2C_3F_2-V_F-Pt, Cr_2Ti_2C_3F_2-V_F-Pt, Cr_2V_2C_3F_2-V_F-Pt, Cr_2NbC_2F_2-V_F-Pt, Cr_2TaC_2F_2-V_F-Pt, Cr_2TiC_2F_2-V_F-Pt, Cr_2VC_2F_2-V_F-Pt, Nb_2Ta_2C_3F_2-V_F-Pt, Nb_2TaC_2F_2-V_F-Pt)$ for the elementary ORR and OER steps.

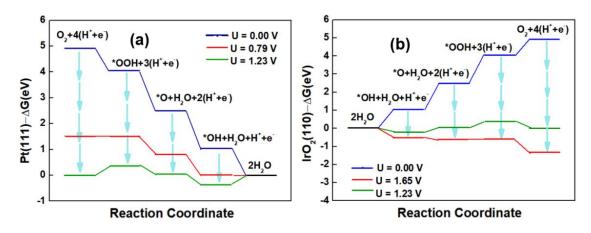


Figure S18 The free energy diagram of (a) ORR on Pt (111) and (b) OER on IrO₂(110).

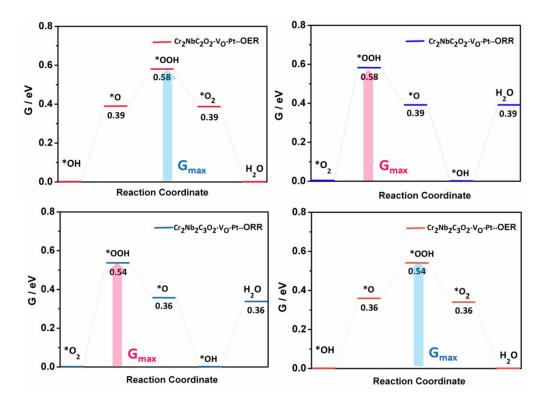
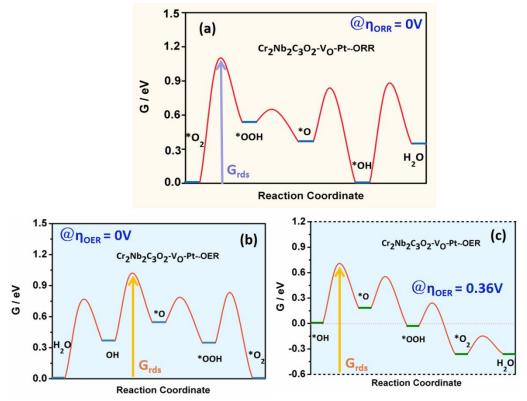
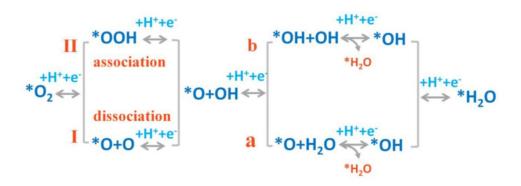




Figure S19 The mechanistic description (G_{max}) of ORR and OER on $Cr_2NbC_2O_2$ - V_0 -Pt and $Cr_2Nb_2C_3O_2$ - V_0 -Pt.

Figure S20 The rate-determining step and the relative free energy on $Cr_2Nb_2C_3O_2$ -V₀-Pt for (a) ORR at overpotential of 0 V, (b) OER at overpotential of 0 V and (c) OER at overpotential of 0.36 V.

Figure S21 The two possible reaction pathways as well as the proton-electron transfer process in the association mechanism.

S-2 More calculation details

The overall ORR reaction in the acidic environment was written in Eq (1), like that occurs on the cathode of a fuel cell in discharge:

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \tag{1}$$

According to literatures, this ORR reaction proceeds via the 4-electron transfer pathways as shown in Eq 1a-1d:

$$f + O_2(g) + e^- + H^+ \rightarrow *OOH$$
 (1a)

$$*OOH + e^- + H^+ \rightarrow H_2O(l) + *O$$
(1b)

$$O^* + e^- + H^+ \to *OH \tag{1c}$$

$$*OH + e^{-} + H^{+} \rightarrow H_{2}O(l) + *$$
 (1d)

In which * denotes an activity site on the catalyst, (l) and (g) represent liquid and gas phase, respectively.

The OER is the reverse reaction of ORR that described in Eq (2):

$$2H_2O \rightarrow O_2 + 4e^- + 4H^+$$
 (2)

with the 4-electron transfer pathways given in Eq 2a-2d:

×

$$H_2O(l) + * \rightarrow *OH + e^- + H^+$$
 (2d)

$$*OH \rightarrow O^* + e^- + H^+ \tag{2b}$$

$$H_2O(l) + O \rightarrow OH + e^- + H^+$$
(2c)

$$*OOH \rightarrow *+O^2(g) + e^- + H^+$$
 (2d)

S-3 The diffusion energy

To evaluate the clustering tendency of the adatoms, the cohesive energy of the corresponding bulk metal was considered. The diffusion energy (E_{diff}) were defined as

$$E_{diff} = E_{ads} - E_{coh} \tag{3}$$

where E_{ads} and E_{coh} denotes the adsorption energy and cohesive energy of the corresponding transition-metal bulk per metal atom, respectively, where were defined as follows:

$$E_{ads} = -[E_{Pt@MXenes} - (E_{MXenes} + E_{Pt})$$
(4)

where $E_{Pt@MXenes}$ was the total energy of the MXene layer with Pt adatom attached, E_{MXenes} was the total energy of the bare MXene, and E_{Pt} was the energy of an isolated Pt atom,

$$E_{\rm coh} = E_{\rm at} - \frac{E_{\rm bulk}}{N}$$
(5)

where E_{at} was the energy of the isolated metal atom in vacuum and E_{bulk} was the energy of the bulk unit cell containing N atoms.

S-4 The Pourbaix diagrams of O and F terminators

To further realize their stability in experiment and acidic ORR/OER environment, the

Pourbaix diagrams of O and F terminators on the selected Cr-based bi-metal MXenes were studied referring to previous literature¹⁻². The corresponding data are summarized in Figure S12, where the U_{SHE} of all O and F terminators are positive on these MXenes. However, the U_{SHE} values of O are more positive than those of F, which indicates the higher stability of O-terminated MXenes in experiment and acidic ORR/OER environment.

S-5 Association and dissociation pathways

To consider the H⁺ and e⁻ species on the reaction path in a standard procedure, the depicts free-energy diagrams including association pathway and dissociation pathway at zero overpotential is supplemented (taken $Cr_2Nb_2C_3O_2$ - V_0 -Pt as example). As shown in Figure S16, the distinction of the free energy in the association path and the dissociation path is before the formation of *O. The potential determining step of ORR is $*O_2 + H^+ + e^- \rightarrow *OOH$ for the associative path and $*O_2 \rightarrow *O + *O$ for the dissociative path, with an overpotential of 0.36 V and 1.75 V, respectively. For the OER process, the potential determining step is $*OH + H_2O_{(1)} \rightarrow *O + H_2O_{(1)} + H^+ + e^-$ for the association path and *O + $*O^* \rightarrow O_2$ for the dissociative path, with an overpotential of 0.37 V and 3.12 V, respectively. Hence, from the thermodynamic aspect, the association mechanism is also more favorable than the dissociation mechanism for its smaller ORR and OER overpotentials.

S-6 The mechanistic description

To further confirm the activity trend, the free-energy changes among the mechanistic description (G_{max}) are taken into account. As shown in Figure S19, the G_{max} that the transition from *O adsorbate to *OOH are 0.54 eV and 0.58 eV on Cr₂NbC₂O₂-V₀-Pt and Cr₂Nb₂C₃O₂-V₀-Pt, respectively, both of which are much lower than that of ORR on Pt(111) and OER on IrO₂ (110) (0.75 eV and 0.92 eV, respectively). This again demonstrates the bi-functional catalysis activity of Cr₂NbC₂O₂-V₀-Pt and Cr₂Nb₂C₃O₂-V₀-Pt.

The rate-determining reaction step (RDS) of ORR and OER on $Cr_2Nb_2C_3O_2-V_0-Pt$ were also studied to clarify the practical activity based on the full free-energy diagram. As shown in Figure S20, the RDS of ORR was formed when O_2 turned to *OOH at 0V overpotential. While both the RDS of OER was the step of *O formation at the overpotential of 0V or 0.36 V. This result is consistent with the discussion in the main text.

References

1. Zhan, C.; Sun, W.; Xie, Y.; Jiang, D.; Kent, P. R. C. Computational Discovery and Design of MXenes for Energy Applications: Status, Successes, and Opportunities. *ACS Appl. Mater. Interfaces*, **2019**, 11, 24885–24905

2. Gao, G.; O'Mullane, A. P.; Du, A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. *ACS Catal.* **2017**, 7, 494–500