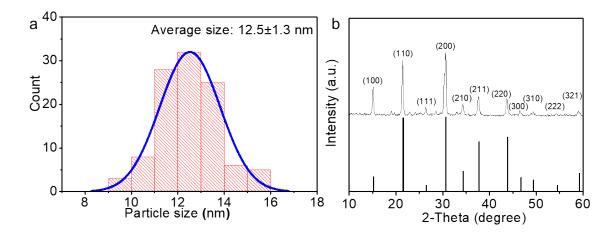
## **Supporting Information**

## Upconversion Perovskite Nanocrystal Heterostructures with Enhanced Luminescence and Stability by Lattice Matching

Longfei Ruan, Yong Zhang\*

L.F. Ruan, Prof. Y. Zhang Department of Biomedical Engineering Faculty of Engineering National University of Singapore Singapore 117583


Prof. Y. Zhang

NUS Graduate School for Integrative Sciences and Engineering

National University of Singapore

Singapore 117456

Email: biezy@nus.edu.sg



**Figure S1.** CsPbBr<sub>3</sub> PQD. (a) Statistical distribution histogram of CsPbBr<sub>3</sub> PQD (average size:12.5±1.3 nm), (b) XRD pattern of CsPbBr<sub>3</sub> PQD and standard PXRD pattern of cubic phase CsPbBr<sub>3</sub> (JCPDF NO. 54-0752).

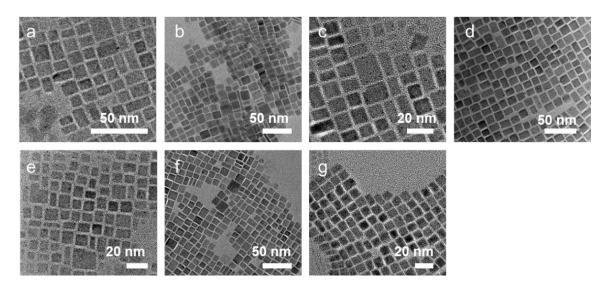
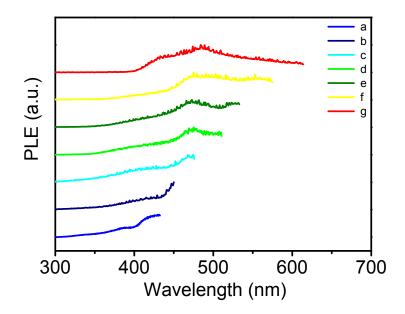
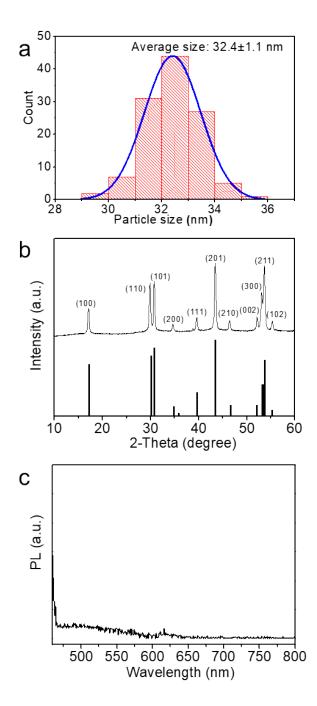
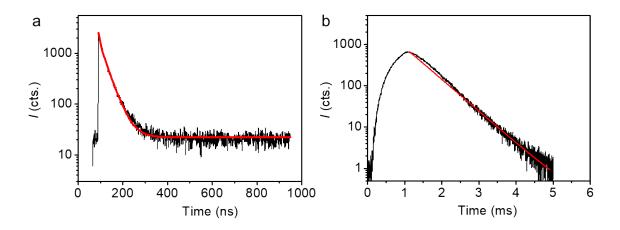
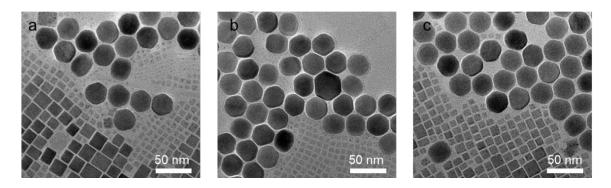
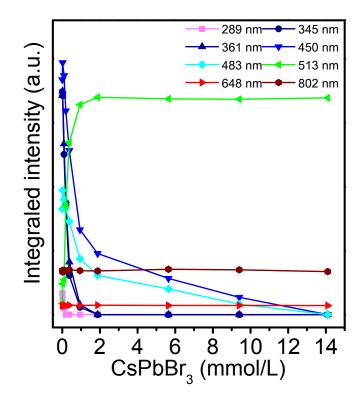



Figure S2. TEM images of CsPbX<sub>3</sub> (X = Cl, Br or I) PQD with different halide ratios. (a) Cl/Br = 2/1, (b) Cl/Br = 1/1, (c) Cl/Br = 1/2, (d) Cl or I/Br = 0/1, (e) I/Br = 1/2, (f) I/Br = 1/1, (g): I/Br = 2/1.

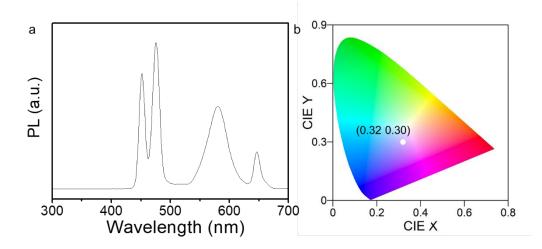






Figure S3. Excitation spectra of CsPbX<sub>3</sub> (X = Cl, Br or I) PQD with different halide ratios. (a) Cl/Br = 2/1, (b) Cl/Br = 1/1, (c) Cl/Br = 1/2, (d) Cl or I/Br = 0/1, (e) I/Br = 1/2, (f) I/Br = 1/1, (g) I/Br = 2/1.

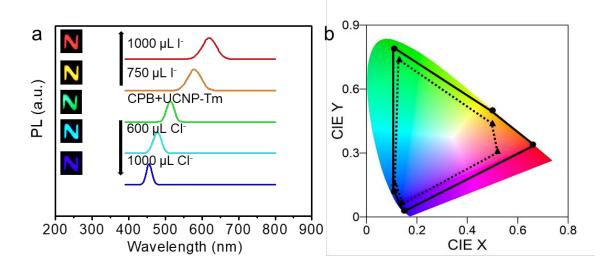



**Figure S4.** NaYF<sub>4</sub>: Yb/Tm UCNP. (a) Statistical distribution histogram of NaYF<sub>4</sub>: Yb/Tm nanocrystals (average size: 32.4±1.1 nm), (b) XRD pattern of NaYF<sub>4</sub>: Yb/Tm nanocrystals and standard PXRD pattern of hexagonal NaYF<sub>4</sub>:Yb/Tm nanocrystals (PDF NO. 16-0334), (c) Emission spectra of NaYF<sub>4</sub>:Yb/Tm nanocrystals under excitation at 450 nm.




**Figure S5.** Fluorescence decay and fitting curves. (a) Time-resolved fluorescence decay and fitting curve of CsPbBr<sub>3</sub> nanocrystals (excitation at 365nm, emission at 513 nm), (b)Time-resolved fluorescence decay and fitting curve of CsPbBr<sub>3</sub>/UCNP mixture (CsPbBr<sub>3</sub>,14.1mmol/L; UCNP, 12.5 mmol/L) (excitation at 980nm, emission at 513 nm).




**Figure S6.** TEM image of CsPbX<sub>3</sub> nanocrystals with varying halide compositions mixed with NaYF<sub>4</sub>: 30%Yb, 0.5%Tm nanocrystals. (a) Cl/Br = 2/1, (b) Cl or I/Br = 0/1, (c) I/Br = 2/1.



**Figure S7.** Integrated intensity of  $Tm^{3+}$  emissions at 289nm, 347nm, 362nm, 450nm, 483nm, 648nm, and 802 nm and CsPbBr<sub>3</sub> emission at 513 nm with different concentrations.



**Figure S8.** Fluorescence emission of mixed UCNP and PQD. (a) Emission spectra of  $CsPbBr_{1.5}I_{1.5}$  nanocrystals mixed with NaYF<sub>4</sub>: Yb,Tm nanocrystals (CsPbBr\_{1.5}I\_{1.5}, 5.64 mmol/L; UCNP, 12.5 mmol/L) under 980 nm excitation, (b) Corresponding color gamut of the emission colors from the samples in (a).



**Figure S9.** Tunable emissions of PQD. (a) Fluorescence emission spectra of CsPbBr<sub>3</sub> (14.1 mmol/L) mixed with NaYF<sub>4</sub>:Yb,Tm UCNPs (12.5 mmol/L) by adding different amount of halide ions under 365 nm excitation. the panel shows the pattern of letter N in A (N, CsPbBr<sub>3</sub>+NaYF<sub>4</sub>:Yb/Tm), (b) Corresponding color gamut of the emission colors from the samples in 2d (circle) and S9 a (triangle).



**Figure S10.** Statistical distribution histograms. (a) heterostructured CsPbBr<sub>1</sub>/Cl<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals, (b) heterostructured CsPbBr<sub>1</sub>/I<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals.

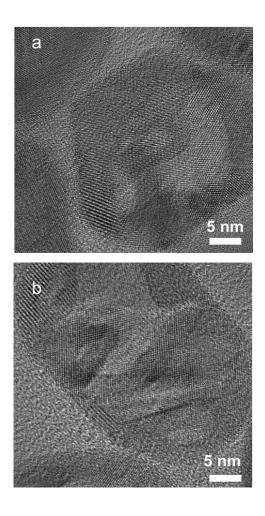
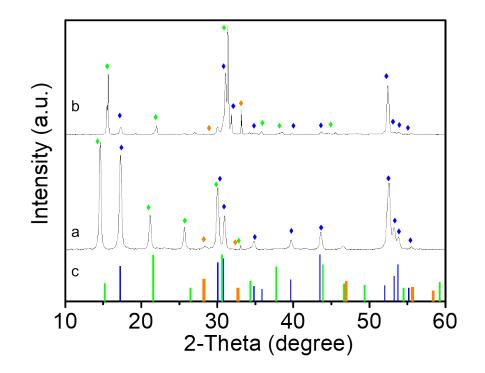
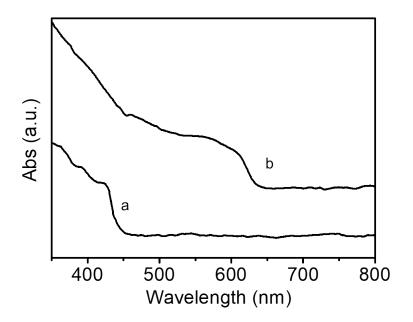




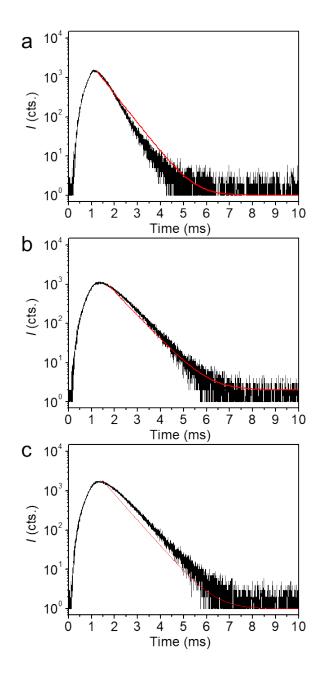
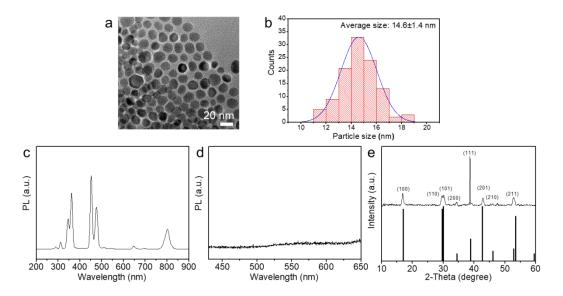
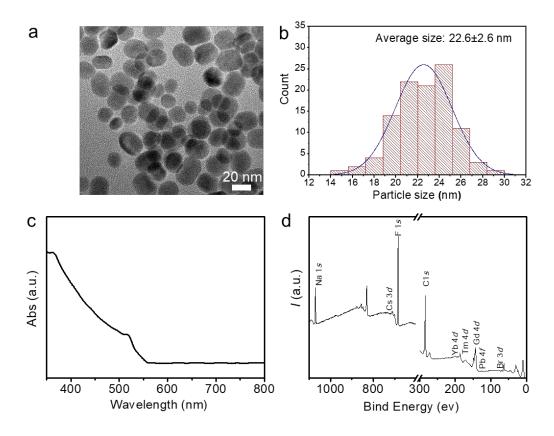

Figure S11. HRTEM images. (a) heterostructured  $CsPbBr_1/Cl_2-NaYF_4$ :Yb,Tm nanocrystals, (b) heterostructured  $CsPbBr_1/I_2-NaYF_4$ :Yb,Tm nanocrystals.

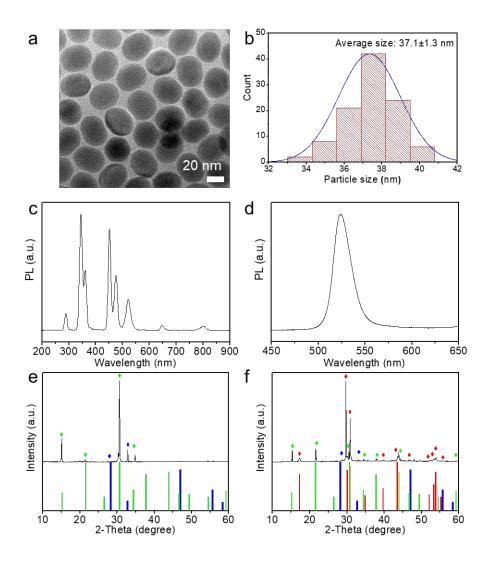


**Figure S12.** X-ray diffraction (XRD) patterns. (a) heterostructured CsPbBr<sub>1</sub>/I<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals , (b) heterostructured CsPbBr<sub>1</sub>/Cl<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals , (c) hexagonal phase NaYF<sub>4</sub>, blue color (JCPDF NO. 16-0334); cubic phase NaYF<sub>4</sub>, orange color (JCPDF NO. 77-2042); cubic phase CsPbBr<sub>3</sub>, green color (JCPDF NO. 54-0752).

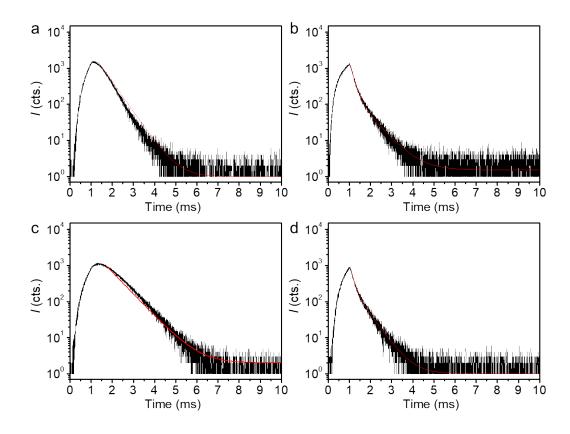


**Figure S13.** UV-Vis absorption spectra. (a) heterostructured CsPbBr<sub>1</sub>/Cl<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals , (b) heterostructured CsPbBr<sub>1</sub>/I<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals

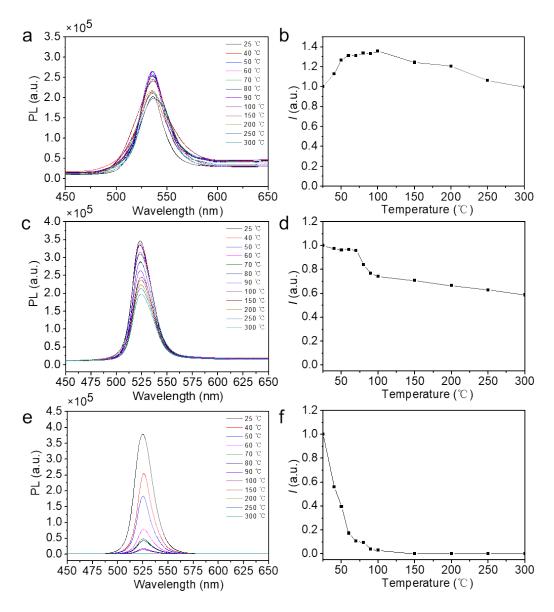






Figure S14. Time-resolved fluorescence decay and fitting curves. (a)  $CsPbBr_1Cl_2/NaYF_4$ : 30%Yb,0.5%Tm mixture, (b)  $NaYF_4$ :30%Yb,0.5%Tm nanoparticles, and (c)  $CsPbBr_1I_2/NaYF_4$ : 30%Yb,0.5%Tm mixture under 980 nm excitation (monitored at the emission of 478 nm).

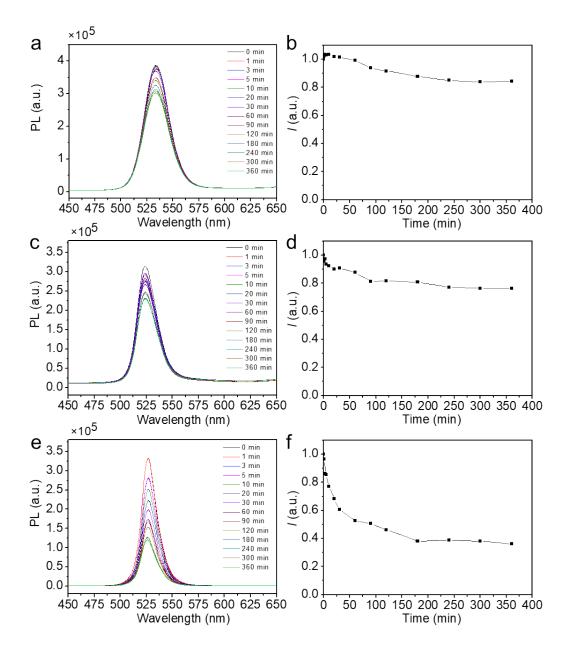



**Figure S15.** (a) TEM image of NaGdF<sub>4</sub>:30%Yb,0.5%Tm nanocrystals at 300 °C for 60 min; (b) Histograms representing statistical distribution of the nanocrystals in a; (c) and (d) Fluorescence emission spectra of NaGdF<sub>4</sub>:30%Yb,5%Tm nanocrystals at 300 °C for 60 min under 980 nm and 365 nm excitations respectively, (the illustration in C shows NaGdF<sub>4</sub>:30%Yb,5%Tm nanocrystals dispersed in cyclohexane under 980 nm excitation at room temperature); (e) XRD pattern of NaGdF<sub>4</sub>:30%Yb,0.5%Tm nanocrystals at 300 °C for 60 min and standard PXRD pattern of Hexagonal phase NaGdF<sub>4</sub> (JCPDF NO. 27-0699).

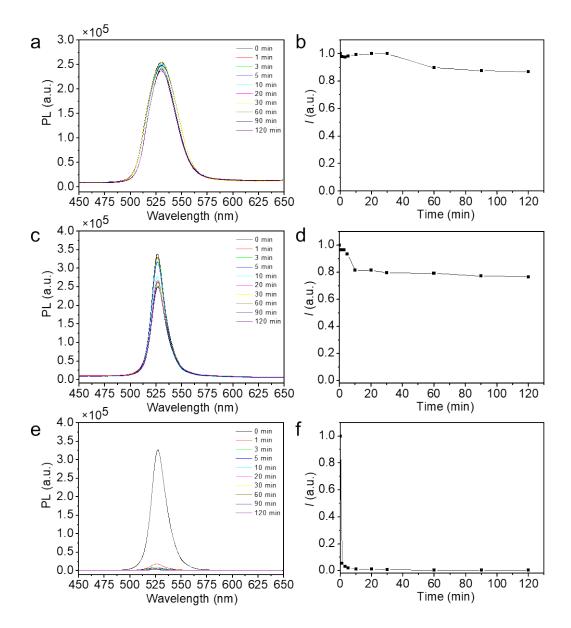



**Figure S16.** (a) TEM image of heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>: Yb,Tm nanocrystals; (b) Histograms representing statistical distribution of the nanocrystals in a; (c) UV-Vis absorption spectra of heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>: Yb,Tm nanocrystals. (d) X-ray photoelectron spectroscopy (XPS) spectra of heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm hybrid nanocrystals. The presence of Cs, Pb Br, F, Na, Gd, Tm and Yb in the nanocrystals is confirmed.

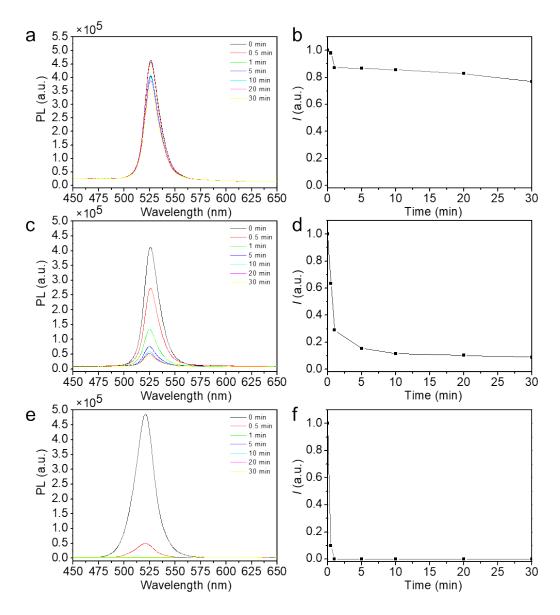



**Figure S17.** (a) TEM image of heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>: Yb,Tm nanocrystals; (b) Histograms representing statistical distribution of the nanocrystals in a; (c) and (d) Fluorescence emission spectra of heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>: Yb,Tm nanocrystals under 980 nm and 365 nm excitations, respectively; (e) and (f) X-ray diffraction (XRD) patterns of heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals at 250 °C, and 300 °C for 60 min, respectively; Hexagonal NaYF<sub>4</sub>, red color (JCPDF NO. 16-0334), cubic NaYF<sub>4</sub>, blue color (JCPDF NO. 77-2042), cubic CsPbBr<sub>3</sub>, green color (JCPDF NO. 54-0752).

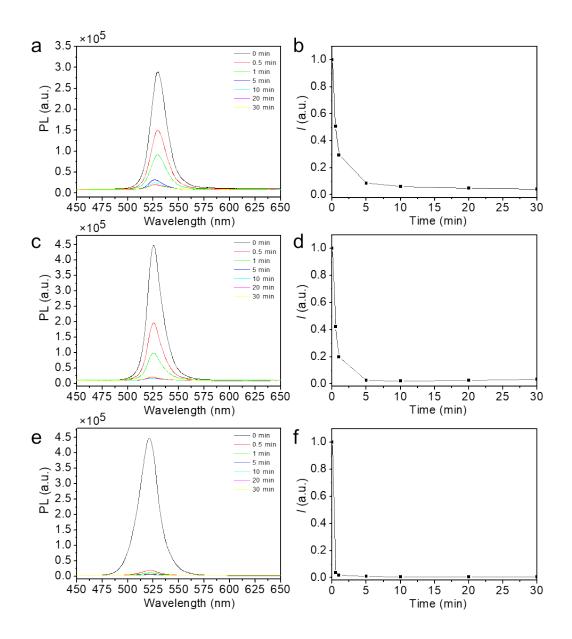



**Figure S18.** Time-resolved fluorescence decay and fitting curve of NaGdF<sub>4</sub>:30%Yb,0.5%Tm nanoparticles (a), the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals (b), NaYF<sub>4</sub>:30%Yb,0.5%Tm nanoparticles (c), and the heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals (d) under 980 nm excitation (monitored at the emission of 478 nm).




**Figure S19.** PL intensity monitoring the stabilities of the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals (a and b), the heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals (c and d), and the CsPbBr<sub>3</sub> nanocrystals (e and f) collected at different temperatures under 365 nm excitation.




**Figure S20.** PL intensity monitoring the stabilities of the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals (a and b), the heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals (c and d), and the CsPbBr<sub>3</sub> nanocrystals (e and f) under ultraviolet light continuous irradiation.



**Figure S21.** PL intensity monitoring the stabilities of the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals (a and b), the heterostructure composite of CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals (c and d), and the CsPbBr<sub>3</sub> nanocrystals (e and f) ) in cyclohexane and ethanol (v/v = 1 : 1) mixed solvent under 365 nm excitation.



**Figure S22.** PL intensity monitoring the stabilities of the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals (a and b), the heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals (c and d), and the CsPbBr<sub>3</sub> nanocrystals (e and f) in cyclohexane and ethanol (v/v = 1 : 9) mixed solvent under 365 nm excitation.



**Figure S23.** PL intensity monitoring the stabilities of the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals (a and b), the heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals (c and d), and the CsPbBr<sub>3</sub> nanocrystals (e and f) in water solvents under 365 nm excitation.

| Sample              | CsPbBr <sub>3</sub> | CsPbBr <sub>3</sub> /UCNPs mixture |  |
|---------------------|---------------------|------------------------------------|--|
| A <sub>1</sub>      | 1702.8              | 675.9                              |  |
| τ <sub>1</sub> (ns) | 34.1 (89%)          | 0.56×106 (100%)                    |  |
| $A_2$               | 959.0               | /                                  |  |
| $\tau_2$ (ns)       | 7.6 (11%)           | /                                  |  |
| Average(ns)         | 31.1                | 0.56×10 <sup>6</sup>               |  |
|                     |                     |                                    |  |

Table S1. Exponential fitting results of CsPbBr<sub>3</sub> and CsPbBr<sub>3</sub>/UCNPs mixture.

\*Time-resolved fluorescence decay curve of CsPbBr<sub>3</sub> was fitted by a double exponential (see eqs 1 and 2) function:  $A(t) = A_0 + A_1 \exp((t-t_0)/\tau_1 + A_2 \exp((t-t_0)/\tau_2) (eqs 1));$ 

The average lifetime was calculated based on  $\tau_{avg} = (A_1 \tau_1^2 + A_2 \tau_2^2)/(A_1 \tau_1 + A_2 \tau_2)$  (eqs 2).

Time-resolved fluorescence decay curve of CsPbBr<sub>3</sub>/UCNPs mixture was fitted by a single exponential (see eqs 1 and 2) function:  $A(t) = A_0 + A_1 \exp((t-t_0)/\tau_1 \text{ (eqs 1)});$ 

The average lifetime was calculated based on  $\tau_{avg} = \tau_1$  (eqs 2);

| CPB (mmol/L) | CIE-X | CIE-Y |
|--------------|-------|-------|
| 0            | 0.15  | 0.05  |
| 0.019        | 0.15  | 0.05  |
| 0.094        | 0.14  | 0.09  |
| 0.188        | 0.14  | 0.12  |
| 0.376        | 0.13  | 0.18  |
| 0.94         | 0.12  | 0.3   |
| 1.88         | 0.12  | 0.38  |
| 5.64         | 0.11  | 0.47  |
| 9.4          | 0.11  | 0.61  |
| 14.1         | 0.13  | 0.74  |

**Table S2.** Chromaticity coordinates (CIE, 1931) of CsPbBr3 nanocrystals of differentconcentrations mixed with NaYF4:Yb,Tm UCNPs (12.5 mmol/L) under 980 nm excitation.

| Table S3. Chromaticity coordinates (CIE, 1931) of CsPbBr <sub>3</sub> nanocrystals (CPB) mixed |
|------------------------------------------------------------------------------------------------|
| with NaYF <sub>4</sub> : Yb/Tm nanocrystals (UCNP-Tm, 14.1 mmol/L) by adding different amount  |
| of halide ions under 980 and 365 nm excitation.                                                |

| Sample                      | E     | Ex: 980 nm |       | Ex: 365 nm |  |
|-----------------------------|-------|------------|-------|------------|--|
|                             | CIE-X | CIE-Y      | CIE-X | CIE-Y      |  |
| Add 1000 μL Cl <sup>-</sup> | 0.14  | 0.07       | 0.15  | 0.03       |  |
| Add 600 µL Cl <sup>-</sup>  | 0.11  | 0.16       | 0.11  | 0.12       |  |
| CPB+ UCNP-Tm                | 0.13  | 0.74       | 0.11  | 0.79       |  |
| Add 750 μL Ι-               | 0.5   | 0.44       | 0.5   | 0.5        |  |
| Add 1000 μL Ι-              | 0.52  | 0.31       | 0.66  | 0.34       |  |

**Table S4.** Exponential fitting results of the heterostructured  $CsPbBr_1/Cl_2-NaYF_4$ :Yb,Tm nanocrystals and the heterostructured  $CsPbBr_1/I_2-NaYF_4$ :Yb,Tm nanocrystals under 980 nm excitation (monitored at the emission of 478 nm).

| Sample         | heterostructured CsPbBr <sub>1</sub> /Cl <sub>2</sub> - | heterostructured CsPbBr <sub>1</sub> /I <sub>2</sub> - |  |
|----------------|---------------------------------------------------------|--------------------------------------------------------|--|
|                | NaYF <sub>4</sub> :Yb,Tm                                | NaYF <sub>4</sub> :Yb,Tm                               |  |
| A <sub>1</sub> | 15613                                                   | 12308                                                  |  |
| $\tau_1$ (ns)  | 0.42×10 <sup>6</sup> (100%)                             | 0.47×10 <sup>6</sup> (100%)                            |  |
| Average(ns)    | 0.42×10 <sup>6</sup>                                    | 0.47×10 <sup>6</sup>                                   |  |

\*Time-resolved PL decay curves of the heterostructured CsPbBr<sub>1</sub>/Cl<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals, and the heterostructured CsPbBr<sub>1</sub>/I<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals were fitted by a single exponential (see eqs 1 and 2) function:  $A(t) = A_0 + A1exp-(t-t_0)$  (eqs 1)

The average lifetimes were calculated using  $t_{avg} = t_1$  (eqs 2);

**Table S5.** Exponential fitting results of  $CsPbBr_1Cl_2/NaYF_4$ : 30%Yb,0.5%Tm mixture, $NaYF_4$ :30%Yb,0.5%Tm nanoparticles, and  $CsPbBr_1I_2/NaYF_4$ : 30%Yb,0.5%Tm mixtureunder 980 nm excitation (monitored at the emission of 478 nm).

| Sample         | CsPbBr <sub>1</sub> Cl <sub>2</sub> /NaYF <sub>4</sub> : | NaYF <sub>4</sub> :30%Yb,0.5%Tm | CsPbBr <sub>1</sub> I <sub>2</sub> /NaYF <sub>4</sub> : |
|----------------|----------------------------------------------------------|---------------------------------|---------------------------------------------------------|
|                | 30%Yb,0.5%Tm mixture                                     |                                 | 30%Yb,0.5%Tm mixture                                    |
| A <sub>1</sub> | 3934                                                     | 10882.6                         | 20258                                                   |
| $\tau_1$ (ns)  | 0.42×10 <sup>6</sup> (100%)                              | 0.71×10 <sup>6</sup> (100%)     | 0.64×10 <sup>6</sup> (100%)                             |
| Average(ns)    | 0.61×10 <sup>6</sup>                                     | 0.71×10 <sup>6</sup>            | 0.64×10 <sup>6</sup>                                    |

\*Time-resolved PL decay curves of CsPbBr<sub>1</sub>Cl<sub>2</sub>/NaYF<sub>4</sub>: 30%Yb,0.5%Tm mixture, NaYF<sub>4</sub>:30%Yb,0.5%Tm nanoparticles, and CsPbBr<sub>1</sub>I<sub>2</sub>/NaYF<sub>4</sub>: 30%Yb,0.5%Tm mixture were fitted by a single exponential (see eqs 1 and 2) function:  $A(t) = A_0 + A_1 \exp(-(t-t_0))$  (eqs 1)

The average lifetimes were calculated using  $t_{avg} = t_1$  (eqs 2);

**Table S6.** The FRET efficiency of CsPbBr<sub>1</sub>Cl<sub>2</sub>/ NaYF<sub>4</sub>: 30%Yb,0.5%Tm mixture,NaYF<sub>4</sub>:30%Yb,0.5%Tm nanocrystals, CsPbBr<sub>1</sub>I<sub>2</sub>/ NaYF<sub>4</sub>: 30%Yb,0.5%Tm mixture, theheterostructured CsPbBr<sub>1</sub>/Cl<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals, and the heterostructuredCsPbBr<sub>1</sub>/I<sub>2</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals under 980 nm excitation.

| τ and Eff                                                        | CsPbBr <sub>1</sub> Cl <sub>2</sub> / | NaYF <sub>4</sub> :30%Yb | CsPbBr <sub>1</sub> I <sub>2</sub> / | heterostructured                       | heterostructured                      |
|------------------------------------------------------------------|---------------------------------------|--------------------------|--------------------------------------|----------------------------------------|---------------------------------------|
|                                                                  | NaYF <sub>4</sub> :                   | ,0.5%Tm                  | NaYF <sub>4</sub> :                  | CsPbBr <sub>1</sub> /Cl <sub>2</sub> - | CsPbBr <sub>1</sub> /I <sub>2</sub> - |
|                                                                  | 30%Yb,0.5%                            |                          | 30%Yb,0.5%T                          | NaYF <sub>4</sub> :Yb,Tm               | NaYF <sub>4</sub> :Yb,Tm              |
|                                                                  | Tm mixture                            |                          | m mixture                            |                                        |                                       |
| $\tau_{D}^{}(ns)$                                                | 0.71×10 <sup>6</sup>                  | 0.71×10 <sup>6</sup>     | 0.71×10 <sup>6</sup>                 | 0.71×10 <sup>6</sup>                   | 0.71×10 <sup>6</sup>                  |
| $\tau_{D-A}(ns)$                                                 | 0.61×10 <sup>6</sup>                  | /                        | 0.64×10 <sup>6</sup>                 | $0.42 \times 10^{6}$                   | 0.47×10 <sup>6</sup>                  |
| $\mathrm{Eff} = 1 - \tau_{\mathrm{D-A}}^{}/\tau_{\mathrm{D}}^{}$ | 14%                                   | /                        | 9.8%                                 | 41%                                    | 32%                                   |
| $Eff = 1 - \tau_{D-A}^{}/\tau_{D}^{}$                            | 14%                                   | /                        | 9.8%                                 | 41%                                    | 32%                                   |

| Element       | Atomic% |
|---------------|---------|
| Cs 3d         | 0.27    |
| Pb 4f         | 0.24    |
| Br 3d         | 0.81    |
| F 1s          | 61.86   |
| Gd 4 <i>d</i> | 15.68   |
| Na 1 <i>s</i> | 14.32   |
| Yb 4d         | 5.18    |
| Tm 4 <i>d</i> | 1.61    |

**Table S7** Atomic ratios in the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals determined based on XPS measurement.

| Before and after the phase transition                                            | Samples                                                                              | Ex 365 nm-<br>PLQY | Ex 980 nm-<br>PLQY |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------|--------------------|
|                                                                                  | heterostructured $CsPbBr_{3}$ -<br>NaYF <sub>4</sub> :Yb,Tm-250 °C                   | 10%                | /                  |
| Before the phase transition                                                      | heterostructured CsPbBr <sub>3</sub> -<br>NaGdF <sub>4</sub> :Yb,Tm-250 °C           | 20%                | /                  |
| heterostructured CsPbBr <sub>3</sub> -<br>NaYF <sub>4</sub> :Yb,Tm-300 °C-60 min | heterostructured CsPbBr <sub>3</sub> -<br>NaYF <sub>4</sub> :Yb,Tm-300 °C-60<br>min  | 19%                | 0.25%              |
| 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4                                         | heterostructured CsPbBr <sub>3</sub> -<br>NaGdF <sub>4</sub> :Yb,Tm-300 °C-60<br>min | 33%                | 0.13%              |

**Table S8.** PLQY of heterostructured nanocrystals before and after phase transition.

**Table S9.** Exponential fitting results of NaGdF<sub>4</sub>:30%Yb,0.5%Tm nanoparticles, the heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanoparticles, NaYF<sub>4</sub>:30%Yb,0.5%Tm nanoparticles, and the heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanoparticles under 980 nm excitation (monitored at the emission of 478 nm).

| Sample      | NaGdF <sub>4</sub> :30%Y<br>b,0.5%Tm | heterostructured<br>CsPbBr -<br>3<br>NaGdF <sub>4</sub> :Yb,Tm | NaYF <sub>4</sub> :30%Yb,<br>0.5%Tm | heterostructured<br>CsPbBr <sub>3</sub> -<br>NaYF <sub>4</sub> :Yb,Tm |
|-------------|--------------------------------------|----------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|
| Al          | 9580.8                               | 269278.4                                                       | 10882.6                             | 807.5                                                                 |
| τ1 (ns)     | 0.53×10 <sup>6</sup> (100%)          | 0.18×10 <sup>6</sup> (98%)                                     | 0.71×10 <sup>6</sup> (100%)         | 0.15×10 <sup>6</sup> (44%)                                            |
| A2          |                                      | 882.5                                                          |                                     | 274.6                                                                 |
| τ2 (ns)     |                                      | 0.68×10 <sup>6</sup> (2%)                                      |                                     | 0.53×10 <sup>6</sup> (56%)                                            |
| Average(ns) | 0.53×10 <sup>6</sup>                 | 0.19×10 <sup>6</sup>                                           | 0.71×10 <sup>6</sup>                | 0.36×10 <sup>6</sup>                                                  |

\*Time-resolved fluorescence decay curves of NaGdF<sub>4</sub>:30%Yb,0.5%Tm nanocrystals and NaYF<sub>4</sub>:30%Yb,0.5%Tm nanocrystals were fitted by a single exponential (see eqs 1 and 2) function: A(t)=A<sub>0</sub>+A<sub>1</sub>exp-(t-t<sub>0</sub>)/ $\tau_1$  (eqs 1). The average lifetime was calculated using  $\tau_{avg}=\tau_1$  (eqs 2).

\*Time-resolved fluorescence decay curve of heterostructured CsPbBr<sub>3</sub>-NaGdF<sub>4</sub>:Yb,Tm nanocrystals, and heterostructured CsPbBr<sub>3</sub>-NaYF<sub>4</sub>:Yb,Tm nanocrystals were fitted by a double exponential (see eqs 1 and 2) function:  $A(t)=A_0+A_1exp-(t-t_0)/\tau_1+A_2exp-(t-t_0)/\tau_2$  (eqs 1). The average lifetime was calculated using  $\tau_{avg}=(A_1\tau_1^2+A_2\tau_2^2)/(A_1\tau_1+A_2\tau_2)$  (eqs 2).

**Table S10.** The FRET efficiency of the heterostructured  $CsPbBr_3$ -NaGdF\_4:Yb,Tmnanocrystals, and the heterostructured  $CsPbBr_3$ -NaYF\_4:Yb,Tm nanocrystals under 980 nmexcitation.

| τ and Eff                             | NaYF <sub>4</sub> :30%Yb<br>,0.5%Tm | heterostructured<br>CsPbBr <sub>3</sub> -<br>NaGdF <sub>4</sub> :Yb,Tm | NaYF <sub>4</sub> :30%Yb,<br>0.5%Tm | heterostructured<br>CsPbBr <sub>3</sub> -<br>NaYF <sub>4</sub> :Yb,Tm |
|---------------------------------------|-------------------------------------|------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|
| $\tau_{\rm D}(\rm ns)$                | 0.53×10 <sup>6</sup>                | 0.53×10 <sup>6</sup>                                                   | 0.71×10 <sup>6</sup>                | 0.71×10 <sup>6</sup>                                                  |
| $\tau_{D-A}(ns)$                      | /                                   | 0.19×10 <sup>6</sup>                                                   | /                                   | 0.36×10 <sup>6</sup>                                                  |
| $Eff = 1 - \tau_{D-A}^{}/\tau_{D}^{}$ | /                                   | 64.2%                                                                  | /                                   | 49.3%                                                                 |