Supporting Information for

Tunable knot segregation in co-polyelectrolyte rings carrying a neutral segment

Andrea Tagliabue, ${ }^{\dagger}$ Cristian Micheletti, ${ }^{\text {, }}{ }^{\dagger}$ and Massimo Mella ${ }^{*, \dagger}$
Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100, Como, Italy, and SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136, Trieste, Italy
E-mail: cristian.micheletti@sissa.it; massimo.mella@uninsubria.it

[^0]
Model and methods

The simulated system consists of a single circular co-polyelectrolyte (co-PE, or "ring") contained in a periodically repeated cubic cell of side length $L=76.36 \sigma(\sigma=3.55 \AA)$, the latter value chosen in order to have a molar concentration of monomers equal to $C_{\text {mono }}=10^{-2}$ M. The circular co-PE is represented via a coarse-grained "beads-springs" primitive model, and it is composed by $N=120$ monomers, $N_{\text {neu }}$ of which are neutral, whereas the remaining $N-N_{\text {neu }}$ beads carry a quenched monovalent negative charge (i.e., they act as strong electrolytes). In order to maintain the system electroneutral, in solution there are also $N_{\mathrm{CI}}=N-N_{\text {neu }}$ monovalent positive counterions (CI's).

Bonds between adjacent beads are simulated via a finitely extensible non-linear elastic (FENE) potentials, ${ }^{1}$

$$
\begin{equation*}
U_{\mathrm{bond}}\left(r_{i j}\right)=-\frac{1}{2} k_{\mathrm{bond}} r_{\max }^{2} \ln \left(1-\left(\frac{r_{i j}}{r_{\max }}\right)^{2}\right) \tag{1}
\end{equation*}
$$

where $r_{i j}$ is the distance between two connected monomers i and $j, k_{\text {bond }}=30 \epsilon / \sigma^{2}$ is the force constant, and $r_{\max }=3 \sigma$ is the maximum allowed elongation.

All particles interact via a Weeks-Chandler-Anderson (WCA) potential ${ }^{2}$ which simulate their excluded volumes:

$$
U_{\mathrm{WCA}}\left(r_{i j}\right)= \begin{cases}4 \epsilon\left[\left(\frac{\sigma}{r_{i j}}\right)^{12}-\left(\frac{\sigma}{r_{i j}}\right)^{6}+\frac{1}{4}\right] & \text { if } r_{i j}<r_{\mathrm{cut}} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

here, $r_{i j}$ is the distance between two interacting particle i and $j, \epsilon=k_{\mathrm{B}} T$ and σ are, respectively, the strength and the range of interaction, and $r_{\text {cut }}=2^{\frac{1}{6}} \sigma$ is the cutoff radius.

Electrostatic interactions are calculated via the $\mathrm{P}^{3} \mathrm{M}$ method, with an accuracy set to 10^{-3}. The molecular structure of water is omitted, and the solvent is represented by a uniform dielectric continuum with a Bjerrum length $l_{\mathrm{B}}=2 \sigma$; setting $\sigma=3.55 \AA$ thus results
in the typical Bjerrum length of water at room temperature, $l_{\mathrm{B}}=7.10 \AA$.
Two different knot topologies have been investigated: the "trefoil knot" (3_{1}, three essential crossings) and the "pentafoil knot" (51 , five essential crossings).

Simulation protocol

Conformations at the equilibrium are sampled via Langevin dynamics according to

$$
\begin{equation*}
m_{i} \ddot{\mathbf{r}}_{i}=-\gamma \dot{\mathbf{r}}_{i}+\mathbf{F}_{i}+\mathbf{R}_{i} \tag{3}
\end{equation*}
$$

where $m_{i} \equiv m=1$ (in internal units) is the mass of the i-th particle, $\dot{\mathbf{r}}, \ddot{\mathbf{r}}, \mathbf{F}_{i}$, and \mathbf{R}_{i} are, respectively, its velocity, its acceleration, and the conservative and the random forces acting on it, and $\gamma=\sigma^{-1} /(m \epsilon)^{\frac{1}{2}}$ is the friction coefficient. Random forces act on each particle independently and obey the fluctuation-dissipation theorem. Equation 3 is integrated by a velocity Verlet algorithm with a time step $\delta t=0.01 \sigma(\mathrm{~m} / \epsilon)^{\frac{1}{2}}$; thus, our system time unit, $\tau_{\mathrm{MD}}=\sigma \sqrt{(m / \epsilon)}$, consists in 100 integration steps.

For each case investigated, we simulated 100 independent trajectories; hence, we present the averaged results accompanied by their standard errors. During each trajectory simulation, the system has been thermalized for a time $t_{\text {therm }}=5 \cdot 10^{5} \delta t$. After the thermalization, the trajectory has been integrated for a time $t_{\text {sim }}=2 \cdot 10^{6} \delta t$, during which the system properties have been collected every 10^{3} time steps. All simulations have been performed with the software package ESPResSo. ${ }^{3}$

Knot analysis

Monomers in the ring are indexed as a function of their positional distance from the NS midpoint, δ_{NS}. Thus, $\delta_{\mathrm{NS}}=0$ for the two (neutral) central monomer, $\delta_{\mathrm{NS}}=1$ for their first neighbors, etc. Analogously, we define a similar metric, δ_{k}, in order to index the position of a bead with respect to the knot midpoint.

The knotted segments are recognized performing a bottom-up search with the software KymoKnot. ${ }^{4,5}$ At each time $t=t_{0}$, we define a total ordered set $\mathbb{K}\left(t_{0}\right)$ containing the position index of all the monomers taking part to the chain knotted portion; from this, one can define the "knot length" ℓ_{K} as $\ell_{\mathrm{K}}\left(t_{0}\right)=\# \mathbb{K}\left(t_{0}\right)$, where " $\#$ " denotes the set cardinality. Thus, ℓ_{K} corresponds to the number of monomers lying in the knotted portion of the ring.

From the collected data, one can calculate the probability density $\rho\left(\delta_{\mathrm{NS}}\right)$ for a monomer j,which lies at distance δ_{NS} from the NS midpoint, to be part of the knotted segment by simply dividing the number of occurrences of a given monomer j in \mathbb{K} by the total number of conformations sampled. $\rho\left(\delta_{\mathrm{NS}}\right)$ is normalized so to have $\int_{0}^{N / 2} \rho\left(\delta_{\mathrm{NS}}\right) \mathrm{d} \delta_{\mathrm{NS}}=1$, representing de facto the cumulative probability for a monomer lying at a distance δ_{NS} to be included in the knot.

We also define as "knot midpoint" the monomer $j=j_{\text {mid }}\left(t_{0}\right)$ lying in the middle of the knotted arc at $t=t_{0}$. If $\# \mathbb{K}\left(t_{0}\right)$ is odd, $j_{\text {mid }}\left(t_{0}\right)$ results to be median element of \mathbb{K}; conversely, if $\# \mathbb{K}\left(t_{0}\right)$ is even we identify the "middle monomer" as the median element of the set $\# \mathbb{K}^{*}$, the latter a subset of $\# \mathbb{K}\left(t_{0}\right)$ obtained by randomly removing from the latter the first or the last element with an equal probability. Analogously to $\rho\left(\delta_{\mathrm{NS}}\right)$, we define the density of probability $\rho_{\text {mid }}\left(\delta_{\mathrm{NS}}\right)$ for a monomer j (which lies at distance δ_{NS} from the NS midpoint) to be the knot midpoint. Since, also in this case, $\int_{0}^{N / 2} \rho_{\text {mid }}\left(\delta_{\mathrm{NS}}\right) \mathrm{d} \delta_{\mathrm{NS}}=1, \rho_{\text {mid }}\left(\delta_{\mathrm{NS}}\right)$ represents the cumulative probability to find the knot midpoint in the interval $0-\mathrm{NS}$.

Results

Figure S1: Selected trajectory snapshots for systems with $N_{\text {neu }}=2,8$, and 24. Color scheme: neutral monomers pink, charged monomers in yellow, counterions in ice blue. The color scheme is maintained through the manuscript.

Figure S2: Probability densities to find ring conformations with a certain knot length ℓ_{K}.

Figure S3: Probability distributions ρ and $\rho_{\text {mid }}$ as a function the monomer distance δ_{NS} for systems with $N_{\text {neu }}=0,2,8,24$, and 120 . Curves have been symmetrized around the latter due to the intrinsic symmetry of the co-PE's. Each inset shows 3 independent trajectories of the contour motion of the knot midpoint. Areas highlighted in pink denotes the NS's.

$$
N_{\text {neu }}=4
$$

$$
N_{\text {neu }}=16
$$

$$
N_{\text {neu }}=32
$$

$N_{\text {neu }}=4$

$N_{\text {neu }}=16$

$N_{\text {neu }}=32$

Figure S4: Coulomb energy \mathcal{Q} (in $k_{\mathrm{B}} T$ units) as a function of the distance δ_{k} between knot and NS midpoints for the 3_{1} topology and $N_{\text {neu }}$ values. Upper panel: ideal knot, $\ell_{k}=78$; lower panel: $\ell_{k}=75$.

Figure S5: Coulomb energy \mathcal{Q} (in $k_{\mathrm{B}} T$ units) as a function of the distance δ_{k} between knot and NS midpoints for the 5_{1} topology and various $N_{\text {neu }}$ values. Upper panel: ideal knot, $\ell_{k}=97$; central panel: $\ell_{k}=65$, lower panel: $\ell_{k}=28$.

Figure S6: Global radius of curvature, $R_{\text {global }}=R_{c}^{g}(i)$, as a function of the monomer index, i, of the shown trefoil-knotted ring. Following ref. 6, the global radius of curvature of monomer i is defined as $R_{c}^{g}(i)=\min j, k, j \neq k r_{i j k}$, where $r_{i j k}$ is the radius of the circumcircle going through monomers i, j, k. The physical interpretation of $R_{c}^{g}(i)$ is that it provides the maximum thickness to which one can inflate the curve, making it into a tube of uniform cross-section before it becomes singular at i. This can occur under two circumstances, either a tight local radius of curvature at i (in which case the minimizing $i j k$ triplet is formed by consecutive monomers) or due to the contact of the tube at i and another region away from it^{6}. For rings with localized knots, the minima of the $R_{c}^{g}(i)$ profile correspond to the regions where the ring center-line is in close proximity of itself. The minima can thus be used to identify the regions defining the essential crossing, which are indicated by the colored arrows.

Figure S7: Unsigned average effective charge $|\langle q\rangle|$ of monomers in 3_{1}-knotted rings and various $N_{\text {neu }}$. The average is taken at various knot lengths (ℓ_{K}, y axis) and sequence distances (δ_{k}, x axis) from the knot midpoint. For reference, the $\ell_{\mathrm{K}}=2 \delta_{\mathrm{k}}$ line is superposed to the main graphs.

Figure S8: Unsigned average effective charge $|\langle q\rangle|$ of monomers in 5_{1}-knotted rings and various $N_{\text {neu }}$. The average is taken at various knot lengths (ℓ_{K}, y axis) and sequence distances (δ_{k}, x axis) from the knot midpoint. For reference, the $\ell_{\mathrm{K}}=2 \delta_{\mathrm{k}}$ line is superposed to the main graphs.

References

(1) Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A moleculardynamics simulation. J. Chem. Phys. 1990, 92, 5057.
(2) Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. The Journal of Chemical Physics 1971, 54, 5237-5247.
(3) Weik, F.; Weeber, R.; Szuttor, K.; Breitsprecher, K.; de Graaf, J.; Kuron, M.; Landsgesell, J.; Menke, H.; Sean, D.; Holm, C. ESPResSo 4.0 - An Extensible Software Package for Simulating Soft Matter Systems. Eur. Phys. J-Spec. Top. 2019, 227, 1789-1816.
(4) Tubiana, L.; Polles, G.; Orlandini, E.; Micheletti, C. KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers. European Physical Journal E 2018, 41.
(5) Tubiana, L.; Orlandini, E.; Micheletti, C. Probing the Entanglement and Locating Knots in Ring Polymers: A Comparative Study of Different Arc Closure Schemes. Prog. Theor. Phys. Suppl. 2011, 191, 192-204.
(6) Gonzalez, O.; Maddocks, J. H. Global curvature, thickness, and the ideal shapes of knots. Proceedings of the National Academy of Sciences 1999, 96, 4769-4773.

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100, Como, Italy
 ${ }^{\ddagger}$ SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136, Trieste, Italy

