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Model and methods

The simulated system consists of a single circular co-polyelectrolyte (co-PE, or "ring") con-

tained in a periodically repeated cubic cell of side length L = 76.36σ (σ = 3.55 Å), the latter

value chosen in order to have a molar concentration of monomers equal to Cmono = 10−2

M. The circular co-PE is represented via a coarse–grained "beads–springs" primitive model,

and it is composed by N = 120 monomers, Nneu of which are neutral, whereas the re-

maining N − Nneu beads carry a quenched monovalent negative charge (i.e., they act as

strong electrolytes). In order to maintain the system electroneutral, in solution there are

also NCI = N −Nneu monovalent positive counterions (CI’s).

Bonds between adjacent beads are simulated via a finitely extensible non–linear elastic

(FENE) potentials,1

Ubond(rij) = −1
2kbondr
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where rij is the distance between two connected monomers i and j, kbond = 30ε/σ2 is the

force constant, and rmax = 3σ is the maximum allowed elongation.

All particles interact via a Weeks–Chandler–Anderson (WCA) potential2 which simulate

their excluded volumes:
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]
if rij < rcut

0 otherwise;
(2)

here, rij is the distance between two interacting particle i and j, ε = kBT and σ are,

respectively, the strength and the range of interaction, and rcut = 2 1
6σ is the cutoff radius.

Electrostatic interactions are calculated via the P3M method, with an accuracy set to

10−3. The molecular structure of water is omitted, and the solvent is represented by a

uniform dielectric continuum with a Bjerrum length lB = 2σ; setting σ = 3.55 Å thus results
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in the typical Bjerrum length of water at room temperature, lB = 7.10 Å.

Two different knot topologies have been investigated: the "trefoil knot" (31, three essential

crossings) and the "pentafoil knot" (51, five essential crossings).

Simulation protocol

Conformations at the equilibrium are sampled via Langevin dynamics according to

mir̈i = −γṙi + Fi + Ri, (3)

where mi ≡ m = 1 (in internal units) is the mass of the i-th particle, ṙ, r̈, Fi, and Ri are,

respectively, its velocity, its acceleration, and the conservative and the random forces acting

on it, and γ = σ−1/(mε) 1
2 is the friction coefficient. Random forces act on each particle

independently and obey the fluctuation–dissipation theorem. Equation 3 is integrated by a

velocity Verlet algorithm with a time step δt = 0.01σ(m/ε) 1
2 ; thus, our system time unit,

τMD = σ
√

(m/ε), consists in 100 integration steps.

For each case investigated, we simulated 100 independent trajectories; hence, we present

the averaged results accompanied by their standard errors. During each trajectory simula-

tion, the system has been thermalized for a time ttherm = 5 · 105δt. After the thermalization,

the trajectory has been integrated for a time tsim = 2 · 106δt, during which the system prop-

erties have been collected every 103 time steps. All simulations have been performed with

the software package ESPResSo.3

Knot analysis

Monomers in the ring are indexed as a function of their positional distance from the NS

midpoint, δNS. Thus, δNS = 0 for the two (neutral) central monomer, δNS = 1 for their first

neighbors, etc. Analogously, we define a similar metric, δk, in order to index the position of

a bead with respect to the knot midpoint.
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The knotted segments are recognized performing a bottom–up search with the software

KymoKnot.4,5 At each time t = t0, we define a total ordered set K(t0) containing the position

index of all the monomers taking part to the chain knotted portion; from this, one can define

the "knot length" `K as `K(t0) = #K(t0), where "#" denotes the set cardinality. Thus, `K

corresponds to the number of monomers lying in the knotted portion of the ring.

From the collected data, one can calculate the probability density ρ(δNS) for a monomer

j,which lies at distance δNS from the NS midpoint, to be part of the knotted segment by

simply dividing the number of occurrences of a given monomer j in K by the total number

of conformations sampled. ρ(δNS) is normalized so to have
∫N/2

0 ρ(δNS)dδNS = 1, representing

de facto the cumulative probability for a monomer lying at a distance δNS to be included in

the knot.

We also define as "knot midpoint" the monomer j = jmid(t0) lying in the middle of the

knotted arc at t = t0. If #K(t0) is odd, jmid(t0) results to be median element ofK; conversely,

if #K(t0) is even we identify the "middle monomer" as the median element of the set #K∗,

the latter a subset of #K(t0) obtained by randomly removing from the latter the first or

the last element with an equal probability. Analogously to ρ(δNS), we define the density of

probability ρmid(δNS) for a monomer j (which lies at distance δNS from the NS midpoint) to

be the knot midpoint. Since, also in this case,
∫N/2

0 ρmid(δNS)dδNS = 1, ρmid(δNS) represents

the cumulative probability to find the knot midpoint in the interval 0–NS.
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Results

Figure S1: Selected trajectory snapshots for systems with Nneu = 2, 8, and 24. Color scheme:
neutral monomers pink, charged monomers in yellow, counterions in ice blue. The color scheme is
maintained through the manuscript.

S5



(a) 31 topology.

(b) 51 topology.

Figure S2: Probability densities to find ring conformations with a certain knot length `K.
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(a) 31 topology.

(b) 51 topology.

Figure S3: Probability distributions ρ and ρmid as a function the monomer distance δNS for systems
with Nneu = 0, 2, 8, 24, and 120. Curves have been symmetrized around the latter due to the
intrinsic symmetry of the co-PE’s. Each inset shows 3 independent trajectories of the contour
motion of the knot midpoint. Areas highlighted in pink denotes the NS’s.
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Figure S4: Coulomb energy Q (in kBT units) as a function of the distance δk between knot and
NS midpoints for the 31 topology and Nneu values. Upper panel: ideal knot, `k = 78; lower panel:
`k = 75.
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Figure S5: Coulomb energy Q (in kBT units) as a function of the distance δk between knot and NS
midpoints for the 51 topology and various Nneu values. Upper panel: ideal knot, `k = 97; central
panel: `k = 65, lower panel: `k = 28.
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Figure S6: Global radius of curvature, Rglobal = Rgc(i), as a function of the monomer index, i, of
the shown trefoil-knotted ring. Following ref. 6, the global radius of curvature of monomer i is
defined as Rgc(i) = min j, k, j 6= krijk, where rijk is the radius of the circumcircle going through
monomers i, j, k. The physical interpretation of Rgc(i) is that it provides the maximum thickness
to which one can inflate the curve, making it into a tube of uniform cross-section before it becomes
singular at i. This can occur under two circumstances, either a tight local radius of curvature at i
(in which case the minimizing ijk triplet is formed by consecutive monomers) or due to the contact
of the tube at i and another region away from it6. For rings with localized knots, the minima of the
Rgc(i) profile correspond to the regions where the ring center-line is in close proximity of itself. The
minima can thus be used to identify the regions defining the essential crossing, which are indicated
by the colored arrows.
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Figure S7: Unsigned average effective charge |〈q〉| of monomers in 31-knotted rings and various
Nneu. The average is taken at various knot lengths (`K, y axis) and sequence distances (δk, x axis)
from the knot midpoint. For reference, the `K = 2δk line is superposed to the main graphs.
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Figure S8: Unsigned average effective charge |〈q〉| of monomers in 51-knotted rings and various
Nneu. The average is taken at various knot lengths (`K, y axis) and sequence distances (δk, x axis)
from the knot midpoint. For reference, the `K = 2δk line is superposed to the main graphs.
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