Supporting Information

Hollow C@MoS₂ Nanospheres for Microwave Absorption

Linling Xu^{1,2}, Jiaqi Tao^{1,2}, Xianfei Zhang¹, Zhengjun Yao^{1,2}, Bo Wei^{1,2}, Feng Yang¹, Congyu Zhou¹, Ali Zavabeti³, Karma Zuraiqi⁴, Jintang Zhou^{1,2, *}

¹ College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China

2 Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, China

3 Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia

4 School of Engineering, RMIT University, Melbourne 3000, Victoria, Australia

*Corresponding authors.

E-mails addresses: imzjt@126.com (J, Zhou).

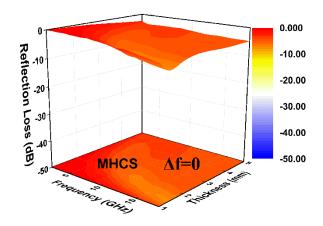


Fig. S1. EMA performance of pure MHCS.

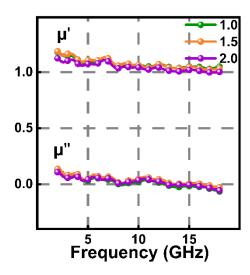
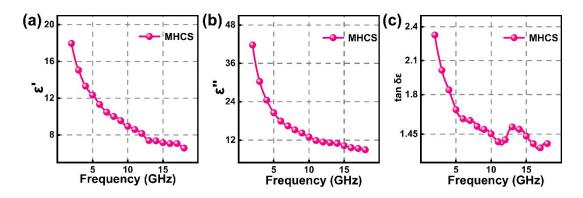



Fig. S2. Real and imaginary part of permeability of MHCS-MoS₂-1.0,1.5 and 2.0.

Fig. S3. (a) Real part permittivity of pure MHCS; **(b)** Imaginary part of pure MHCS; **(c)** Dielectric tangent loss of pure MHCS.

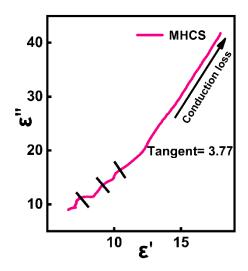
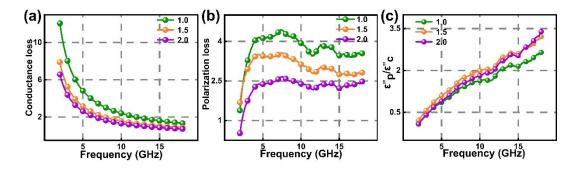



Fig. S4. Cole-Cole polarization curve of pure MHCS.

Fig. S5. (a) Conductive loss of MHCS-MoS₂-1.0,1.5 and 2.0; (b) Polarization loss of MHCS-MoS₂-1.0,1.5 and 2.0; (c) Ratio of polarization loss to dielectric loss of MHCS-MoS₂-1.0,1.5 and 2.0.

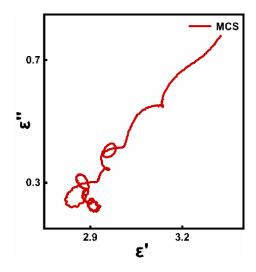


Fig. S6. Cole-Cole polarization curve of MCS.

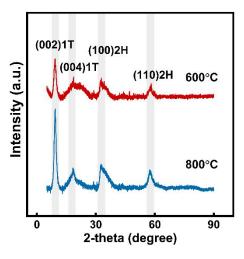


Fig. S7. XRD patterns of MHCS@MoS₂ composites treated at 600°C and 800°C.

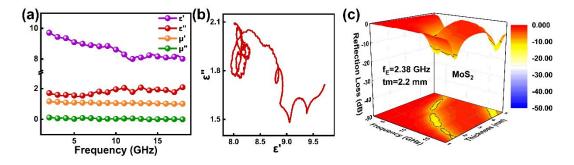


Fig. S8. (a) Permittivity and permeability of pure MoS₂; (b) Cole-Cole polarization curve of MoS₂;(c) EMA performance of pure MoS₂.