SUPPORTING INFORMATION

In Vivo Evaluation of Multifunctional Gold Nanorods for Boron Neutron Capture and Photothermal Therapies

Krishna R. Pulagam,^a Malou Henriksen-Lacey,^{a,b} Kepa B. Uribe,^a Carlos Renero-Lecuna,^a Jatish Kumar,^c Alexandra Charalampopoulou,^d Angelica Facoetti,^d Nicoletta Protti,^{e,f} Vanessa Gómez-Vallejo,^a Zuriñe Baz,^a Vished Kumar,^a Ana Sánchez-Iglesias,^{a,b} Saverio Altieri,^{e,f} Unai Cossío,^a Desire Di Silvio,^a Angel M. Martínez-Villacorta,^a Ane Ruiz de Angulo,^g Luka Rejc,^{a,h} Luis M. Liz-Marzán,^{a,b,i} and Jordi Llop^{*a,j}

^a CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastian, Spain.

^b Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastian,
Spain

[°] Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India. ^d Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy.

^e Department of Physics, University of Pavia, 27100 Pavia, Italy.

^f National Institute of Nuclear Physics, Pavia Section, 27100 Pavia, Italy.

^g CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science & Technology Park bld 801 A, 48160 Derio, Bizkaia, Spain.

^h University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia.

ⁱ Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.

^j Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.

* e-mail: jllop@cicbiomagune.es; Phone number: +34 943 005 333

Evaluation of the number of reactions per second on ¹⁰B and ¹⁹⁷Au by thermal neutrons

Consider a mass m_{Au} exposed to a thermal neutron flux Φ (cm⁻²s⁻¹). The number of reactions per second (R_{Au}) that occur during the neutron irradiation is given by:

$$R_{Au} = \frac{m_{Au}}{A_{Au}} N_A \sigma_{Au} \emptyset$$

where A_{Au} is the mass number of Au, N_A is the Avogadro number and σ_{Au} the capture cross section for thermal neutron of ¹⁹⁷Au(n, γ)¹⁹⁸Au reaction.

Similarly, for a mass m_B of ${}^{10}B$ exposed to the same flux of thermal neutrons the number of reactions per second R_B is given by:

$$R_B = \frac{m_B}{A_B} N_A \sigma_B \emptyset$$

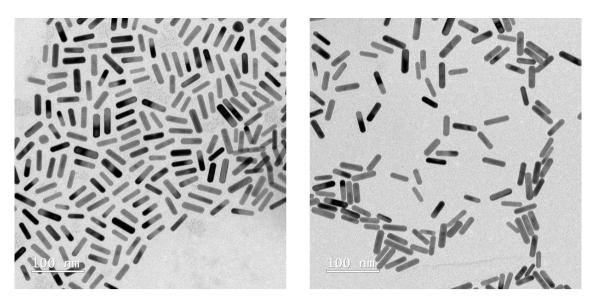
where A_B is the mass number of ${}^{10}B$, and σ_B the capture cross section for thermal neutron of ${}^{10}B(n,\alpha)^7$ Li reaction on which the BNCT is based.

Therefore, the ratio between the number of reactions per second between ¹⁰B and ¹⁹⁷Au is given by:

$$\frac{R_B}{R_{Au}} = \frac{m_B}{m_{Au}} \frac{A_{Au}}{A_B} \frac{\sigma_B}{\sigma_{Au}} = \frac{m_B}{m_{Au}} \frac{197}{10} \frac{3840}{98.8} = \frac{m_B}{m_{Au}} 765.7$$

For AuNRs we have $\frac{m_B}{m_{Au}} = 0.1$

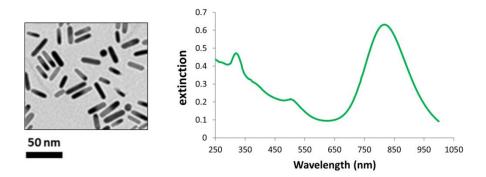
If the Boron used in AuNRs is a 100% 10 B enriched:

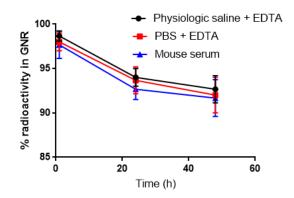

$$\frac{R_B}{R_{Au}} = \frac{m_B}{m_{Au}}$$
 765.7 = 0.1 · 765.7 = 76.57

If natural Boron (20% 10 B and 80% 11 B) is used in GNR, then:

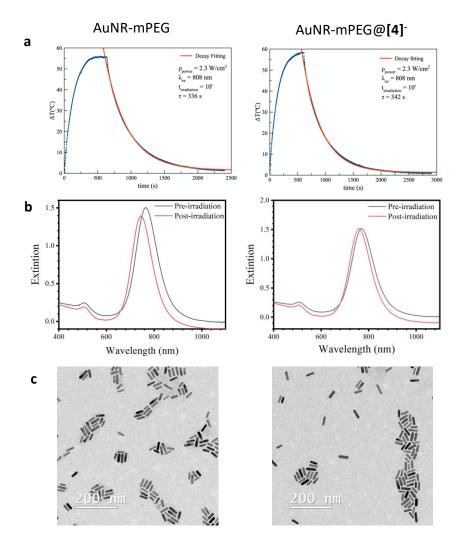
$$\frac{R_B}{R_{Au}} = \frac{m_B}{m_{Au}} \ 765.7 = 0.1 \cdot 0.2 \cdot 765.7 = 15.3$$

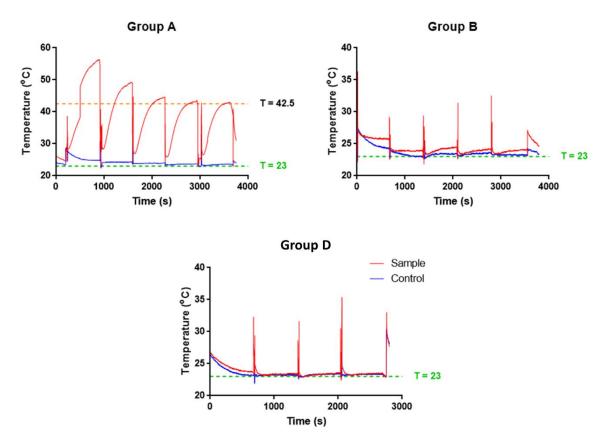
The previous numbers confirm that considering the gold/boron composition of our nanosystems, and assuming natural abundance of ${}^{10}B$ (20%), for every 15 reactions on


¹⁰B there is only one reaction on the ¹⁹⁷Au; in the case of a 100% abundance of ¹⁰B (as used in BNCT) there is one reaction on ¹⁹⁷Au every about 77 reactions on ¹⁰B.


AuNRs-PEG

AuNRs-PEG@[4]-


Figure S1. Representative TEM micrographs of AuNRs-mPEG (left) and AuNR-mPEG@[4]⁻ (right), prior to laser irradiation.


Figure S2. Left: Representative transmission electron micrograph (TEM) of [⁶⁴Cu]AuNR-mPEG@[4]⁻. Right: UV-Vis-NIR extinction spectrum of [⁶⁴Cu]AuNR-mPEG@[4]⁻. Both characterizations were performed after complete radioactive decay.

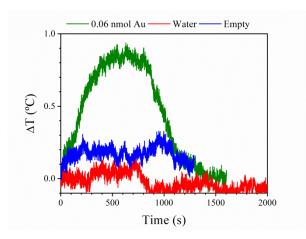

Figure S3. Radiochemical stability of AuNR-mPEG@[4]⁻ at different incubation times in 0.9% NaCl + 2.5 mM EDTA, 10 mM PBS + 2.5 mM EDTA, and mouse serum.

Figure S4. Effect of laser irradiation on AuNR-mPEG and AuNR-mPEG@[4]⁻ ([Au] = $20 \mu g/mL$, laser power = $2.3 W/cm^2$). Photothermal characterization (a), UV-Vis spectra (b), and representative TEM micrographs (c), obtained before (left column) and after (right column) laser irradiation. A slight decrease in aspect ratio is observed post irradiation, correlating to a slight LSPR blue shift of 20 nm and 11 nm for AuNR-mPEG and AuNR-mPEG@[4]⁻ AuNRs, respectively.

Figure S5. Temperature curves of the irradiated wells for groups A-C. Red curves represent temperature profiles of wells containing the spheroids; blue lines represent temperature profiles of adjacent empty wells; Group A: spheroids incubated with AuNRs (concentration = $20 \mu g/mL$ in gold) followed by NIR irradiation; B: spheroids incubated with AuNRs followed by media exchange and NIR irradiation; Group D, spheroids incubated in the absence of AuNRs and subjected to laser irradiation.

Figure S6. Temperature curves obtained during NIR irradiation of an aqueous solution containing AuNR-mPEG@[4]⁻ at a concentration of 64 pmol/100 μ L (green line). Red and blue curves represent temperature profiles of wells containing water and air, respectively.