Supporting information for ## Revealing the surface chemistry for CO_2 hydrogenation on Cu/CeO_{2-x} using near-ambient pressure X-ray photoelectron spectroscopy Mo Li^{1,2}, Thi Ha My Pham^{1,2}, Emad Oveisi³, Youngdon Ko^{1,2}, Wen Luo^{1,2,4*}, Andreas Züttel^{1,2} - 1. Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Rue de l'Industrie 17, CH-1951 Sion, Switzerland - 2. Empa Materials Science and Technology, CH-8600 Dübendorf, Switzerland - 3. Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland - 4. School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China ^{*}Corresponding author: wenluo@shu.edu.cn, wen.luo@epfl.ch Figure S1 Representative (a) TEM, (b) HRTEM, (c) HAADF-STEM images of the Cu/CeO_{2-x} catalyst. The area for EDX element map is shown in (c). Figure S2 (a) Cu 2p, (b) Cu LMM Auger, (c) Ce 3d region XPS spectra, and (d) X-ray excited valence band spectra of the Cu/CeO2-x model surface, a fully oxidized CeO₂ thin film sample prepared by oxidation (0.5 mbar O₂, 423 K, 60 min) of the reactive deposited ceria thin film, and a sputter-cleaned metallic Cu foil. | Peak assignment | Peak position | | FWHM/eV | | Peak area | | |---|---------------|---------------------------------|---------|---------------------------------|-----------|---------------------------------| | | CO_2 | CO ₂ +H ₂ | CO_2 | CO ₂ +H ₂ | CO_2 | CO ₂ +H ₂ | | $\mathrm{CO_3}^2$ -/ $\mathrm{CO_2}^\delta$ - | 531.6 | 531.6 | 1.1 | 1.1 | 726 | 461 | | HCOO- | 532.3 | 532.1 | 1.0 | 1.0 | 159 | 221 | Figure S3 O 1s spectra of the Cu/CeO_{2-x} model surface under UHV and (a) 0.2 mbar of CO_2 , and (b) 0.2 mbar $CO_2 + 0.6$ mbar of H_2 at 300, 450, and 600 K. The peak positions and FWHMs used in the deconvolution is shown in the table below the figures. Figure S4 Gas species detected by RGA at the pre-lens stage of the NAP-XPS during measurements of the $\text{Cu/CeO}_{2\text{-x}}$ model surface under 0.2 mbar CO_2 + 0.6 mbar of H_2 at 300, 450, and 600 K. Figure S5 SEM image of as-prepared $\text{Cu/CeO}_{2\text{-x}}$ model surface. Figure S6 The atomic ratio of Cu/Ce on the Cu/CeO $_{2-x}$ model surface under UHV and 0.2 mbar of CO $_2$ + 0.6 mbar of H $_2$ at 300, 450, and 600 K, determined by the Cu 2p and Ce 3d peak areas after correction by their corresponding RSFs Figure S7 TEM lamella of the thin-film Cu/CeO_{2-x} sample prepared by FIB: (a) the cut volume with surface protection by carbon before lift-out, (b) the electron-transparent TEM lamella glued on Mo grid after thinning. Figure S8 Additional cross-sectional STEM-HAADF image, and STEM-EDX elemental map of the $\text{Cu/CeO}_{2\text{-x}}$ model surface after exposure to 0.2 mbar of CO_2 + 0.6 mbar of H_2 at 600 K for 1 h.