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2.5. Characterizations. The microstructures of the samples were observed by
scanning electron microscopy (SEM, S-3400N, Hitachi, Japan) at a voltage of 5 kV and
energy-dispersive X-ray spectroscopy (EDS) (Hitachi, Japan). X-ray diffractometry
(XRD) crystal structure analysis of the samples was carried out using a D/MAX2500 V
X-ray diffractometer (Rigaku, Japan) using Cu-K, radiation (A = 0.154 nm) generated at
40 kV and 30 mA. The XRD patterns were obtained between 26 values of 5° to 80°. The
crystallinity of cellulose was calculated using Eq. (1) !
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Where Crl is the crystallinity index, Iy, is the maximum diffraction intensity of the
(002) reflection, and /,y, is the diffraction intensity at 26 = 18°.

Fourier transform infrared spectroscopy (FTIR) spectra were recorded using an
FTIR-8400S spectrometer (Shimadzu, Kyoto, Japan) between 400 and 4000 cm™'. X-
ray photoelectron spectroscopy (XPS) was performed using an ESCALAB 250Xi XPS
(Thermo Fisher Scientific, USA) with Al-K, radiation (1486.6 ¢V). The specific surface
area and pore size distributions of the dry samples were measured by the multilayer N,
adsorption method using a Gemini VII 2390 automatic rapid surface area analyzer
(Micromeritics, USA) and were calculated using the Brunauer—Emmett—Teller (BET)
method and Barrett—Joyner—Halenda (BJH) model, respectively. The compressive
strengths of different samples were measured using an Instron DNS-100 universal
testing machine (Changchun Testing Machine Research Institute, China). The Ca and

Fe contents in the gel beads were determined using inductively coupled plasma atomic

emission spectroscopy (ICP-AES, 720ES, Agilent, USA). The point of zero charge
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(pHpzc) of the samples was measured by potentiometric titration. The absorption of the
samples in the UV-vis light range was measured using a Lambda 1050 UV-vis
spectrometer (PerkinElmer, USA) with BaSO, as a reference, and the band gaps (£,) of
all samples were calculated using the Tauc plot method. The rate of electron—hole
generation/recombination was evaluated by photoluminescence (PL) spectroscopy using
an FLS100 fluorescence spectrophotometer (Edinburgh, UK) at an excitation
wavelength of 325 nm. Electrochemical impedance spectroscopy (EIS) was performed
using an electrochemical system (CHI 760E, China), and EIS experiments were
conducted on an electrochemical workstation at room temperature (Princeton Applied
Research 4000+) with the prepared electrodes in 0.1 M KCI solution containing 5 mM
K;[Fe(CN)sl/Ky[Fe(CN)g] (1:1). The frequency range was 0.01-100 kHz. Infrared
thermal imaging analysis was achieved using an analog daylight lamp source (PLS-
SXE300C), which yielded an intensity of 100 mW/cm?, as measured by an FZ-A
radiometer. Infrared photos were captured using an infrared camera (CHAUVIN
ARNOUX/CAT73). A non-contact infrared thermometer (GM320, Benetech) was used to
measure the temperature. Electron spin resonance (ESR) analysis was conducted using
an A300-10/12 electron paramagnetic resonance spectrometer (Bruker AXS Company,
Germany). The MB degradation intermediates were determined using liquid chroma-

tography coupled with mass spectrometry (UPLC-MS, Thermo Scientific, USA).
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3.1. Sample Characterization. The changes in the functional groups of the
cellulose before and after the different pretreatments were determined using FTIR
analysis (Figure Sla). The FTIR spectra of MAC and MAFCC showed no new
absorption peaks compared with that of the original cellulose, indicating that
pretreatment did not induce the formation of new functional groups. However, the
characteristic absorption peaks shifted. Specifically, the absorption peak corresponding
to hydroxyl groups was observed at 3423 cm™! in the spectrum of the original cellulose,
but, in the spectra of MAC and MAFCC, this peak broadened and shifted to 3434 and
3432 cm!, respectively. The shift in this peak for MAFCC is smaller than that of MAC,
and this is a result of the interactions between FeCl; and the hydroxyl groups of
cellulose,? suggesting that the hydrogen bonding in the cellulose was weakened,
potentially increasing its accessibility and reactivity.

The crystal structures of the different samples were characterized using XRD
measurements (Figure S1c). The peaks at 260 = 15.1°, 16.2°, and 22.4° were assigned to
the (1-10), (110), and (200) planes of crystalline cellulose I, respectively.> Compared
with that of untreated cellulose (80.37%), the crystallinities of MAC and MAFCC
decreased to 42.03% and 30.03%, respectively. The more significant decrease in
crystallinity for MAFCC further indicates that the FeCl; promoted the destruction of the

crystal structure of cellulose on the application of mechanical activation.
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Figure S1. (a) FTIR spectra of cellulose, MAC, and MAFCC; (b) FTIR spectra of (b1)
MAFCC, (b2) NaAlg, (b3) MAC-Alg/Ca, (b4) MAFCC-Alg/Ca, (bS) MAFCC-Alg/Ca-
Fe, (b6) PDA, and (b7) MAFCC-Alg/Ca-Fe@PDA; (c) XRD patterns of cellulose,
MAC, and MAFCC; (d) XRD patterns of (d1) MAFCC, (d2) NaAlg, (d3) MAC-
Alg/Ca, (d4) MAFCC-Alg/Ca, (d5) MAFCC-Alg/Ca-Fe, (d6) PDA, and (d7) MAFCC-
Alg/Ca-Fe@PDA.
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The changes in the morphology of cellulose before and after different treatments
were observed by SEM (Figure S2). The untreated cellulose was observed to have the
form of long fibers, and their surfaces were relatively complete and smooth. After MA
and MAFC treatment, the long fiber structure disappeared, and small block-like
particles were observed. However, the MAFCC showed more uniform damage to the
cellulose, and the particles were smaller than those of MAC, indicating that MAFC
pretreatment destroyed the long fiber structure of cellulose to a greater extent, which is

favorable for increasing the activity and solubility of cellulose.

Figure S2. SEM images of (a) untreated cellulose, (b) MAC, and (c) MAFCC.
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After PDA modification, the surface structure of the gel beads was rough and
wrinkled, nanoscale spherical particles were present, and the interior was observed to
have an irregular porous network structure with a dense and stable structure (Figure
S3b). An SEM image of a cross-section of a MAFCC-Alg/Ca-Fe@PDA bead is shown
in Figure S3a. The thickness of the PDA coating is about 5 um, and energy dispersive
X-ray analysis confirmed the inherent N components of PDA, as shown in Figure S3c.
The N content was mainly concentrated in the PDA coating on the surface of the gel
bead, although a small amount was present close to the surface of the gel bead. Thus,
the PDA layer was uniformly coated on the surface of the gel beads through covalent

and noncovalent interactions between PDA and MAFCC-Alg/Ca-Fe.

Figure S3. SEM images of (a) the cross-section of MAFCC-Alg/Ca-Fe@PDA, (b) the

external magnified image of MAFCC-Alg/Ca-Fe@PDA, and (c) the N element analysis
by SEM-EDS.
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Figure S4. XPS spectra of different samples: (a) full-survey spectra, (b) C 1s peak

fitting curves, (c¢) Ca 2p peak fitting curves, and (d) Fe 2p peak fitting curves.
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Table S1 Specific surface areas, pore volumes, mean pore sizes, and compressive

strengths of different samples.

Specific surface  Pore volume  Mean pore Compressive
Sample area (m? g!) (cm? g™ size (nm) strength
(MPa)
FeAlg 68.98 0.13 14.25 0.22
CaAlg 26.68 0.064 17.61 0.28
Alg/Ca-Fe 96.87 0.45 10.48 0.23
MAC-Alg/Ca-Fe 108.74 0.31 16.53 0.76
(MAC+Fe)-Alg/Ca-Fe 128.17 0.33 10.88 0.78
MAFCC-Alg/Ca-Fe 138.99 0.24 11.15 0.92
MAFCC-Alg/Ca-Fe@PDA  153.44 0.51 16.81 1.24
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Figure S5. N, adsorption—desorption isotherms and pore distributions of different

samples: (a) FeAlg, (b) CaAlg, (c) Alg/Ca-Fe, (d) MAC-Alg/Ca-Fe, (¢) (MAC+Fe)-

Alg/Ca-Fe, (f) MAFCC-Alg/Ca-Fe, and (g) MAFCC-Alg/Ca-Fe@PDA.
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The structural stability of the gel beads was tested by examining the morphology of
the MAFCC-Alg/Ca-Fe@PDA and FeAlg gel beads before and after mechanical
extrusion under the same load (Figure S6). The gel beads are easily compressed under
pressure, and their shape is not easily recovered when the load is removed. In particular,
the FeAlg beads broke into fragments when subjected to external pressure. However,
the MAFCC-Alg/Ca-Fe@PDA gel beads remained compact, even after compression
into flat discs. This result suggests that the MAFCC-Alg/Ca-Fe@PDA gel beads had
high structural stability, which is consistent with the compressive strength results. This
increased structural stability suggests that the modification with MAFCC and PDA
reduces the risk of secondary pollution caused by physical damage, and this is of great
significance concerning the use of gel beads as catalysts with practical engineering
applications. In addition, the stability of the beads could have a significant effect on

their photocatalytic activity.

Figure S6. The appearance changes of (a) FeAlg and (b) MAFCC-Alg/Ca-Fe@PDA

under the same load.
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Table S2 Effect of FeCl; concentration on the iron and calcium content of MAFCC-

Alg/Ca-Fe.

FeCl; concentration (M)

MAFCC-Alg/Ca-Fe
0 0.05 0.1 0.3 0.5 0.7 0.9

Calcium content (%) 16.35 030 0.24 0.16 0.084 0.049 0.034

Iron content (%) 0.14 931 1025 11.69 11.76 12.24 12.22

Experimental conditions: CaCl, concentration = 5 wt%; loading time = 12 h.
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Figure S7. Schematic diagram of the synthesis process of MAFCC-Alg/Ca-Fe@PDA.
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3.4. Proposed Photo-Fenton Rreaction Mechanism. The quenching experiments
were carried out to verify the active species involved in the photo-Fenton process
further. As shown in Figure S8, the degradation of MB decreased slightly after the
addition of tertiary butyl alcohol (TBA, a -OH scavenger) and EDTA (a hole scavenger)
into the reaction system, indicating that -OH and holes have roles in the catalytic
degradation reaction. After the addition of ethanol (an electron scavenger), the
degradation of MB was significantly reduced, whereas the introduction of 1.4-
benzoquinone (BQ, a ‘O, scavenger) had almost no effect on the degradation of MB,
suggesting that -O,™ is not a key species in this system. In summary, -OH electrons and
holes are the main active species involved in MB degradation in our photo-Fenton

MAFCC-Alg/Ca-Fe@PDA system.
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Figure S8. Effect of radical scavengers on MB degradation. TBA: tert-Butyl amine;
BQ: benzoquinone; EDTA: ethyelenediaminetetraacetic acid. Reaction conditions: C
(MB) =50 mg L', [H,O,] = 18 mM, [catalyst] = 1 g L™!, temperature =25 °C, and pH
=35.
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Figure S9. LC-MS molecular mass profiles of intermediates.
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Table S3 Main intermediates from the degradation of MB determined by LC-MS.

Molecular formula m/z Structural formula
N.
S
1 Ci6H1sN3S 284 HGKN/@SD\N/CHG
(IIH3 (l:Hs
JOBSE
2 Ci14H14N3S 256 H3C\N s+ NH,
du,
H,
3 C12H10N3S 228 HZN/CENE/Q\NHZ
N
4 C1,H3N3SO 247 /[;E D\
H,N S* NH,
5 CgH{1NSOsNa 224 s()sy«)i:l\n/c“3
du,
H,N
6 CgHgNzOz 164 SO3N:©\N/CH3
&,
H,N
7 CgHoN>SOs 217 \©\N _cHo
(,:HO
HO OH
8 CsHsO3Na 149 /®/
HO
HO
9 CoH;05N 139 \©\
NO,
OH
10 C,HsNO4N 130
2HsEaa O,N—C——CH,OH
H
1 OH
B C4H0O5 102 0/\/\/
4 H /
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Figure S10. Proposed degradation pathway of MB in photo—Fenton process.
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