Supporting Information

Cobalt Phosphate Nanocrystals: A Catalase-Like Nanozyme and in Situ Enzyme Encapsulating Carrier for Efficient Chemoenzymatic Synthesis of α -Keto Acid

Zhenfu Wang,¹ Yang Liu,³ Xiaoyan Dong,^{1,2} Yan Sun*,^{1,2}

Tianjin University, Tianjin 300350, China.

(Ministry of Education), Tianjin University, Tianjin 300350, China.

¹ Department of Biochemical Engineering, School of Chemical Engineering and Technology,

² Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology

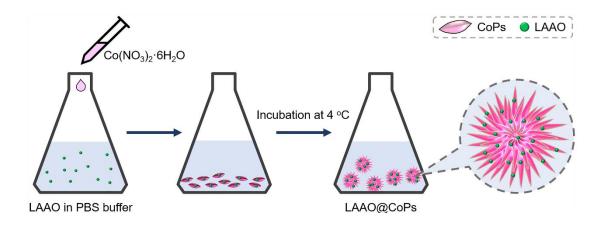
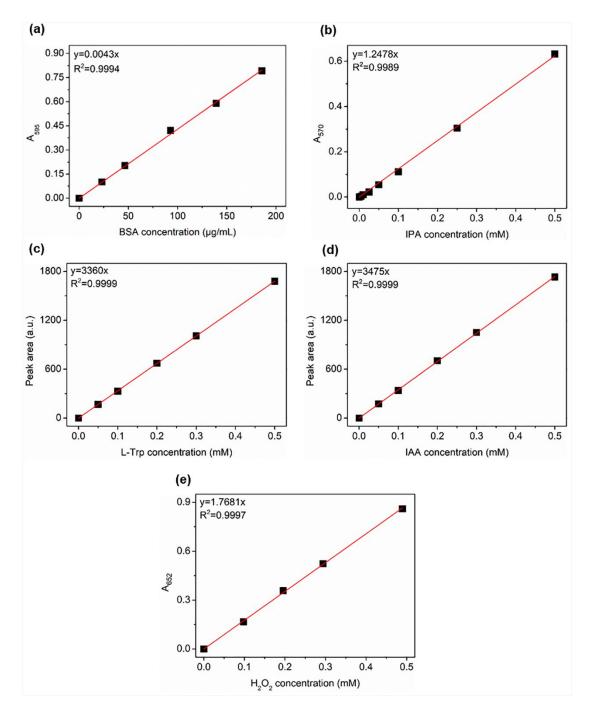

³ Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology
Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong
515063, P.R. China.
*E-mail: ysun@tju.edu.cn.
Table of contents:
1. Supplementary Tables (Table S1)
2. Supplementary Figures (Figures S1-S8)

Table S1. Performance comparison of different cascade catalysis systems for α -keto acids synthesis.


Catalyst	Catalyst preparation	Substrate concentration	Conversion yield	TOF based on AAO ^a	Reference
DAAO from <i>Trigonopsis</i> variabilis and bovine CAT	DAAO immobilization on functionalized silica bead,	50 mM alanine	90.0% pyruvate	0.79 min ⁻¹	[38]
DAAO from <i>Trigonopsis</i> variabilis and bovine CAT	Coimmobilization on functionalized agarose bead	20 mM phenyalanine	98.0% phenylpyruvic acid	2.86 min ⁻¹	[39]
LAAO from <i>Crotalus</i> adamanteus and Pt	Immobilization on Pt@UiO-66	0.5 mM L-Trp	99.7% IPA	19.25 min ⁻¹	[19]

LAAO from Crotalus	In situ encapsulation of LAAO in				
	C _o D _o	0.5 mM L-Trp	100.0% IPA	16.33 min ⁻¹	This work
adamanteus and CoPs	CoPs				

 $^{^{\}mathrm{a}}$ TOF based on AAO is expressed as molecules of α -keto acid produced per minute per molecule of AAO.

Figure S1. Schematic illustration of the preparation of LAAO@CoPs. Preparation conditions: 0.2 mg/mL LAAO, 10 mM $Co(NO_3)_2 \cdot 6H_2O$, 10 mM phosphate buffer (pH 8.5), 4 °C, 24 h.

Figure S2. (a) Calibration curve of bovine serum albumin measured by Bradford method, the wavelength for the spectrophotometry measurement was 595 nm; (b) Calibration curve of IPA, the wavelength for the spectrophotometry measurement of IPA was 570 nm; (c) Calibration curve of L-Trp; (d) Calibration curve of IAA; (e) Calibration curve of H₂O₂. The wavelength for the HPLC

detection of L-Trp and IAA was 280 nm. The wavelength for the spectrophotometry measurement of $\rm H_2O_2$ was 652 nm.

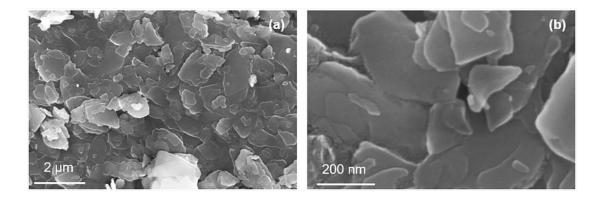
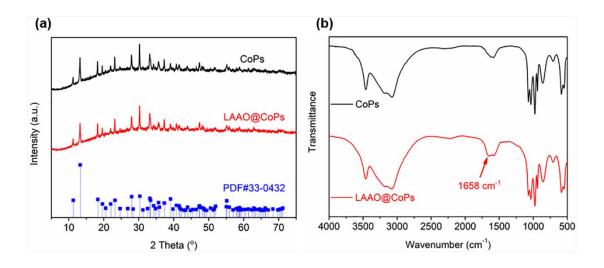
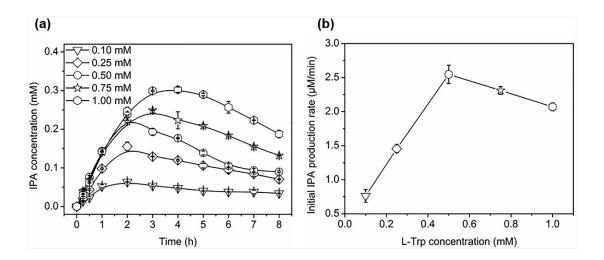
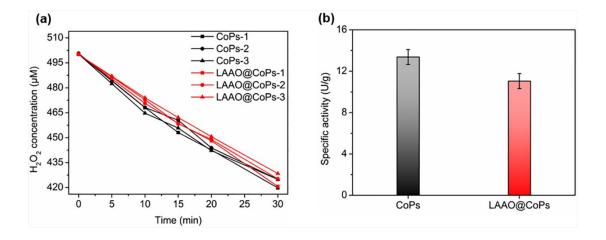
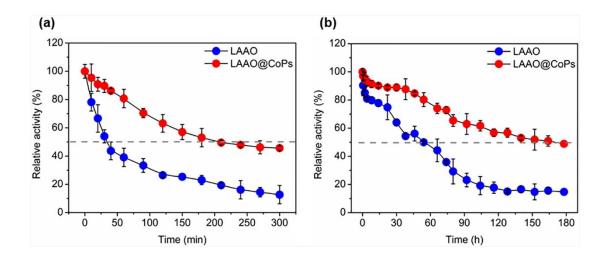


Figure S3. SEM images of CoPs at two amplifications, (a) $2 \mu m$, (b) 200 nm.


Figure S4. (a) XRD patterns and (b) FTIR spectra of CoPs and LAAO@CoPs.

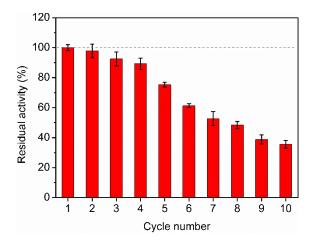

Figure S5. (a) Time course of IPA concentration in the reactions catalyzed by LAAO at different initial L-Trp concentrations; (b) Initial IPA production rate catalyzed by LAAO as a function of L-Trp concentration. Reaction condition: 0.01 mg/mL LAAO, 50 mM HEPES buffer (pH 8.0), 25 °C. Error bars represent standard deviations from triplicate experiments.

Figure S6. (a) H_2O_2 decomposition performance of CoPs and LAAO@CoPs; (b) Specific activities of CoPs and LAAO@CoPs for H_2O_2 decomposition. Reaction condition: 0.5 mM H_2O_2 , 0.25 mg/mL CoPs or LAAO@CoPs, 50 mM HEPES buffer (pH 8.0), 25 °C. Error bars represent standard deviations from triplicate experiments.

Figure S7. (a) Thermal stability of LAAO and LAAO@CoPs at 40 °C; (b) Storage stability of LAAO and LAAO@CoPs at 25 °C. Reaction condition: 0.5 mM L-Trp, 0.01 mg/mL LAAO or 0.25 mg/mL LAAO@CoPs (0.01 mg/mL LAAO), 50 mM HEPES buffer (pH 8.0), 25 °C. Error bars represent standard deviations from triplicate experiments.

Figure S8. Reusability of LAAO@CoPs. Reaction condition: 0.5 mM L-Trp, 0.25 mg/mL LAAO@CoPs (0.01 mg/mL LAAO), 50 mM HEPES buffer (pH 8.0), 25 °C. Error bars represent standard deviations from triplicate experiments.