Supporting Information

Enhanced Surface-Enhanced Raman Scattering Activity of MoS₂-Ag-Reduced Graphene Oxide: Structure-Mediated Excitonic Transition

Shuang Guo¹, Sila Jin¹, Eungyeong Park¹, Lei Chen^{2,*}, Lin Guo³, Young Mee Jung^{1,*}

¹Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.

²Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P.R. China.

³State Key Laboratory Supramolecular Structure and Materials, Jilin University, Changchun 130012, P.R. China.

Corresponding Authors

*To whom correspondence should be addressed .:

Lei Chen (chenlei@jlnu.edu.cn); Young Mee Jung (ymjung@kangwon.ac.kr)

Figure S1. Analysis of XPS spectra of Ag 3d for MoS₂-Ag-rGO structures.

Figure S2. Reproducibility (a) and the limit of detection (b) of the SERS spectra of MoS_2 -Ag-rGO substrates with MB as the probe molecule under 633 nm laser irradiation.