Grassmann extrapolation of density matrices for Born-Oppenheimer molecular dynamics
 Supplementary information

Étienne Polack
Geneviève Dusson
Benjamin Stamm
Filippo Lipparini

September 17, 2021

Supplementary figure

Figure 1: Total energy ($\mathrm{kcal} / \mathrm{mol}$) as a function of simulation time (fs) for 3 HF comparing G-Ext(3), G-Ext(6) and XLBO with McWeeny purification, using a convergence threshold for the SCF algorithm of 10^{-6}. The total energy was shifted of $+505000 \mathrm{kcal} / \mathrm{mol}$ for readability.

Grassmann Exponential and Logarithm maps

The Grassmann manifold is a differential manifold and, for any given $D_{0}=C_{0} C_{0}^{\top} \in$ $\mathcal{G} r(N, \mathcal{N})$ with $D_{0}:=D_{\mathrm{R}_{0}}$ and $C_{0}:=C_{\mathrm{R}_{0}}$ for fixed R_{0}, the tangent space is characterized by

$$
\begin{equation*}
\mathcal{T}_{D_{0}}=\left\{\Gamma \in \mathbb{R}^{\mathcal{N} \times N} \mid C_{0}^{\boldsymbol{\top}} \Gamma=0\right\} \subset \mathbb{R}^{\mathcal{N} \times N} . \tag{1}
\end{equation*}
$$

Note that the tangent space is a linear space. One can then introduce the Grassmann exponential which maps tangent vectors on $\mathcal{T}_{D_{0}}$ to the manifold $\mathcal{G} r(N, \mathcal{N})$ in a locally bijective manner around D_{0}. Indeed, it is not only an abstract tool from differential geometry, but it can be computed in practice involving the matrix exponential. By complementing C_{0} with orthonormal columns to obtain $\left(C_{0}, C_{\perp}\right) \in O(\mathcal{N})$, where $O(\mathcal{N})$ denotes the group of orthogonal matrices of dimension $\mathcal{N} \times \mathcal{N}$, and $\Gamma \in \mathcal{T}_{D_{0}}$ we have

$$
\operatorname{Exp}_{D_{0}}(\Gamma)=C C^{\boldsymbol{\top}}, \quad C=\left(C_{0}, C_{\perp}\right) \exp \left(\begin{array}{cc}
0 & -B^{\boldsymbol{\top}} \tag{2}\\
B & 0
\end{array}\right) \mathfrak{I}_{\mathcal{N}, N} .
$$

Here, \exp denotes the matrix exponential function, the matrix $B \in \mathbb{R}^{(\mathcal{N}-N) \times N}$ contains expansion coefficients of columns of Γ in a span of columns of C_{\perp} such that $\Gamma=C_{\perp} B$ and $\mathbf{I}_{\mathcal{N}, N}=\left(\mathbf{I}_{N}, 0\right)^{\top} \in \mathbb{R}^{\mathcal{N}} \times N$ are the first N columns of the $\mathcal{N} \times \mathcal{N}$ identity matrix. As described in $[1,2]$, the Grassmann exponential can then be equivalently expressed by

$$
\begin{equation*}
\operatorname{Exp}_{D_{0}}(\Gamma)=C C^{\top}, \quad C=\left[C_{0} V_{e} \cos \left(\Sigma_{e}\right)+U_{e} \sin \left(\Sigma_{e}\right)\right] V_{e}^{\top} \tag{3}
\end{equation*}
$$

by means of a singular value decomposition (SVD) of the matrix $\Gamma=U_{e} \Sigma_{e} V_{e}^{\top}$.
The inverse function is the so-called Grassmann logarithm $\log _{D_{0}}$ (see, e.g., $[1,2]$) which maps any $D=C C^{\top} \in \mathcal{G} r(N, \mathcal{N})$ in a neighborhood of D_{0} to the tangent space $\mathcal{T}_{D_{0}}$ by

$$
\begin{equation*}
\log _{D_{0}}(D)=U_{\ell} \arctan \left(\Sigma_{\ell}\right) V_{\ell}^{\top}, \tag{4}
\end{equation*}
$$

using the following SVD decomposition

$$
\begin{equation*}
U_{\ell} \Sigma_{\ell} V_{\ell}^{\top}=L \quad \text { with } \quad L=C\left(C_{0}^{\top} C\right)^{-1}-C_{0} . \tag{5}
\end{equation*}
$$

References

[1] Alan. Edelman, Tomás A. Arias, and Steven T. Smith. The Geometry of Algorithms with Orthogonality Constraints. SIAM J. Matrix Anal. Appl., 20(2):303-353, 1998-01-01.
[2] Ralf Zimmermann. Manifold interpolation and model reduction, 2019. http://arxiv.org/abs/1902.06502.

