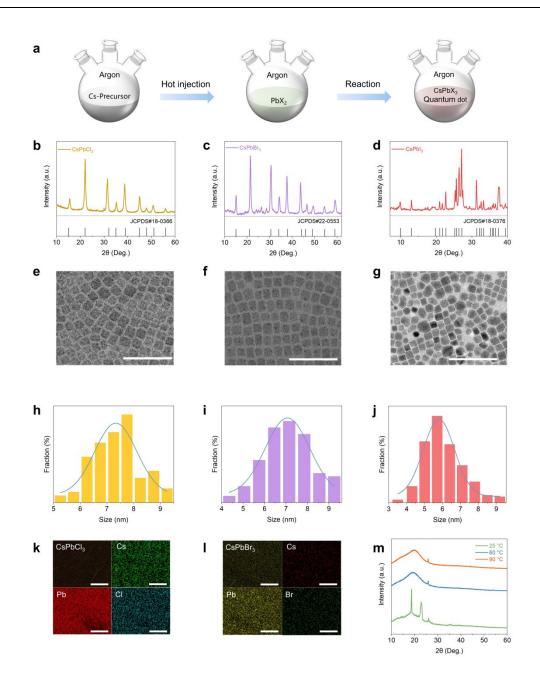
Supporting Information

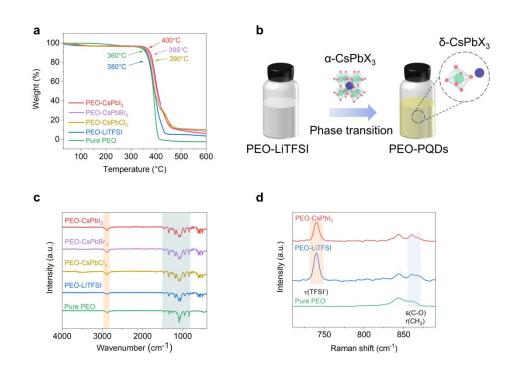
Perovskite quantum dots for Lewis acid-base interaction and interface engineering in lithium-metal batteries

Yuchen Wang[#], Wen Li[#], Zhong Xu, Yanting Xie, Yihan Wang, Haibo Zhao, Junfeng

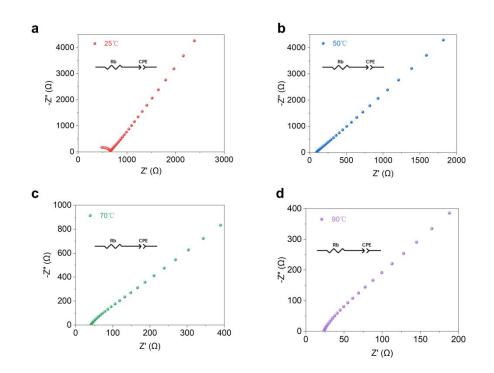
Huang, Weiqing Yang, Haitao Zhang*

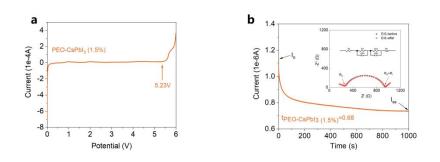

Key Laboratory of Advanced Technologies of Materials, Ministry of Education,

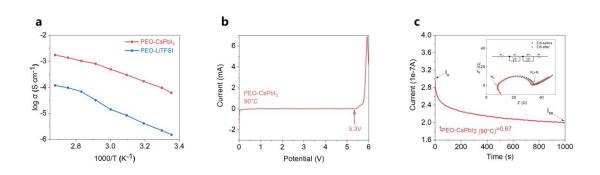
School of Materials Science and Engineering, Southwest Jiaotong University,

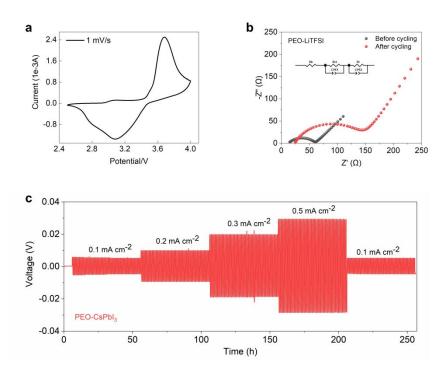

Chengdu 610031, China

[#]These authors contributed equally to this work.


*Corresponding author: <u>haitaozhang@swjtu.edu.cn</u> (H. T. Z.)


Figure S1. a, Detailed synthetic process of CsPbX₃ PQDs. **b, c, d,** XRD patterns of (**b**) CsPbCl₃, (**c**) CsPbBr₃ and (**d**) CsPbI₃ PQDs. **e, f, g,** TEM images of (**e**) CsPbCl₃, (**f**) CsPbBr₃ and (**g**) CsPbI₃ PQDs. **h, i, j,** Size distribution of (**h**) CsPbCl₃, (**i**) CsPbBr₃ and (**j**) CsPbI₃ PQD particles with a normal distribution. **k, l,** EDX elemental analysis of (**k**) PEO-CsPbCl₃ and (**l**) PEO-CsPbBr₃ SSEs. **m,** XRD patterns of PEO-CsPbI₃ SSEs at 25 °C, 60 °C and 90 °C. Scale bars: 50 nm in **e, f and g**, and 25 µm in **k** and **l**.


Figure S2. a, TGA curves of the thermal property of SSEs. **b,** The phase transition process of CsPbX₃ PQDs. **c,** FTIR spectra of pure PEO, PEO-LiTFSI, and PEO-CsPbX₃ SSEs at 4000-400 cm⁻¹. **d,** Raman spectra of pure PEO, PEO-LiTFSI, and PEO-CsPbI₃ SSEs at 710-890 cm⁻¹.


Figure S3. a, b, c, d, Nyquist plots of PEO-CsPbI₃ SSEs at (**a**)25 °C, (**b**)50 °C, (**c**)70 °C, (**d**)90 °C.

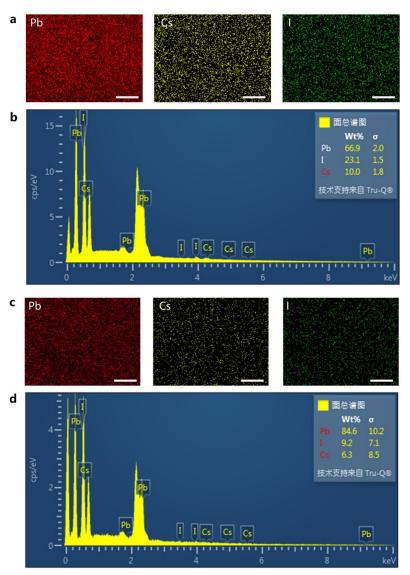

Figure S4. a, Electrochemical stability windows of 1.5% doped PEO-CsPbI₃ SSE. **b**, Lithium-ion transference number of 1.5% doped PEO-CsPbI₃ SSE.

Figure S5. a, Arrhenius plots of ionic conductivity of PEO-CsPbI₃ and PEO-LiTFSI SSEs. **b,** Electrochemical stability window of PEO-CsPbI₃ SSE at 90 °C. **c,** Lithium-ion transference number of PEO-CsPbI₃ SSE at 90 °C.

Figure S6. a, Cycling voltammetry curves of LMBs with PEO-CsPbI₃ SSEs at the rate of 1 mV s ⁻¹ at 90°C, indicating the charging and discharging plateau is around 3.6 and 3.1 V, respectively. **b**, EIS spectra of Li/PEO-LiTFSI/LFP LMBs before and after 100 cycles at 0.1C at 90 °C. Inset: the equivalent circuit of the impedance spectra. **c**, Galvanostatic cycling curves of Li/PEO-CsPbI₃/Li batteries at various current densities at 90°C.

Figure S7. a, EDX elemental analysis of PEO-CsPbI₃ SSEs before battery test. **b,** element mass percentages of PEO-CsPbI₃ SSEs before battery test. **c,** EDX elemental analysis of PEO-CsPbI₃ SSEs after battery test. **d,** element mass percentages of PEO-CsPbI₃ SSEs after battery test.

Sample	T _g (°C)	T _m (°C)	$\Delta H_m (J g^{-1})$	χ _c (%)
Pure PEO	-56.5	62.62	156.69	77.19
PEO-LITFSI	-40.85	49.46	45.68	22.50
PEO-CsPbCl ₃	-48.24	44.45	38.61	19.02
$PEO-CsPbBr_3$	-46.31	43.93	36.43	17.95
PEO-CsPbl ₃	-50.03	42.13	33.14	16.32

Table S1. Thermal properties of SSEs.

Where T_g , T_m , ΔH_m and χ_c represent the glass transition temperature, melting point, melting enthalpy and crystallinity, respectively.

Table 52.1 The peaks and assignments for SSLS.							
Peak _ Assignment	Wavenumber/cm ⁻¹						
	Pure PEO	PEO-LiTFSI	$PEO-CsPbCl_3$	$PEO\text{-}CsPbBr_3$	$PEO\text{-}CsPbl_3$		
$\gamma(CH_2)_a$	841	842	842	842	842		
$\gamma(CH_2)_s$	961	959	959	959	959		
$\omega(CH_2)_a$	1360	1351	1351	1351	1351		
v(COC) _s	1059	1056	1058	1057	1057		
v(COC) _a	1092	1094	1091	1091	1091		
v(CF ₃) _s		1185	1186	1186	1187		
v(OH)	3460	3460	3460	3460	3460		

Table S2. FTIR peaks and assignments for SSEs.

Peak	Wavenumber/cm ⁻¹				
Assignment	Pure PEO	PEO-LITFSI	PEO-CsPbl ₃		
r(CF ₃)		275	277		
$r(SO_2)$		311, 326, 342	309, 325, 338		
b(COC)	362	362	362		
v(TFSI⁻)		740	740		
s(C-O) r(CH ₂)	860	860	860		
t(CH ₂)	1280	1280	1280		
s(CF ₃)		1242	1240		
s(C-C) s(C-O)	1140	1140	1140		
s(SO ₂)		1136	1140		

Table S3. Raman peaks and assignments for SSEs.