Electronic Supporting Information

ForCatalytic Synergy Using $\mathrm{Al}(\mathrm{III})$ and Group 1 Metals toAccelerate Epoxide and Anhydride Ring OpeningCopolymerizations
Wilfred T. Diment ${ }^{\text {a }}$, Georgina L. Gregory ${ }^{\text {a }}$, Ryan W. F. Kerr ${ }^{\text {a }}$,Andreas Phanopoulos ${ }^{\text {a }}$, Antoine Buchard ${ }^{\text {b }}$, Charlotte K.Williams ${ }^{\text {a夫 }}$${ }^{2}$ Chemistry Research Laboratory, Department of Chemistry,University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.${ }^{\text {b }}$ Department of Chemistry, University of Bath, Claverton Down,Bath BA2 7AY, UK
General Procedures and Materials 5
Methods 6
Synthesis of Complexes 7
Representative Polymerization 11
Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\left({ }^{*}\right)$) of complex 1. 12
Figure S2. ${ }^{13} \mathrm{C}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\left({ }^{*}\right)$) of complex 1 12
Figure S3. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1 13
Figure S4. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1 13
Figure S5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1. 14
Figure S6. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1 14
Figure S7. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 2 15
Figure S8. ${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 2 15
Figure S9. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex $\mathbf{2}$. 16
Figure S10. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2 16
Figure S11. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2 17
Figure S12. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2. 17
Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 3 18
Figure S14. ${ }^{13} \mathrm{C}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 3 18
Figure S15. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3 19
Figure S16. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3 19
Figure S17. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3 20
Figure S18. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3 20
Figure S19. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 4 21
Figure S20. ${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 4. 21
Figure S21. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4 22
Figure S22. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4. 22
Figure S23. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4 23
Figure S24. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4. 23
Figure S25. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of [$\left.\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$ 24
Figure S26. ${ }^{13} \mathrm{C}$ NMR Spectrum ($176 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of [$\left.\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$. 24
Figure S27. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of [$\left.\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$ 25
Figure S28. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of [$\left.\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$ 25
Figure S29. ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of $\left[\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$ 26
Figure S30. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum (298 K, CDCl_{3}) of [$\left.\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$. 26
Figure S31. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)\right)$ of complex 5 27
Crystallographic Data for Complexes 1, 3, 4 and 5. 28
Figure S32. Molecular structure of complex 1 28
Figure S33. Molecular structure of complex 3 28
Figure S34. Molecular structure of complex 4 29
Figure S35. Molecular structure of complex 5 29
Table S1. Selected bond lengths and angles for complex 1 30
Table S2. Selected bond lengths and angles for complex 2 31
Table S3. Selected bond lengths and angles for complex 3 32
Table S4. Selected bond lengths and angles for complex 4 33
Table S6. Summary of Crystallographic Refinement Data for complexes 1-5. 35
Figure S36. Temperature stability of complex 2 36
Table S7. Data for the ROCOP of PA and CHO with complexes 1-4. 37
Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and PA 37
Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of purified PCHPE. 38
Figure S40. MALDI-ToF spectrum of PCHPE obtained with complex 2 38
Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and TCA. 39
Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and NBA 39
Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of tBGE and PA. 40
Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of SO and PA 40
Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of PO and PA 41
Figure S46. ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of vCHO and PA 41
Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of AGE and PA. 42
Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and CO_{2} (1 bar). 43
Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and CO_{2} (20 bar).44
Figure S50. GPC traces for polymers corresponding to Table 2, Entries 1-10 45
Table S8. Data for the ROCOP of epoxide and anhydrides with complex $\mathbf{2}$ at full anhydride conversion. 45
Figure S51. Plot of $[P A]_{t}$ vs. Time at a range of [2] 46
Chart S1. Structures of catalysts relating to Table 3, Entries 9, 11 and 14 47
Computational Details 48
Table S9. Summary of uncorrected computed structures 49
Table S10. Correction computed structures 49
Figure S52. Computed Reaction Profile for epoxide ring-opening. 50
Figure S53. IRC for $\mathrm{TS}_{\text {-IIK }}$ showing connected intermediates either side 51
Figure S54. IRC for $\mathrm{TS}_{|-|I A|}$ showing connected intermediates either side 52
Figure S55. Computed Pathways for lowest free enthalpy TS 53
Figure S56. Computed Pathways for lowest free enthalpy TS 54
References 54

General Procedures and Materials

All manipulations were carried out in a nitrogen filled glovebox, or dual manifold nitrogenvacuum Schlenk line. Solvents used for synthesis were collected from a solvent purification system (SPS), degassed with freeze-pump-thaw cycles and stored over 3 Å molecular sieves under an inert atmosphere, unless otherwise stated. All materials were stored under a nitrogen atmosphere, in a glovebox. Triethyl aluminium (93\%) was purchased from SigmaAldrich and was used as received. Group 1 acetate salts were purchased from Sigma Aldrich or Acros Organics and were dried at $100^{\circ} \mathrm{C}$ for 16 hours before use.

All epoxides (cyclohexene oxide (CHO, Acros Organics), propylene oxide (PO, Sigma Aldrich), vinyl-cyclohexene oxide (vCHO, Sigma Aldrich), tert-butyl glycidyl ether (tBGE, Sigma Aldrich), allyl glycidyl ether (AGE, Sigma Aldrich) and styrene oxide (SO, Sigma Aldrich)) were purified by stirring over calcium hydride followed by fractional distillation. Purification of phthalic anhydride (PA, Sigma Aldrich) was achieved though stirring in dry toluene. The supernatant was filtered, and the toluene subsequently removed in vacuo. The resultant white powder recrystallised from hot $\left(60^{\circ} \mathrm{C}\right)$ chloroform and subsequently sublimed under vacuum at $80^{\circ} \mathrm{C}$. Norbornene anhydride (NBA, Acros Organics) was purified through recrystallisation from dry ethyl acetate, followed by sublimation at $80^{\circ} \mathrm{C}$. Tricyclic anhydride (TCA) was synthesised according to a literature procedure, and was purified through recrystallisation from hexane followed by sublimation at $80^{\circ} \mathrm{C} .{ }^{1}$

The pro-ligand, [$\mathrm{L} v a n \mathrm{H}_{2}$], was synthesised through the Schiff base condensation reaction of o vanillin with 2,2-dimethyl-1,3-propanediamine. ${ }^{2}$ Synthesis of the salen pro-ligand, [$\mathrm{L}_{\text {sal }} \mathrm{H}_{2}$], was achieved following a literature procedure. ${ }^{3}$

Methods

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR and ${ }^{27} \mathrm{Al}$ spectra were obtained using a Bruker Avance III HD 400 NMR spectrometer. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR were obtained with either Bruker AV III HD 500 MHz NMR, Bruker NEO 600 MHz with broadband helium cryprobe, or Bruker AVIII 700 MHz with inverse TCl 1H/13C/15N cryoprobe spectrometers.

GPC analysis: Carried out using a Shimadzu LC-20AD instrument, equipped with a Refractive Index (RI) detector and two PSS SDV $5 \mu \mathrm{~m}$ linear M columns. The eluent used was HPLC-grade THF, heated to $30^{\circ} \mathrm{C}$, and with a flow rate of $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$.

MALDI-ToF spectrometry: Carried out on a Bruker Autoflex Speed MALDI-ToF spectrometer. Samples were prepared by preparing a 1:4:1 solution of polymer ($10 \mathrm{mg} \mathrm{mL}^{-1}$ in THF), dithranol ($10 \mathrm{mg} \mathrm{mL}^{-1}$ in THF) and KTFA ($10 \mathrm{mg} \mathrm{mL}^{-1}$ in THF). This solution was spotted twice on a MALDI plate and allowed to dry completely before analysis was undertaken.

Elemental analysis was carried out by Elemental Microanalysis Ltd, Hameldown Road, Okehampton Business Park, Exeter Road, Okehampton, Devon, EX20 1UB.

X-Ray Crystallography: Crystallographic data were collected, and structures solved, by Dr. Ryan Kerr and Dr. Andreas Phanopoulos. Air sensitive crystalline samples were isolated in a nitrogen filled glovebox and immersed in fluorinated oil. Crystalline samples were mounted on a MiTeGen Micromount, and cooled to 150 K with dry nitrogen using an Oxford Cryosystem. ${ }^{4}$ Data was collected using an Oxford Diffraction Supernova diffractometer using $\mathrm{Cu} \mathrm{K}_{\alpha}(\lambda=1.5417 \AA)$ or $\operatorname{Mo} \mathrm{K}_{\alpha}(\lambda=0.7107 \AA)$ radiation. The resulting reflection data was processed with CrysAlis Pro. ${ }^{5}$ The crystal structures were solved using the SHELXT program and least-square refined using the SHELXL program within the Olex2 system suite. ${ }^{6-8}$

Synthesis of Complexes

Synthesis of $L_{\text {van }} A I O A C$

The synthesis of $\mathrm{L}_{\text {van }} A I O A c$ was conducted using a modified literature preparation. ${ }^{9}$ Under inert conditions, AlEt_{3} ($191 \mathrm{mg}, 1.67 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{L}_{\mathrm{van}} \mathrm{H}_{2}(550 \mathrm{mg}$, 1.48 mmol) in THF (5 mL) at room temperature, and stirred for 2 hours. Subsequently, glacial acetic acid ($85 \mu \mathrm{~L}, 1.48 \mathrm{mmol}$) was added, and the reaction was stirred for 16 hours at room temperature, resulting in the formation of a yellow precipitate. The precipitate was isolated via centrifuge, and subsequently washed with THF ($1 \times 10 \mathrm{~mL}$) and hexane ($1 \times 10 \mathrm{~mL}$) before being dried under vacuum, to give $\mathrm{L}_{\text {van }} \mathrm{AlOAc}$ as a pale yellow precipitate ($496 \mathrm{mg}, 1.09 \mathrm{mmol}$, 74\%). The NMR spectra were consistent with those previously reported. ${ }^{9}$

Synthesis of $\mathrm{L}_{\mathrm{van}} \mathrm{AlNa}(\mathrm{OAC})_{2}(1)$

Under inert conditions, $\mathrm{NaOAc}(17 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added to a stirred solution of LvanAIOAc ($95 \mathrm{mg}, 0.21 \mathrm{mmol}$) in chloroform (5 mL) at room temperature, and stirred for 16 hours. The solvent was removed, and the crude product purified by recrystallisation from a saturated solution of dichloromethane layered with hexane, to give complex $\mathbf{1}$ as pale yellow crystals. ($72 \mathrm{mg}, 0.13 \mathrm{mmol}, 64 \%$). Diffraction quality crystals were obtained through the same recrystallisation method.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 7.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{e}\right), 6.81\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}^{d}\right), 6.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7.6 \mathrm{~Hz}, \mathrm{H}^{b}\right), 6.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}^{c}\right), 3.70\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}^{f}\right), 3.23\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{a}\right), 1.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{h}\right), 1.15$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{g}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 176 \mathrm{~Hz}, 298 \mathrm{~K}\right): \delta 174.2\left(\mathrm{C}^{9}\right), 167.5\left(\mathrm{C}^{h}\right), 155.7\left(\mathrm{C}^{g}\right), 150.8\left(\mathrm{C}^{b}\right)$, $125.6\left(C^{e}\right), 119.5\left(C^{f}\right), 114.4\left(C^{d}\right.$ or $\left.C^{c}\right), 114.5\left(C^{d}\right.$ or $\left.C^{c}\right), 74.3\left(C^{j}\right), 55.5\left(C^{d}\right), 35.2\left(C^{j}\right), 25.0\left(C^{m}\right)$, 24.7 (C^{k}) ppm. ${ }^{27}$ AI NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 104 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta-1.0 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{AlNaN}_{2} \mathrm{O}_{8}\right)$; C, 55.97; H, 5.64; N, 5.22 \%. Found: C, 56.25; H, 5.48; N, 5.29 \%.

Synthesis of $\mathrm{L}_{\text {van }} \operatorname{AlK}(\mathrm{OAC})_{2}(2)$

Under inert conditions, KOAc ($18 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{L}_{\text {van }} \mathrm{AlOAc}$ (85 mg, 0.18 mmol) in chloroform at room temperature, and stirred for 16 hours. Subsequently, the solution was filtered, and the solvent removed under vacuum to give $\mathbf{2}$ as a pale yellow powder (102 mg, $0.18 \mathrm{mmol}, 98 \%)$. Diffraction quality crystals were grown from a saturated solution of $\mathbf{2}$ in chlorform, layered with hexane.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 7.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{e}\right), 6.78\left(2 \mathrm{H}, \mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, \mathrm{H}^{d}\right), 6.63(2 \mathrm{H}$, $\left.\mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{b}\right), 6.52\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}^{c}\right), 3.75\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}^{f}\right), 3.39\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{a}\right), 1.53\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{h}\right)$, $1.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{g}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 173.5\left(\mathrm{C}^{\prime}\right), 166.7\left(\mathrm{C}^{h}\right), 156.4\left(\mathrm{C}^{g}\right)$, $151.1\left(C^{b}\right), 125.2\left(C^{e}\right), 120.0\left(C^{f}\right), 114.1\left(C^{d}\right), 113.7\left(C^{c}\right), 74.0\left(C^{j}\right), 55.2\left(C^{a}\right), 35.6\left(C^{j}\right), 24.9\left(C^{k}\right)$, $24.2\left(\mathrm{C}^{m}\right)$ ppm. ${ }^{27}$ AI NMR $\left(\mathrm{CDCl}_{3}, 104 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta-1.2 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{AlKN} \mathrm{N}_{2} \mathrm{O}_{8}\right)$; C, 54.34; H, 5.47; N, 5.07 \%. Found: C, 54.70; H, 5.59; N, 4.74 \%.

Synthesis of $\mathrm{L}_{\mathrm{van}} \mathrm{AlRb}(\mathrm{OAc})_{2}$ (3)

Under inert conditions, RbOAc (16 mg, 0.11 mmol) was added to a stirred solution of LvanAIOAc ($55 \mathrm{mg}, 0.11 \mathrm{mmol}$) in chloroform at room temperature, and stirred for 16 hours. Subsequently, the solution was filtered, and the solvent removed under vacuum. The crude product was washed with toluene ($1 \times 10 \mathrm{~mL}$), and subsequently dried under vacuum to give 3 as a pale yellow powder ($57 \mathrm{mg}, 0.95 \mathrm{mmol}, 86 \%$). Diffraction quality crystals were grown from a saturated solution of $\mathbf{3}$ in chloroform, layered with hexane.

[^0]$\left(\mathrm{C}^{m}\right) \mathrm{ppm} .{ }^{27} \mathrm{Al}$ NMR $\left(\mathrm{CDCl}_{3}, 104 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta-2.1 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{2} \mathrm{H}_{30} \mathrm{AlRbN}_{2} \mathrm{O}_{8}\right) ; \mathrm{C}$, 50.13; H, 5.05; N, 4.68 \%. Found: C, 50.17; H, 4.8.; N, 4.61 \%.

Synthesis of $\mathrm{L}_{\mathrm{van}} \mathrm{AlCs}(\mathrm{OAC})_{2}(4)$

Under inert conditions, CsOAc ($39 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{L}_{\mathrm{van}} \mathrm{AlOAc}$ ($95 \mathrm{mg}, 0.20 \mathrm{mmol}$) in chloroform at room temperature, and stirred for 16 hours. Subsequently the solvent removed under vacuum to give $\mathbf{4}$ as a pale yellow powder (131 mg , $0.20 \mathrm{mmol}, 99 \%)$. Diffraction quality crystals were grown from a saturated solution of $\mathbf{4}$ in chloroform, layered with hexane.
${ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 7.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{e}\right), 6.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}^{d}\right), 6.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7.9 \mathrm{~Hz}, \mathrm{H}^{b}\right), 6.54\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}^{c}\right), 3.71\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}^{f}\right), 3.51\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{a}\right), 1.58\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{h}\right), 1.18$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{g}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 174.1\left(\mathrm{C}^{\prime}\right) 167.4\left(\mathrm{C}^{h}\right), 156.4\left(\mathrm{C}^{g}\right), 151.1$ $\left(C^{b}\right), 125.6\left(C^{e}\right), 120.2\left(C^{f}\right), 114.6\left(C^{d}\right) .114 .2\left(C^{c}\right), 72.8\left(C^{i}\right), 54.8\left(C^{a}\right), 35.7\left(C^{j}\right), 25.5\left(C^{k}\right), 23.9$ (${ }^{m}$) ppm. ${ }^{27}$ Al NMR ($\left.\mathrm{CDCl}_{3}, 104 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta-2.5 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{AlCsN}_{2} \mathrm{O}_{8}\right) ; \mathrm{C}$, 46.45 ; H, 4.68; N, 4.33 \%. Found: C, 46.85; H, 4.55; N, 4.38 \%.

Synthesis of $\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})$

[$\left.L_{\text {sal }} \mathrm{AlEt}\right]$ was synthesised following an adapted literature procedure. ${ }^{10}$ Under inert conditions, AlEt $_{3}(113 \mathrm{mg}, 0.99 \mathrm{mmol})$ was added to a stirred solution of $\left[\mathrm{L}_{\text {sal }} \mathrm{H}_{2}\right](493 \mathrm{mg}, 0.92 \mathrm{mmol})$ in hexane (5 mL) at room temperature, and stirred for 16 hours, resulting in the formation [$L_{\text {sal }} A \mathrm{~A} E t$] as a yellow precipitate. The precipitate was isolated via centrifuge, and a crude yield was recorded ($137 \mathrm{mg}, 0.23 \mathrm{mmol}, 25 \%$). The crude product was subsequently dissolved in toluene before glacial acetic acid ($15 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) was added, and the reaction was stirred for 16 hours at room temperature, resulting in the formation of a yellow precipitate. The precipitate was isolated via centrifuge, and subsequently washed with hexane ($1 \times 10 \mathrm{~mL}$)
before being dried under vacuum, to give $\left[\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$ as a pale yellow precipitate $(0.117 \mathrm{~g}$, $0.19 \mathrm{mmol}, 83 \%)$.
${ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{e}\right), 7.48\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, \mathrm{H}^{b}\right), 7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=2.6 \mathrm{~Hz}, \mathrm{H}^{d}\right), 3.53\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{H}^{f}\right.$ or $\left.\mathrm{H}^{g}\right), 3.32\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{H}^{f}\right.$ or $\left.\mathrm{H}^{g}\right), 1.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}^{j}\right), 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{c}}\right), 1.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}^{d}\right), 1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}^{h}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}^{j}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176\right.$ $\mathrm{MHz}, 298 \mathrm{~K}): \delta 186.7\left(\mathrm{C}^{p}\right), 170.0\left(\mathrm{C}^{k}\right), 163.9\left(\mathrm{C}^{h}\right), 140.8\left(\mathrm{C}^{c}\right), 137.4\left(\mathrm{C}^{e}\right), 130.6\left(\mathrm{C}^{d}\right), 127.5\left(\mathrm{C}^{f}\right)$, $118.5\left(C^{g}\right), 67.9\left(C^{\prime}\right), 36.8\left(C^{m}\right), 35.4\left(C^{n}\right), 34.1\left(C^{j}\right)$, $31.6\left(C^{a}\right)$, $29.7\left(C^{j}\right)$, $26.3\left(C^{n}\right.$ or $\left.C^{0}\right), 25.7\left(C^{n}\right.$ or C^{0}), $20.5\left(\mathrm{C}^{q}\right)$ ppm. ${ }^{27} \mathrm{Al}$ NMR ($\left.\mathrm{CDCl}_{3}, 104 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 16.3 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{AlNaN} \mathrm{N}_{2} \mathrm{O}_{8}\right) ; \mathrm{C}, 71.81 ; \mathrm{H}, 8.96 ; \mathrm{N}, 4.53$ \%. Found: C, $70.43 ; \mathrm{H}, 8.92 ; \mathrm{N}, 4.13 \%$.

Synthesis of $\mathrm{L}_{\text {van }} \mathrm{AlK}(\mathrm{OBz})_{2}(5)$

The synthesis of $\mathrm{L}_{\mathrm{van}} \mathrm{AlOBz}$ was carried out in an analogous manner to $\mathrm{L}_{\text {van }} \mathrm{AlOAc}$, with benzoic acid used in place of acetic acid. under inert conditions, benzoic acid ($57 \mathrm{mg}, 0.47 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{L}_{\text {vanAIEt }}(198 \mathrm{mg}, 0.47 \mathrm{mmol})$ in THF (5 mL) and heated for 16 hours at $60^{\circ} \mathrm{C}$, resulting in the formation of a yellow precipitate. The precipitate was isolated via centrifuge and washed with hexane ($1 \times 5 \mathrm{~mL}$) to yield $\mathrm{L}_{\text {van }} \mathrm{AlOBz}$ as a yellow powder (202 $\mathrm{mg}, 0.39 \mathrm{mmol}, 84 \%)$, and was used without further purification. Under inert conditions, KOBz ($35 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{L}_{\text {van }} \mathrm{AlOBz}(113 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry chloroform at room temperature, and stirred for 16 hours. Subsequently, the reaction solution was filtered, and the solvent removed under vacuum to give $\mathbf{5}$ as a pale yellow powder ($127 \mathrm{mg}, 0.19 \mathrm{mmol}, 86 \%$). A ${ }^{1} \mathrm{H}$ NMR was taken of the crude product to confirm formation. Diffraction quality crystals were grown from a saturated solution of 5 in THF layered with hexane. This complex was not utilised in catalysis and so further characterisation was not undertaken.
${ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{e}\right), 7.73\left(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}^{h}\right), 7.31(2 \mathrm{H}, \mathrm{t}$, $\left.H^{j}\right), 7.23\left(4 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.71\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}^{d}\right.$ or $\left.\mathrm{H}^{b}\right), 6.45\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}^{d}\right.$ or $\left.\mathrm{H}^{b}\right), 6.37\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}^{c}\right), 3.96\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}^{f}\right), 3.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{a}\right), 1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{g}\right) \mathrm{ppm}$.

Representative Polymerization

Inside a nitrogen filled glovebox, the catalyst and desired monomers were added to a dried vial equipped with a magnetic stirrer bar. The vial was sealed with a melamine-cap containing a Teflon inlay, and further sealed with first Parafilm M and then electrical insulation tape. This sealed vial was then heated to $100^{\circ} \mathrm{C}$ for the time stated. Aliquoting was performed by first cooling the polymerisation vial in a cold water bath, before removing ca. $10 \mu \mathrm{~L}$ of the polymerisation mixture with a syringe in the glovebox. The polymerisations were quenched by exposing the reaction mixture to air, followed by removal of volatiles. $A^{1} \mathrm{H}$ NMR spectrum of the crude product was measured in CDCl_{3}. GPC samples were prepared by dissolving ca. 10 mg of the crude product in 1 mL HPLC grade THF and filtered before use. Polymers were purified by precipitation from methanol and dried under vacuum at $40^{\circ} \mathrm{C}$.

a

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0 |
| :--- |
| Chemical Shift (ppm) | | | | | | | | | | | | | | | | | | |

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\left(^{*}\right)$) of complex 1.

Figure S2. ${ }^{13} \mathrm{C}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\left({ }^{*}\right)$) of complex 1.

Figure S3. ${ }^{27}$ Al NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1.

Figure S4. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1.

Chemical Shift (ppm)

Figure S5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1.

Figure S6. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of complex 1.

Figure S7. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 2.

90	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									Chemica	(p								

Figure S8. ${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex $\mathbf{2}$.

Figure S9. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2.

Figure S10. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2.

Figure S11. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2.

Figure S12. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 2.

\mathbf{g}

Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 3.

Figure S14. ${ }^{13} \mathrm{C}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 3.

Figure S15. ${ }^{27} \mathrm{Al}$ NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3.

Figure S16. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3.

Figure S17. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3.

Figure S18. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 3.

Figure S19. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 4.

Figure S20. ${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 4.

Figure S21. ${ }^{27}$ AI NMR Spectrum ($104 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4.

Figure S22. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4.

Figure S23. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4.

Figure S24. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of complex 4.

Figure S25. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of [LsalAl(OAc)].

Figure S26. ${ }^{13} \mathrm{C}$ NMR Spectrum ($176 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of $\left[\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$.

Figure S27. ${ }^{27} \mathrm{Al}$ NMR Spectrum (104 MHz, $298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of [$\left.\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$.

Figure S28. ${ }^{1} \mathrm{H}$ COSY NMR Spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of [$\left.\mathrm{Lsal} \mathrm{Al}(\mathrm{OAc})\right]$.

Figure S29. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of $\left[\mathrm{L}_{\text {sal }} \mathrm{Al}(\mathrm{OAc})\right]$.

Figure S30. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR Spectrum ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of [Lsal $\left.\mathrm{Al}(\mathrm{OAc})\right]$.

Figure S31. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\left({ }^{*}\right)$) of complex 5.

Crystallographic Data for Complexes 1, 3, 4 and 5.

Figure S32. Molecular structure of complex 1. Obtained from X-ray diffraction experiments with thermal ellipsoids presented at 50% probability and H atoms omitted for clarity (Atom colour scheme: Al (orange), Na (purple), O (red), N (blue), C (greyscale/black). A) Structure of the dimer, showing acetate co-ligands bridging between two molecules of the complex. B) Structure of one half of the dimer, showing a 'bowl' confirmation ligand, and aluminate centre. Note that the two molecules within the dimer are related by symmetry in the crystal structure. C) Schematic showing key binding of both metals and acetate groups.

Figure S33. Molecular structure of complex 3. Obtained from X-ray diffraction experiments with thermal ellipsoids presented at 50% probability and H atoms omitted for clarity (Atom colour scheme: Al (orange), Rb (purple), O (red), N (blue), C (greyscale/black). A) Structure of the dimer, showing acetate co-ligands bridging between two molecules of the complex. B) Structure of one half of the dimer, showing a 'bowl' confirmation ligand, and aluminate centre C) Schematic showing key binding of both metals and acetate groups.

Figure S34. Molecular structure of complex 4. Obtained from X-ray diffraction experiments, with thermal ellipsoids presented at 50% probability and H atoms omitted for clarity (Atom colour scheme: Al (orange), Cs (purple), O (red), N (blue), C (black). A) Structure of the monomeric unit, showing acetate co-ligands bridging between molecules in the extended polymeric crystal structure. B) Schematic showing key binding of both metals and acetate groups

Figure S35. Molecular structure of complex 5. Obtained from X-ray diffraction experiments, with thermal ellipsoids presented at 50% probability and H atoms omitted for clarity (Atom colour scheme: Al (orange), K (purple), O (red), N (blue), C (greyscale/black). A) Structure of the dimer, showing benzoate co-ligands bridging between two molecules of the complex, and a molecule of THF bound to K(2). B) Schematic showing key binding of both metals, benzoate groups, and THF coordination.

Table S1. Selected bond lengths and angles for complex 1.

Bond	Bond Length (Å)	Bond	Bond Angle (${ }^{\circ}$)
$\mathrm{Al}(1 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})$	3.284	O(7a) - Al(1a) - O(5a)	169.21(7)
$\mathrm{Al}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})$	2.059(18)	$N(1 a)-\mathrm{Al}(1 a)-N(2 a)$	92.10(7)
Al(1a) - N(2a)	2.0350(17)	$N(1 a)-\mathrm{Al}(1 a)-\mathrm{O}(2 \mathrm{a})$	90.35(7)
$\mathrm{Al}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	1.8494(15)	$N(2 a)-A l(1 a)-O(3 a)$	91.06(7)
$\mathrm{Al}(1 \mathrm{a}-\mathrm{O}(3 \mathrm{a})$	1.8481(15)	$\mathrm{O}(2 \mathrm{a})-\mathrm{Al}(1 \mathrm{a})-\mathrm{O}(3 \mathrm{a})$	86.44(6)
$\mathrm{Al}(1 \mathrm{a})-\mathrm{O}(5 \mathrm{a})$	1.8967 (15)	$\mathrm{O}(1 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	64.95(5)
Al(1a) - O(7a)	$1.8694(16)$	$\mathrm{O}(2 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(3 \mathrm{a})$	64.76(5)
$\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$	2.5018(17)	$\mathrm{O}(3 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(4 \mathrm{a})$	64.69(5)
$\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	2.3521(16)	$\mathrm{O}(6 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$	86.40(6)
$\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(3 \mathrm{a})$	$2.3756(15)$	$\mathrm{O}(6 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	145.34(7)
$\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(4 \mathrm{a})$	$2.5013(18)$	$\mathrm{O}(6 \mathrm{a})-\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(6 \mathrm{~b})$	88.74(6)
$\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(6 \mathrm{a})$	2.4098(17)		
$\mathrm{Na}(1 \mathrm{a})-\mathrm{O}(6 \mathrm{~b})$	2.2934(16)		

Table S2. Selected bond lengths and angles for complex 2.

Bond	Bond Length (A)	Bond	Bond Angle (${ }^{\circ}$)
$\mathrm{Al}(1)-\mathrm{K}(1)$	3.665	$\mathrm{O}(7)-\mathrm{Al}(1)-\mathrm{O}(5)$	167.84(10)
$\mathrm{Al}(1)-\mathrm{N}(1)$	2.077(2)	$N(1)-\mathrm{Al}(1)-\mathrm{N}(2)$	90.84(10)
$\mathrm{Al}(1)-\mathrm{N}(2)$	2.038(2)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	89.49(9)
$\mathrm{Al}(1)-\mathrm{O}(2)$	1.842(2)	$\mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	90.13(9)
$\mathrm{Al}(1)-\mathrm{O}(3)$	1.854(2)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	89.57(9)
$\mathrm{Al}(1)-\mathrm{O}(5)$	1.905(2)	$\mathrm{O}(1)-\mathrm{K}(1)-\mathrm{O}(2)$	57.79(6)
$\mathrm{Al}(1)-\mathrm{O}(7)$	1.869(2)	$\mathrm{O}(2)-\mathrm{K}(1)-\mathrm{O}(3)$	56.95(6)
$\mathrm{K}(1)-\mathrm{O}(1)$	2.718(2)	$\mathrm{O}(3)-\mathrm{K}(1)-\mathrm{O}(4)$	56.31(6)
$\mathrm{K}(1)-\mathrm{O}(2)$	2.7220(19)	$\mathrm{O}(1)-\mathrm{K}(1)-\mathrm{O}(6)$	117.58(7)
$\mathrm{K}(1)-\mathrm{O}(3)$	$2.738(2)$	$\mathrm{O}(2)-\mathrm{K}(1)-\mathrm{O}(6)$	71.81(6)
$\mathrm{K}(1)-\mathrm{O}(4)$	2.853(2)	$\mathrm{O}(6)-\mathrm{K}(1)-\mathrm{O}(16)$	119.62(7)
$\mathrm{K}(1)-\mathrm{O}(6)$	2.673(2)	$\mathrm{O}(13)-\mathrm{Al}(2)-\mathrm{O}(15)$	169.18(10)
$\mathrm{K}(1)-\mathrm{O}(16)$	2.582(2)	$N(3)-\mathrm{Al}(2)-\mathrm{N}(4)$	89.64(10)
$\mathrm{Al}(2)-\mathrm{K}(2)$	3.519	$\mathrm{N}(3)-\mathrm{Al}(2)-\mathrm{O}(10)$	87.84(9)
$\mathrm{Al}(2)-\mathrm{N}(3)$	2.067(2)	$\mathrm{N}(4)-\mathrm{Al}(2)-\mathrm{O}(11)$	89.24(10)
$\mathrm{Al}(2)-\mathrm{N}(4)$	2.040(2)	$\mathrm{O}(10)-\mathrm{Al}(2)-\mathrm{O}(11)$	93.25(9)
$\mathrm{Al}(2)-\mathrm{O}(10)$	1.853(2)	$\mathrm{O}(9)-\mathrm{K}(2)-\mathrm{O}(10)$	57.91(6)
$\mathrm{Al}(2)-\mathrm{O}(11)$	1.843(2)	$\mathrm{O}(10)-\mathrm{K}(2)-\mathrm{O}(11)$	60.70(6)
$\mathrm{Al}(2)-\mathrm{O}(13)$	1.871(2)	$\mathrm{O}(11)-\mathrm{K}(2)-\mathrm{O}(12)$	57.68(6)
$\mathrm{Al}(2)-\mathrm{O}(15)$	1.907(2)	$\mathrm{O}(9)-\mathrm{K}(2)-\mathrm{O}(14)$	120.95(7)
$\mathrm{K}(2)-\mathrm{O}(9)$	2.781(2)	$\mathrm{O}(10)-\mathrm{K}(2)-\mathrm{O}(14)$	74.83(6)
$K(2)-O(10)$	2.668(2)	$\mathrm{O}(6)-\mathrm{K}(2)-\mathrm{O}(14)$	155.60(7)
$K(2)-O(11)$	2.649(2)		
$\mathrm{K}(2)-\mathrm{O}(12)$	2.809(2)		
$\mathrm{K}(2)-\mathrm{O}(14)$	2.662(2)		
$\mathrm{K}(2)-\mathrm{O}(6)$	2.728(2)		

Table S3. Selected bond lengths and angles for complex 3.

Bond	Bond Length (Å)	Bond	Bond Angle (${ }^{\circ}$)
$\mathrm{Al}(1)-\mathrm{Rb}(1)$	3.819	$\mathrm{O}(7)-\mathrm{Al}(1)-\mathrm{O}(5)$	167.42(7)
Al(1) - N(1)	$2.0445(18)$	$N(1)-\mathrm{Al}(1)-\mathrm{N}(2)$	90.17(7)
$\mathrm{Al}(1)-\mathrm{N}(2)$	$2.0900(17)$	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	89.92(7)
$\mathrm{Al}(1)-\mathrm{O}(2)$	$1.8632(15)$	$\mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	89.37(7)
$\mathrm{Al}(1)-\mathrm{O}(3)$	1.8456(15)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	90.56(6)
$\mathrm{Al}(1)-\mathrm{O}(5)$	$1.9103(16)$	$\mathrm{O}(1)-\mathrm{Rb}(1)-\mathrm{O}(2)$	54.45(4)
$\mathrm{Al}(1)-\mathrm{O}(7)$	$1.8678(15)$	$\mathrm{O}(2)-\mathrm{Rb}(1)-\mathrm{O}(3)$	54.45(4)
$\mathrm{Rb}(1)-\mathrm{O}(1)$	2.9229(16)	$\mathrm{O}(3)-\mathrm{Rb}(1)-\mathrm{O}(4)$	55.44(4)
$\mathrm{Rb}(1)-\mathrm{O}(2)$	2.8828(14)	$\mathrm{O}(1)-\mathrm{Rb}(1)-\mathrm{O}(6)$	110.30(5)
$\mathrm{Rb}(1)-\mathrm{O}(3)$	2.8780(13)	$\mathrm{O}(2)-\mathrm{Rb}(1)-\mathrm{O}(6)$	67.54(5)
$\mathrm{Rb}(1)-\mathrm{O}(4)$	2.8018(15)	$\mathrm{O}(6)-\mathrm{Rb}(1)-\mathrm{O}(16)$	122.50(5)
$\mathrm{Rb}(1)-\mathrm{O}(6)$	$2.7858(19)$	$\mathrm{O}(13)-\mathrm{Al}(2)-\mathrm{O}(15)$	167.69(7)
$\mathrm{Rb}(1)-\mathrm{O}(16)$	2.6979(17)	$\mathrm{N}(3)-\mathrm{Al}(2)-\mathrm{N}(4)$	89.55(7)
$\mathrm{Al}(2)-\mathrm{Rb}(2)$	3.678	$\mathrm{N}(3)-\mathrm{Al}(2)-\mathrm{O}(10)$	89.44(7)
$\mathrm{Al}(2)-\mathrm{N}(3)$	2.0450(19)	$\mathrm{N}(4)-\mathrm{Al}(2)-\mathrm{O}(11)$	87.96(7)
$\mathrm{Al}(2)-\mathrm{N}(4)$	2.0728(18)	$\mathrm{O}(10)-\mathrm{Al}(2)-\mathrm{O}(11)$	93.01(7)
$\mathrm{Al}(2)-\mathrm{O}(10)$	1.8418(15)	$\mathrm{O}(9)-\mathrm{Rb}(2)-\mathrm{O}(10)$	55.55(4)
$\mathrm{Al}(2)-\mathrm{O}(11)$	1.8561(15)	$\mathrm{O}(10)-\mathrm{Rb}(2)-\mathrm{O}(11)$	57.17(4)
$\mathrm{Al}(2)-\mathrm{O}(13)$	$1.8720(16)$	$\mathrm{O}(11)-\mathrm{Rb}(2)-\mathrm{O}(12)$	55.38(4)
$\mathrm{Al}(2)-\mathrm{O}(15)$	1.8936(16)	$\mathrm{O}(9)-\mathrm{Rb}(2)-\mathrm{O}(14)$	113.89(5)
$\mathrm{Rb}(2)-\mathrm{O}(9)$	2.8800(16)	$\mathrm{O}(10)-\mathrm{Rb}(2)-\mathrm{O}(14)$	70.76(5)
$\mathrm{Rb}(2)-\mathrm{O}(10)$	$2.7934(16)$	$\mathrm{O}(6)-\mathrm{Rb}(2)-\mathrm{O}(14)$	161.57(5)
$\mathrm{Rb}(2)-\mathrm{O}(11)$	$2.8135(14)$		
$\mathrm{Rb}(2)-\mathrm{O}(12)$	2.8872(16)		
$\mathrm{Rb}(2)-\mathrm{O}(14)$	$2.7746(17)$		
$\mathrm{Rb}(2)-\mathrm{O}(6)$	$2.8786(16)$		

Table S4. Selected bond lengths and angles for complex 4.

Bond	Bond Length (Å)	Bond	Bond Angle (${ }^{\circ}$)
$\mathrm{Al}(1)-\mathrm{Cs}(1)$	3.979	$\mathrm{O}(7)-\mathrm{Al}(1)-\mathrm{O}(5)$	$165.76(7)$
$\mathrm{Al}(1)-\mathrm{N}(1)$	$2.065(2)$	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{N}(2)$	$90.90(8)$
$\mathrm{Al}(1)-\mathrm{N}(2)$	$2.0451(19)$	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	$89.04(7)$
$\mathrm{Al}(1)-\mathrm{O}(2)$	$1.8417(16)$	$\mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	$89.48(7)$
$\mathrm{Al}(1)-\mathrm{O}(3)$	$1.8453(16)$	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	$90.54(7)$
$\mathrm{Al}(1)-\mathrm{O}(5)$	$1.8719(17)$	$\mathrm{O}(1)-\mathrm{Cs}(1)-\mathrm{O}(2)$	$50.82(4)$
$\mathrm{Al}(1)-\mathrm{O}(7)$	$1.9084(16)$	$\mathrm{O}(2)-\mathrm{Cs}(1)-\mathrm{O}(3)$	$50.45(4)$
$\mathrm{Cs}(1)-\mathrm{O}(1)$	$3.0356(18)$	$\mathrm{O}(3)-\mathrm{Cs}(1)-\mathrm{O}(4)$	$50.64(4)$
$\mathrm{Cs}(1)-\mathrm{O}(2)$	$3.0694(15)$	$\mathrm{O}(1)-\mathrm{Cs}(1)-\mathrm{O}(6)$	$107.28(6)$
$\mathrm{Cs}(1)-\mathrm{O}(3)$	$3.0763(15)$	$\mathrm{O}(2)-\mathrm{Cs}(1)-\mathrm{O}(6)$	$65.57(5)$
$\mathrm{Cs}(1)-\mathrm{O}(4)$	$3.0975(18)$	$\mathrm{O}(6)-\mathrm{Cs}(1)-\mathrm{O}(8)$	$127.57(5)$
$\mathrm{Cs}(1)-\mathrm{O}(6)$	$2.9220(19)$		
$\mathrm{Cs}(1)-\mathrm{O}(8)$	$3.0478(17)$		

Table S5. Selected bond lengths and angles for complex 5.

Bond	Bond Length (Å)	Bond	Bond Angle (${ }^{\circ}$)
$\mathrm{Al}(1)-\mathrm{K}(1)$	3.5995(6)	$\mathrm{O}(7)-\mathrm{Al}(1)-\mathrm{O}(5)$	166.72(6)
$\mathrm{Al}(1)-\mathrm{N}(1)$	$2.0646(15)$	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{N}(2)$	90.64(6)
$\mathrm{Al}(1)-\mathrm{N}(2)$	2.0584(16)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	88.45(6)
$\mathrm{Al}(1)-\mathrm{O}(2)$	$1.8519(14)$	$\mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	90.18(6)
$\mathrm{Al}(1)-\mathrm{O}(3)$	$1.8364(12)$	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3)$	90.85(6)
$\mathrm{Al}(1)-\mathrm{O}(5)$	$1.9060(15)$	$\mathrm{O}(1)-\mathrm{K}(1)-\mathrm{O}(2)$	57.90(4)
$\mathrm{Al}(1)-\mathrm{O}(7)$	$1.8784(14)$	$\mathrm{O}(2)-\mathrm{K}(1)-\mathrm{O}(3)$	58.54(4)
$\mathrm{K}(1)-\mathrm{O}(1)$	$2.7808(16)$	$\mathrm{O}(3)-\mathrm{K}(1)-\mathrm{O}(4)$	57.45(4)
$\mathrm{K}(1)-\mathrm{O}(2)$	2.6588(13)	$\mathrm{O}(1)-\mathrm{K}(1)-\mathrm{O}(6)$	111.08(5)
$\mathrm{K}(1)-\mathrm{O}(3)$	$2.7137(14)$	$\mathrm{O}(2)-\mathrm{K}(1)-\mathrm{O}(6)$	67.27(4)
$\mathrm{K}(1)-\mathrm{O}(4)$	$2.7698(18)$	$\mathrm{O}(6)-\mathrm{K}(1)-\mathrm{O}(14)$	122.00(5)
$\mathrm{K}(1)-\mathrm{O}(6)$	$2.8365(15)$	$\mathrm{O}(13)-\mathrm{Al}(2)-\mathrm{O}(15)$	168.42(6)
$\mathrm{K}(1)-\mathrm{O}(14)$	2.6320(14)	$N(3)-\mathrm{Al}(2)-\mathrm{N}(4)$	89.11(6)
$\mathrm{Al}(2)-\mathrm{K}(2)$	3.6286(6)	$\mathrm{N}(3)-\mathrm{Al}(2)-\mathrm{O}(10)$	89.27(6)
$\mathrm{Al}(2)-\mathrm{N}(3)$	2.0383(15)	$\mathrm{N}(4)-\mathrm{Al}(2)-\mathrm{O}(11)$	90.03(6)
$\mathrm{Al}(2)-\mathrm{N}(4)$	2.0743(16)	$\mathrm{O}(10)-\mathrm{Al}(2)-\mathrm{O}(11)$	91.55(6)
$\mathrm{Al}(2)-\mathrm{O}(10)$	1.8399 (13)	$\mathrm{O}(9)-\mathrm{K}(2)-\mathrm{O}(10)$	57.08(4)
$\mathrm{Al}(2)-\mathrm{O}(11)$	1.8432(12)	$\mathrm{O}(10)-\mathrm{K}(2)-\mathrm{O}(11)$	57.78(4)
$\mathrm{Al}(2)-\mathrm{O}(13)$	$1.9152(14)$	$\mathrm{O}(11)-\mathrm{K}(2)-\mathrm{O}(12)$	56.73(4)
$\mathrm{Al}(2)-\mathrm{O}(15)$	$1.8982(14)$	$\mathrm{O}(9)-\mathrm{K}(2)-\mathrm{O}(16)$	104.05(5)
$\mathrm{K}(2)-\mathrm{O}(9)$	$2.7923(15)$	$\mathrm{O}(10)-\mathrm{K}(2)-\mathrm{O}(16)$	65.59(4)
$\mathrm{K}(2)-\mathrm{O}(10)$	$2.7330(12)$	$\mathrm{O}(6)-\mathrm{K}(2)-\mathrm{O}(16)$	156.19(5)
$\mathrm{K}(2)-\mathrm{O}(11)$	$2.7296(13)$	$\mathrm{O}(16)-\mathrm{K}(2)-\mathrm{O}(17)$	79.95(5)
$\mathrm{K}(2)-\mathrm{O}(12)$	2.8129(14)		
$\mathrm{K}(2)-\mathrm{O}(16)$	$2.6571(15)$		
$\mathrm{K}(2)-\mathrm{O}(6)$	$2.8076(14)$		
$K(2)-O(17)$	3.146(2)		

Table S6. Summary of Crystallographic Refinement Data for complexes 1-5.

Complex	1	2	3	4	5
Local Code	013rwfk20	063ap20	014rwfk20	016rwfk20	021rwfk21
CCDC Deposition Number	2096248	2096249	2096250	2096251	2096252
Crystal data					
Chemical formula	$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{AlN}_{2} \mathrm{NaO}_{8}$. $2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Al}_{2} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{16}$ - CHCl_{3}	$\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Al}_{2} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Rb}$ ${ }_{2} \cdot \mathrm{CHCl}_{3}$	$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{AlCsN}_{2} \mathrm{O}_{8} \cdot \mathrm{C}$ HCl_{3}	$\mathrm{C}_{74} \mathrm{H}_{76} \mathrm{Al}_{2} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{17}$
M_{r}	706.33	1224.54	1317.28	765.77	1425.54
Crystal system, space group	Triclinic, P^{-1}	Triclinic, P^{-1}	Triclinic, P^{-1}	Monoclinic, $P 2_{1} / c$	Monoclinic, $P 2_{1} / n$
a, b, c (Å)	$\begin{array}{\|l} 10.7960(5), \\ 11.9409(8), \\ 14.6196(7) \end{array}$	$\begin{aligned} & 12.4551(6), \\ & 15.8089(10), \\ & 16.1748(8) \end{aligned}$	$\begin{aligned} & 12.5460(3), \\ & 15.7343(4), \\ & 16.4513(5) \end{aligned}$	$\begin{aligned} & 14.9518(2), \\ & 12.8871(1), \\ & 16.7675(2) \end{aligned}$	$\begin{aligned} & 15.0779(2), \\ & 30.1479(4), \\ & 17.5249(3) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 66.034(5), \\ & 84.098(4), \\ & 69.361(5) \end{aligned}$	$\begin{aligned} & 65.273(5), \\ & 82.478(4), \\ & 76.607(5) \end{aligned}$	$\begin{aligned} & 64.372(3), \\ & 82.396(2), \\ & 76.638(2) \end{aligned}$	$\begin{aligned} & 90,98.577(1), \\ & 90 \end{aligned}$	$\begin{aligned} & 90,114.699(2), \\ & 90 \end{aligned}$
$V\left(\AA^{3}\right)$	1609.86 (17)	2812.1 (3)	2846.84 (15)	3194.72 (6)	7237.5 (2)
Z	2	2	2	4	4
Radiation type	$\mathrm{Cu} \mathrm{K} \alpha$	Mo K α	$\mathrm{Cu} \mathrm{K} \alpha$	$\mathrm{Cu} \mathrm{K} \alpha$	$\mathrm{Cu} \mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.17	0.41	4.42	12.03	1.98
Crystal size (mm)	$\begin{aligned} & 0.17 \times 0.14 \times \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.17 \times 0.11 \times \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.36 \times 0.20 \times \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.26 \times 0.18 \times \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.49 \times 0.13 \times \\ & 0.07 \end{aligned}$
Data collection					
Absorption correction	Multi-scan CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.				
$T_{\text {min }}, T_{\text {max }}$	0.893, 1.000	0.969, 1.000	0.731, 1.000	0.670, 1.000	0.778, 1.000
No. of measured, independent and observed [$/>2 \sigma(I)$] reflections		$\begin{aligned} & 21284,13911, \\ & 8926 \end{aligned}$	$\begin{array}{\|l} 30073,11825, \\ 10423 \end{array}$	$\begin{aligned} & 15348,6656, \\ & 6283 \end{aligned}$	$\begin{array}{\|l} 44644,14927, \\ 11897 \end{array}$
Rint	0.031	0.040	0.032	0.028	0.051
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.631	0.696	0.631	0.632	0.630
Refinement					
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$\begin{aligned} & 0.043,0.121 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 0.061,0.129 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.032,0.088 \\ & 1.03 \end{aligned}$	$\text { (l.028, 0.073, } \begin{aligned} & 1.05 \end{aligned}$	$\begin{aligned} & 0.043,0.114, \\ & 1.02 \end{aligned}$
No. of reflections	6670	13911	11825	6656	14927
No. of parameters	404	715	715	404	900
No. of restraints	1	0	0	3	0
$\left.\Delta\rangle_{\text {max }}, \Delta\right\rangle_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.50, -0.34	0.38, -0.39	0.67, -0.50	0.70,-1.29	0.58, -0.28

Figure S36. Temperature stability of complex 2. ${ }^{1} \mathrm{H}$ NMR of complex 2 ($\left.400 \mathrm{MHz}, \mathrm{MeCN}-d_{3}\left({ }^{*}\right), 298 \mathrm{~K}\right)$ before and after heating for 16 hours at $100{ }^{\circ} \mathrm{C}$, with an internal standard (mesitylene, \#). No significant change was observed in the NMR integrals, when compared to the internal standard, before and after the heating period.

Figure S37. DOSY NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl} 3,298 \mathrm{~K}$) of complex 2. Use of D value obtained from this experiment in the Stokes-Einstein equation yields a solvation radius of 6.0 Å.

Table S7. Data for the ROCOP of PA and CHO with complexes 1 - 4. ${ }^{a}$

Entry	Catalyst	Time (m)	Conversion $(\%)$	TON b	TOF c $\left(\mathrm{~h}^{-1}\right)$	$k_{\text {obs }}\left(\times 10^{3}\right)^{d}$ $\left(\mathrm{~s}^{-1}\right)$	$M_{n, G P C}[Ð]^{e}$ $\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)$	$M_{n, T h} f$ $\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)$
$\mathbf{1}$	$\mathbf{1}$	15	45	180	720 ± 9	0.91 ± 0.02	$9.3[1.06]$	22.1
2	$\mathbf{2}$	15	67	268	1072 ± 6	1.50 ± 0.03	$14.3[1.06]$	33.0
3	$\mathbf{2}$	25	>99	400	-	-	$20.1[1.06]$	49.3
4	$\mathbf{3}$	15	71	284	1136 ± 6	1.53 ± 0.03	$14.4[1.06]$	34.9
5	$\mathbf{4}$	15	54	216	875 ± 8	1.18 ± 0.03	$10.4[1.05]$	26.6

${ }^{a}$ Conditions: [Cat]:[PA]:[CHO] = 1:400:2000, $\mathrm{T}=100{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Turnover number (TON) = number of moles of anhydride consumed/number of moles of catalyst. Determined by ${ }^{1} \mathrm{H}$ NMR through comparison of resonances associated with PA (8.10 -7.85 ppm) and PCHPE ($7.65-7.30 \mathrm{ppm}$). ${ }^{\text {c }}$ Turnover Frequency (TOF) = TON/time (hours). ${ }^{d}$ Observed rate constant for a linear fit of the data (See Figure $\$ 2 \$$, B), without error weighting. ${ }^{e}$ Determined by GPC, in THF at $30^{\circ} \mathrm{C}$, using narrow dispersity polystyrene standards. ${ }^{f}$ Theoretical M_{n} value. Determined through (TON $\times M_{n}$ (repeat unit $=246.26$ for PCHPE))/(number of equivalent of catalyst $\times 2$ (as each catalyst contains 2 acetate groups)).

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and PA . Conversion of PA $(\%)=\left(\left(\int 7.65-7.30 \mathrm{ppm}\right) /((88.10-7.30 \mathrm{ppm})) * 100 . \mathrm{TON}_{\text {Epoxide }}=\mathrm{TON}_{\text {Anhydride }}=\right.$ Conv. $(\%) * 400$.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of purified PCHPE.

Figure S40. MALDI-ToF spectrum of PCHPE obtained with complex 2. Observed end group weight $=198.45 \mathrm{~g} \mathrm{~mol}^{-}$ ${ }^{1}$, calculated end group weight $=197.30 \mathrm{~g} \mathrm{~mol}^{-1}$. Observed (average) distance between peaks $=246.11 \mathrm{~g} \mathrm{~mol}^{-1}$, theoretical Mn_{n} (repeat unit) $=246.26 \mathrm{~g} \mathrm{~mol}^{-1}$. Minor peaks attributed to minor cyclohexanol initiating species. ${ }^{11}$

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and TCA. Conversion of TCA (\%) $=\left(\left(\int 4.90-4.50 \mathrm{ppm} / 2\right) /\left(\int 5.90-5.50 \mathrm{ppm}\right)\right) * 100 . \mathrm{TON}_{\text {Epoxide }}=\mathrm{TON}_{\text {Anhydride }}=$ Conv. $(\%)^{*} 400$. Spectroscopic data is consistent with prior literature reports. ${ }^{12}$

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and NBA. Conversion of NBA $(\%)=\left(\int 4.90-4.50 \mathrm{ppm} /(56.40-5.90 \mathrm{ppm})\right)^{*} 100 . \mathrm{TON}_{\text {Epoxide }}=$ TON $_{\text {Anhydride }}=$ Conv. $(\%)^{*} 400$. Spectroscopic data is consistent with prior literature reports. ${ }^{13}$

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of tBGE and PA. Conversion of PA (\%) $=\left(\left\{7.75-7.35 \mathrm{ppm} /\left(\int 8.05-7.35 \mathrm{ppm}\right)\right)^{*} 100 . \mathrm{TON}_{\text {Epoxide }}=\right.$ TON $_{\text {Anhydride }}=$ Conv. $(\%)^{*} 400$. Spectroscopic data is consistent with prior literature reports. ${ }^{14}$

Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of SO and PA . Conversion of $\mathrm{PA}(\%)=$ $\left(\int 7.70-7.50 \mathrm{ppm} /\left(\int 8.00-7.90 \mathrm{ppm}+\int 7.70-7.50 \mathrm{ppm}\right)\right)^{*} 100 . \mathrm{TON}_{\text {Epoxide }}=\mathrm{TON}_{\text {Anhydride }}=$ Conv. (\%)*400. Spectroscopic data is consistent with prior literature reports. ${ }^{14}$

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of PO and PA . Conversion of $\mathrm{PA}(\%)=$ ($57.75-7.40 \mathrm{ppm} /\left(\int 8.10-7.40 \mathrm{ppm}\right)^{*} 100 . \mathrm{TON}_{\text {Epoxide }}=$ TON $_{\text {Anhydride }}=$ Conv. (\%)*400. Spectroscopic data is consistent with prior literature reports. ${ }^{14}$

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of vCHO and PA. Conversion of PA (\%) $=\left(\int 7.80-7.40 \mathrm{ppm} /\left(\int 8.10-7.40 \mathrm{ppm}\right)^{*} 100 . \mathrm{TON}_{\text {Epoxide }}=\right.$ TON $_{\text {Anhydride }}=$ Conv. (\%)*400. Spectroscopic data is consistent with prior literature reports. ${ }^{14}$

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of AGE and PA. Conversion of PA (\%) $=\left(\int 7.80-7.40 \mathrm{ppm} /\left(\int 8.10-7.40 \mathrm{ppm}\right)^{*} 100 . \mathrm{TON}_{\text {Epoxide }}=\right.$ TON $_{\text {Anhydride }}=$ Conv. (\%)*400. Spectroscopic data is consistent with prior literature reports. ${ }^{14}$

Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and CO_{2} (1 bar). Conversion of CHO to $\mathrm{PCHC}(\%)=\left(\left(\int 4.90-4.35 \mathrm{ppm} /\left(\int 4.90-4.35 \mathrm{ppm}+\int 3.25-3.00 \mathrm{ppm}\right) * 100 . \mathrm{TON}_{\text {PCHC }}=\right.\right.$ Conv. $(\%) * 2000$. Selectivity ${ }_{\mathrm{PCHC}}(\%)=\left(\int 4.90-4.35 \mathrm{ppm} /\left(\int 4.90-4.35 \mathrm{ppm}+\int 4.10-3.90 \mathrm{ppm}\right)\right) * 100$. Spectroscopic data is consistent with prior literature reports. ${ }^{12}$

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of reaction mixture of CHO and CO_{2} (20 bar). Conversion of CHO to $\mathrm{PCHC}(\%)=\left(\left(\int 4.90-4.35 \mathrm{ppm} /\left(\int 4.90-4.35 \mathrm{ppm}+\int 3.25-3.00 \mathrm{ppm}\right) * 100 . \mathrm{TON}_{\mathrm{PCHC}}=\right.\right.$ Conv. $(\%) * 2000$. Selectivity ${ }_{\text {PCHC }}(\%)=\left(\int 4.90-4.35 \mathrm{ppm} /\left(\int 4.90-4.35 \mathrm{ppm}+\int 4.10-3.90 \mathrm{ppm}\right)\right)^{*} 100$. Spectroscopic data is consistent with prior literature reports. ${ }^{12}$

Figure S50. GPC traces for polymers corresponding to Table 2, Entries 1-10. It should be noted that the polymer molecular mass distributions are bimodal, owing to the presence of monofunctional (acetate) and bifunctional (diol or diacid, present as a result of residual $\mathrm{H}_{2} \mathrm{O}$ in epoxide or anhydride) initiators.

Table S8. Data for the ROCOP of epoxide and anhydrides with complex $\mathbf{2}$ at full anhydride conversion. ${ }^{a}$

Entry	Monomer	Time (m)	Conv $(\%)$	TON b	$M_{n, G P C}[Ð]^{c}$ $\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)$	$M_{n, \text { Th. }}{ }^{d}$ $\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)$
1	CHO / PA	26	>99	400	$20.1[1.06]$	49.3
2	CHO / TCA	120	>99	400	$13.4[1.21]$	66.4
3	CHO / NBA	120	>99	400	$13.5[1.13]$	52.4
4	tBGE / PA	90	90	360	$25.5[1.19]$	55.6
5	SO / PA	165	>99	400	$14.5[1.21]$	53.6
6	vCHO / PA	75	>99	400	$58.3[1.07]$	55.2
7	AGE / PA	85	99	398	$27.4[1.18]$	49.6

${ }^{a}$ Conditions: [Cat]:[PA] = 1:400, 1 mL epoxide, [Cat] $=4.9 \mathrm{mmol}, \mathrm{T}=100^{\circ} \mathrm{C} .{ }^{b}$ Turnover number (TON) = number of moles of anhydride consumed/number of moles of catalyst. Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Determined by GPC, in THF at $30{ }^{\circ} \mathrm{C}$, using narrow dispersity polystyrene standards. ${ }^{d}$ Theoretical M_{n} value. Determined through (TON $\times M_{n}$ (repeat unit))/(number of equivalent of catalyst x 2 (as each catalyst contains 2 acetate groups)). ${ }^{e}$ Significant transesterification was observed after full anhydride conversion; data given before full conversion is reached.

Figure S51. Plot of $[\mathrm{PA}]_{t}$ vs. Time at a range of [2]. A linear relationship is observed in all cases. All reactions repeated in triplicate, with average values of [PA $]_{t}$ plotted and error $\pm \sigma / \sqrt{ } n$.

[LCr_{3}]
[LFe_{2}]

[LAl ${ }_{2}$]
Chart S1. Structures of catalysts relating to Table 3, Entries 9, 11 and 14.

Computational Details

Density Functional theory (DFT) calculations were performed using Gaussian16 suite of codes (revision A.03). Geometries were fully optimised without any symmetry or geometry constraints. The nature of all the stationary points as minima or transition states (first-order saddle points) on the potential energy surface was verified by calculations of the vibrational frequency spectrum. All transition states were characterised by precisely one negative frequency corresponding to the intended reaction and were further confirmed by intrinsic reaction coordinate (IRC) calculations.

Free enthalpies were first calculated at 298.15 K and a standard-state concentration in solution of 1 M within the harmonic approximation for vibrational frequencies.

Using the GoodVibes software, free enthalpies were recomputed using Grimme quasi-harmonic approximation, with a cut off frequency of $50 \mathrm{~cm}^{-1}$, and a temperature ($\mathrm{T}=373.15 \mathrm{~K}$) and concentration correction applied (at $[$ Cat $]=4.94 \mathrm{mM}$ or $[\mathrm{CHO}] 0=9.88 \mathrm{M})$). ${ }^{15,16}$

Geometry optimisations were carried out using $\omega \mathrm{b} 97 \mathrm{xD}$ functional. The $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set was used for C and H atoms, $6-311 \mathrm{G}+(\mathrm{d})$ for $\mathrm{Al}, \mathrm{K}, \mathrm{O}$ and N atoms. Solvent effects in cyclohexene oxide were computed using the cpcm continuum model, using modified parameters for THF (eps=16, epsinf=1.867). ${ }^{17}$

Full coordinates for all structures, together with computed energies and vibrational frequency data, are available via the corresponding Gaussian 09 output files, stored in the open-access digital repository: DOI:10.6084/m9.figshare. 14955234.

Table S9. Summary of uncorrected computed structures

Structure	G (Hartrees)	$\Delta \mathrm{G}\left(\right.$ Kcal mol $\left.^{-1}\right)$
CHO	-309.679573	-
1	-2715.724047	-
Reference ($1+\mathrm{CHO}$)	-3025.403620	0.0
I_{k}	-3025.402824	+0.5
Pre-TS ${ }_{\text {-III }}$	-3025.400396	+2.0
TSI-IIK	-3025.348112	+34.8
Post-TS-IIk	-3025.365273	+24.1
$\mathrm{IIK}_{\mathrm{K}}$	-3025.36664	+23.2
IAI	-3025.391953	+7.3
Pre-TS ${ }_{\text {-IIAI }}$	-3025.388626	+9.4
TS-IIAI	-3025.365923	+23.7
11 Al (/post-TSI-IIAI ${ }^{\text {a }}$	-3025.407460	-2.4

${ }^{a} \omega \mathrm{~b} 97 \mathrm{xD} / \mathrm{CH} \mathrm{O}=6-31+\mathrm{g}(\mathrm{d}, \mathrm{p}) / \mathrm{K} \mathrm{AI}=6-311+\mathrm{g}(\mathrm{d}) /$ solvent $=$ modified THF eps=16 epsinf=1.867.
Table S10. Correction computed structures

Structure	Corrections					
	T^{b}		T + [Cat ${ }^{\text {c }}$		T + [CHO$]^{\text {d }}$	
	G (Hartrees)	$\begin{gathered} \Delta \mathrm{G} \\ \left(\text { Kcal mol }^{-1}\right) \end{gathered}$	G (Hartrees)	$\begin{gathered} \Delta \mathrm{G} \\ \left(\mathrm{Kcal} \mathrm{~mol}^{-1}\right) \end{gathered}$	G (Hartrees)	$\begin{gathered} \Delta \mathrm{G} \\ \left(\mathrm{Kcal} \mathrm{~mol}^{-1}\right) \end{gathered}$
CHO	-309.6890640	-	-309.6912960	-	-309.6823140	-
1	-2715.742497	-	-2715.744729	-	-2715.735747	-
Reference	-3025.431561	0.0	-3025.436025	0.0	-3025.418061	0.0
1 k	-3025.42225	+5.8	-3025.424482	+7.2	-3025.415500	+1.6
Pre-TSI-IIK	-3025420565	+6.9	-3025.422797	+8.3	-3025.413815	+2.7
TSI-IIK	-3025.367957	+39.9	-3025.370189	+41.3	-3025.361207	+35.7
Post-TS ${ }_{\text {I-IIK }}$	-3025.384582	+29.5	-3025.386814	+30.9	-3025.377832	+25.2
11 k	-3025.38668	+28.2	-3025.388912	+29.6	-3025.379930	+23.9
IAI	-3025.411441	+12.6	-3025.413673	+14.0	-3025.404691	+8.4
Pre-TSI-IIAI	-3025.408603	+14.4	-3025.410835	+15.8	-3025.401853	+10.2
TS ${ }_{\text {-IIAI }}$	-3025.385207	+29.1	-3025.387438	+30.5	-3025.378457	+24.9
$\mathrm{IIAI}^{\text {I }}$	-3025.42782	+2.3	-3025.430052	+3.7	-3025.421070	+1.9

[^1] $373.15 \mathrm{~K} .{ }^{c}$ Catalyst concentration $=4.94 \mathrm{mM} .{ }^{d}$ Epoxide (CHO) concentration $=9.88 \mathrm{M}$.

I

Figure S52. Computed Reaction Profile for epoxide ring-opening. $\omega \mathrm{b} 97 \mathrm{xD} / \mathrm{C}$ H $\mathrm{O}=6-31+\mathrm{g}(\mathrm{d}, \mathrm{p}) / \mathrm{K} \mathrm{Al}=6-$ $311+g(d) /$ solvent $=$ modified THF eps=16 epsinf=1.867 (cpcm).

Figure S53. IRC for $\mathrm{TS}_{\text {-IIK }}$ showing connected intermediates either side.. Key bond being formed shown. Maxpoints=50, maxcycle=40, stepsize=20

Figure S54. IRC for $\mathrm{TS}_{\text {-IIAI }}$ showing connected intermediates either side. Maxpoints=50, maxcycle=40, stepsize=20

Figure S55. Computed Pathways for lowest free enthalpy TS. Reaction profile showing key intermediates and transitions states computed with temperature corrections and accounting for catalyst concentration.

Figure S56. Computed Pathways for lowest free enthalpy TS. Reaction profile showing key intermediates and transitions states computed with temperature corrections and accounting for excess epoxide.

References

1. Dakshinamoorthy, D.; Weinstock, A. K.; Damodaran, K.; Iwig, D. F.; Mathers, R. T., Diglycerolbased polyesters: melt polymerization with hydrophobic anhydrides. ChemSusChem 2014, 7 (10), 2923-9.
2. Thevenon, A.; Garden, J. A.; White, A. J.; Williams, C. K., Dinuclear Zinc Salen Catalysts for the Ring Opening Copolymerization of Epoxides and Carbon Dioxide or Anhydrides. Inorg. Chem. 2015, 54 (24), 11906-15.
3. Artus, G. R. J.; Rauch, M. U.; Herrman, W. A., Multiple Bonds between Main Group Elements and Transition Metals. 153.1 Rhenium(V) Oxo Complexes with Tetradentate Schiff Bases: Structural Considerations. Inorg. Chem. 1996, 35, 1988-1991.
4. Cosier, J.; Glazer, A. M., A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Cryst. 1986, 19, 105-107.
5. CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
6. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
7. a) SHELXTL v5.1, Bruker AXS, Madison, WI, 1998. b) Sheldrick, G. M., SHELXT - Integrated SpaceGroup and Crystal-Structure Determination. Acta. Cryst. 2015, A71, 3-8.
8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
9. Diment, W. T.; Stosser, T.; Kerr, R. W. F.; Phanopoulos, A.; Durr, C. B.; Williams, C. K., Orthovanillin derived Al (iii) and Co (iii) catalyst systems for switchable catalysis using epsilon-decalactone, phthalic anhydride and cyclohexene oxide. Catal. Sci. Technol. 2021, 11 (5), 1737-1745.
10. Du, H.; Pang, X.; Yu, H.; Zhuang, X.; Chen, X.; Cui, D.; Wang, X.; Jing, X., Polymerization of rac-Lactide Using Schiff Base Aluminum Catalysts: Structure, Activity, and Stereoselectivity. Macromolecules 2007, 40 (6), 1904-1913.
11. Deng, J.; Ratanasak, M.; Sako, Y.; Tokuda, H.; Maeda, C.; Hasegawa, J. Y.; Nozaki, K.; Ema, T., Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO2: metal-ligand cooperative catalysis. Chem. Sci. 2020, 11 (22), 5669-5675.
12. Rosetto, G.; Deacy, A. C.; Williams, C. K., Mg(ii) heterodinuclear catalysts delivering carbon dioxide derived multi-block polymers. Chemical Science 2021.
13. Abel, B. A.; Lidston, C. A. L.; Coates, G. W., Mechanism-Inspired Design of Bifunctional Catalysts for the Alternating Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides. J. Am. Chem. Soc. 2019, 141 (32), 12760-12769.
14. Li, H.; Luo, H. T.; Zhao, J. P.; Zhang, G. Z., Well-Defined and Structurally Diverse Aromatic Alternating Polyesters Synthesized by Simple Phosphazene Catalysis. Macromolecules 2018, 51 (6), 2247-2257.
15. Luchini, G.; Alegre-Requena, J. V.; Funes-Ardoiz, I.; Paton, R. S., GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Research 2020, 9.
16. Grimme, S., Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 2012, 18 (32), 9955-64.
17. Scalmani, G.; Frisch, M. J., Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132 (11), 114110.

[^0]: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 7.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{e}\right), 6.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}^{d}\right), 6.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.9 \mathrm{~Hz}, \mathrm{H}^{b}\right), 6.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}^{c}\right), 3.73\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}^{f}\right), 3.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{a}\right), 1.59\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{h}\right), 1.18$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}^{g}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 173.9\left(\mathrm{C}^{\prime}\right), 167.0\left(\mathrm{C}^{h}\right), 156.4\left(\mathrm{C}^{g}\right), 151.1$ $\left(C^{b}\right), 125.3\left(C^{e}\right), 120.0\left(C^{f}\right), 114.4\left(C^{d}\right) .114 .0\left(C^{c}\right), 73.4\left(C^{j}\right), 55.0\left(C^{a}\right), 35.7\left(C^{j}\right), 25.1\left(C^{k}\right), 23.8$

[^1]: ${ }^{a} \omega \mathrm{\omega b} 97 \times \mathrm{D} / \mathrm{CHO} \mathrm{O}=6-31+\mathrm{g}(\mathrm{d}, \mathrm{p}) / \mathrm{K} \mathrm{AI}=6-311+\mathrm{g}(\mathrm{d}) /$ solvent $=$ modified THF eps=16 epsinf=1.867. ${ }^{b}$ Temperature correction, $\mathrm{T}=$

