Supporting Information

Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal–Organic Framework

Josh Phipps,⁺ Hao Chen,⁺ Connor L. Donovan,[‡] Dylan T. Dominguez,[‡] Sydney R. Morgan,[‡] Barrett E. Weidman,[‡] Chenguang Fan,^{†‡} and Hudson Beyzavi ^{*,†‡}

⁺Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States

⁺Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States

*Address correspondence to Hudson Beyzavi , E-mail: <u>beyzavi@uark.edu</u>

Contents

1.	Materials	S 3
2.	Enzyme Loading Tables	S4
3.	GC-MS Analysis	S5
4.	¹ H NMR spectra of linker and precursor	S 7
5.	References	S 9

1. Materials

All Starting materials and solvents were used as received without further purification from commercial suppliers. Materials and suppliers were as follows: AlCl₃ (Alfa Aesar), CrO₃ (Alfa Aesar), Acetic Anhydride (Bean Town Chemical), Glacial Acetic acid (VWR), Sulfuric acid (95-98%)(VWR), anhydrous FeCl₃ (III) (Alfa Aesar), 2,4,6-Trichloro-1,3,5-triazine (Acros Organics), Nicotinamide adenine dinucleotide hydrate (NADH)(VWR), and Tris-HCl (VWR). Solvents used included acetonitrile (ACN), acetone, *N*,*N*-dimethylformamide (DMF), CH₂Cl₂ (DCM), dimethylsulfoxide (DMSO), and tetrahydrofuran (THF) each obtained from VWR.

GC-MS studies were run on a Shimadzu TQ8050 triple quadrupole gas chromatograph mass spectrometer with a Restek Rtx-5ms column. The headspace vials were heated at 50 °C for 10 minutes and 300 μ L of headspace was injected into the instrument. It was an isothermal run at 30 °C for 3-5 minutes.

All ¹H NMR spectra were recorded on a Bruker[®] 400 MHz NMR spectrometer at room temperature in $CDCl_3$ or DMSO- d_6 solution.

2. Enzyme Loading Tables

Table S1: Table representation of the loading of ADH into PCN-333 while receiving infrequent agitation (vortexed twice every other day) during the stability test. Loading solutions contained 0.5 mg/mL ADH, 0.5 mg/mL PPCN-333, and 100 mM Tris-HCl buffer.

Enzyme Loaded (mg)								
Condition	pH7(4°C)	pH 7 (25 °C)	pH 8 (4 °C)					
Day 0	0.00457	0.00490	0.00500					
Day 1	0.00517	0.00562	0.00629					
Day 3	0.00518	0.00590	0.00896					
Day 5	0.00478	0.00237	0.00374					
Day 7	0.00664	0.00477	0.00572					

Table S2: Table representation of the loading of ADH into PCN-333 while receiving frequent agitation. Loading solutions were vortexed to resuspend components several times each day. Loading solutions contained 0.5 mg/mL ADH, 0.5 mg/mL PCN-333, and either 10, 33, or 100 mM pH 7 Tris-HCl buffer.

Enzyme Loaded (mg)								
	pH 7 10 mM Buffer	pH 7, 33 mM Buffer	pH 7, 100mM	pH 7, 100 mM				
Condition	(25 °C)	(25 °C)	Buffer (25 °C)	Buffer (4 °C)				
Day 1	0.00160	0.00354	0.00429					
Day 3	0.00560	0.00594	0.00713					
Day 7	0.00473	0.00665	0.00899	0.00592				

3. GC-MS Analysis: Activity comparison between free and encapsulated ADH

Figure S1: GC-MS of product from reaction of 2 μ L propionaldehyde, 10 mM pH 8 Tris-HCl Buffer, 118.8 μ L of 200 mM NADH, and 13.04 μ g ADH encapsulated in PCN-333 isolated from a 50 μ L aliquot of ADH@PCN-333 stock solution after 3 hours of loading. after a 30-minute reaction at 37 °C.

Yield: 72.6 mM 1-Propanol at 30 min (119.9% compared to free ADH).

Figure S2: GC-MS of product from reaction of 2 μ L propionaldehyde, 10 mM pH 8 Tris-HCl Buffer, 118.8 μ L of 200 mM NADH, and 13.04 μ g free ADH after a 30-minute reaction at 37 °C.

Yield: 60.6 mM 1-Propanol at 30 min.

4. ¹H NMR spectra of linker and precursor

Figure S3: ¹H NMR spectra of 2,4,6-Tris(4-methylphenyl)-1,3,5-triazine product (CDCl₃). δ = 8.64 (d, 6H), 7.35 (d, 6H), 2.47 (s, 9H).¹

Figure S4: ¹H NMR spectra of 2,4,6-Tris(4-carboxyphenyl)-1,3,5-triazine product (DMSO- d_6). $\delta = 13.34$ (s, 3H). 8.79 (d, 6H), 8.15 (d, 6H).¹

5. References

1. Park, J.; Feng, D.; Zhou, H.-C. Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal–Organic Framework with Functional Groups *J. Am. Chem. Soc.* **2015**, *137*, 11801-11809.