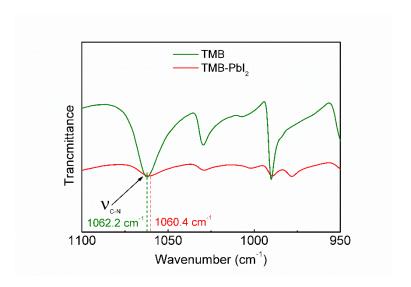
Supporting Information


Radical Form of PbI₂: A New Defects Passivator for Efficient Perovskite Solar Cells

XiuXiu Feng, Jiyao Wei, Xiaodong Li*, Wenxiao Zhang, Xiaoyan Zhao, Chunyan Lu, Xuemin Guo and Junfeng Fang*

School of Physics and Electronic Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200062, China

Corresponding Author

* xdli@phy.ecnu.edu.cn (X. Li); jffang@phy.ecnu.edu.cn (J. Fang)

Figure S1. Fourier transform infrared spectra (FTIR) of pure TMB and TMB-PbI₂ radical powder. In TMB-PbI₂, the stretching vibration of C-N bond (C-N) appears at 1060.4 cm⁻¹, which is low-wavenumber shift in comparison with that in TMB (1062.2 cm⁻¹). This result indicates that some chemical interaction exists between TMB and PbI₂.

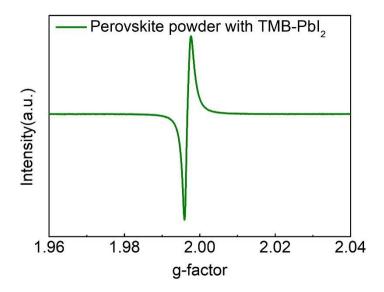


Figure S2. Electron spin resonance (ESR) of perovskite powder with TMB-PbI₂.

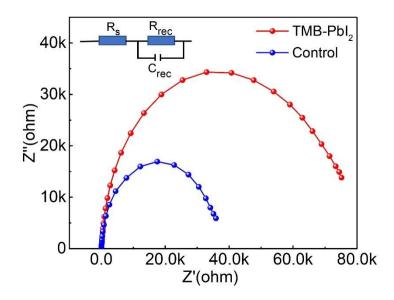
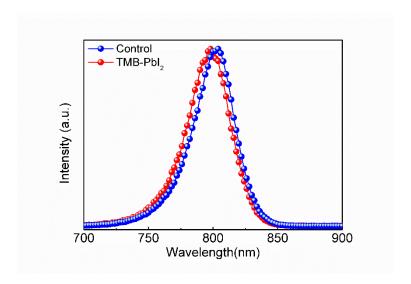
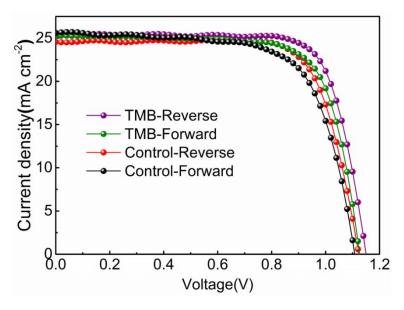




Figure S3. Nyquist plots for the control and $TMB-PbI_2$ based perovskite devices in the dark.

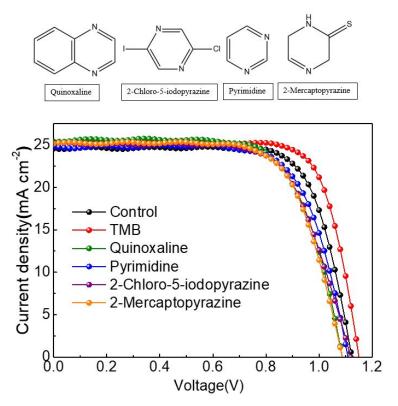


Figure S4. Photoluminescence (PL) spectra of control and TMB-PbI₂ based perovskite films. The films are prepared on a glass substrate. The blue-shift of PL in TMB-PbI₂ based perovskite film indicates the defects passivation.

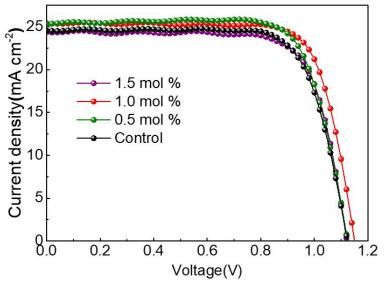

Name	V_{oc}	J_{sc}	FF	PCE
	(V)	(mA cm ⁻²)	(%)	(%)
TMB-Reverse	1.15	25.71	75.94	22.63
TMB-Forward	1.13	25.32	73.29	20.90
Control-Reverse	1.12	25.40	71.36	20.48
Control- Forward	1.11	25.60	68.55	19.44

Figure S-5. Comparison of hysteresis between TMB-containing devices and control group devices.

N	V_{oc}	$oldsymbol{J_{sc}}$	FF	PCE
Name	(V)	(mA cm ⁻²)	(%)	(%)
Control	1.12	25.40	71.36	20.48
$TMB\text{-}PbI_2$	1.15	25.71	75.94	22.63
Quinoxaline	1.11	24.81	70.86	19.71
Pyrimidine	1.12	25.21	68.20	19.25
2-Chloro-5-iodopyrazine	1.09	25.17	70.12	19.20
2-Mercaptopyrazine	1.09	25.42	70.04	19.35

Figure S6. Chemical structure of Nitrogen-containing organic small molecule passivation agent and *J-V* curves and Performance parameter of PSCs under their treatment.

TMB concentration (mol %)	<i>V_{oc}</i> (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
0.5	1.12	25.33	76.54	21.83
1.0	1.15	25.71	75.94	22.63
1.5	1.12	24.34	74.94	20.68

Figure S7. J-V curves of control and different concentration of TMB treatment PSCs.

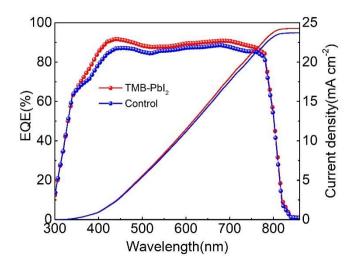


Figure S8. External quantum efficiency (EQE) of control and TMB-PbI $_2$ based PSCs.

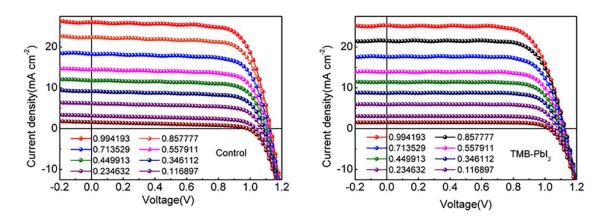
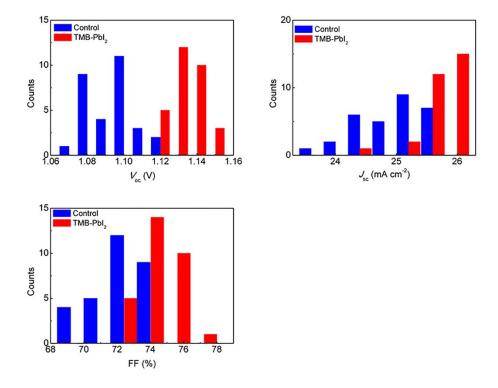



Figure S9. J-V curves of control (left) and TMB-PbI $_2$ (right) based PSCs under different light intensity.

Figure S10. $V_{\rm oc}$, $J_{\rm sc}$ and FF distribution among 30 separated PSCs.