Supporting Information

HTL-Free Sb₂(S, Se)₃ Solar Cells with an Optimal Detailed Balance Band Gap

Yue Lu^{†,‡,§}, Kanghua Li^{†,§}, Xuke Yang[†], Shuaicheng Lu[†], Sen Li[†], Jiajia Zheng^{†,‡}, Liuchong Fu[†], Chao Chen^{*,†}, Jiang Tang^{**,†}

[†]Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
[‡]China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
^{*}email:Email: cchen@mail.hust.edu.cn.

**email:Email: jtang@mail.hust.edu.cn.

Saturated vapor pressure curves of Sb₂Se₃ and Sb₂S₃ sources.

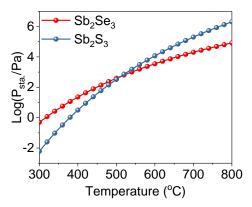


Figure S1. Temperature-dependent saturated vapor pressure of Sb_2Se_3 and Sb_2S_3 in the temperature range from 300 °C to 800 °C.

The temperature-time curves of Sb₂Se₃ and Sb₂S₃ sources.

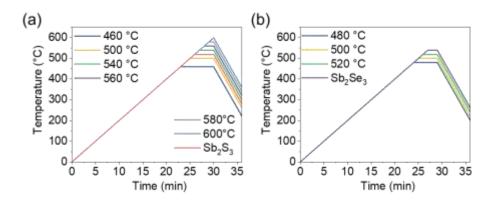
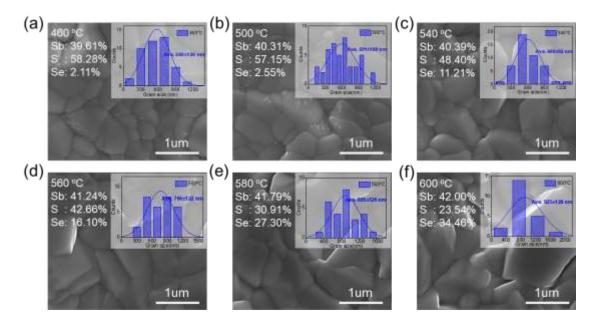



Figure S2. The temperature-time curves of Sb_2Se_3 and Sb_2S_3 sources when adjusted the evaporation temperatures of (a) Sb_2Se_3 and (b) Sb_2S_3 .

Top-view SEM images at different Sb₂Se₃ source temperatures.

Figure S3. The top-view SEM images of the Sb₂(S, Se)₃ films under Sb₂Se₃ source temperature of (a) 460 °C, (b) 500 °C, (c)540 °C, (d) 560 °C, (e) 580 °C, (f) 600 °C. The average grain size are 569±120 nm, 591±100 nm, 609±92 nm, 766±122 nm, 885±126 nm, and 923±128 nm, respectively.

XRD diffraction pattern under different Sb₂Se₃ source temperatures.

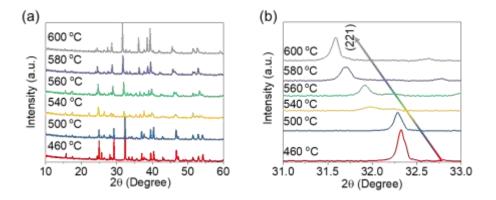
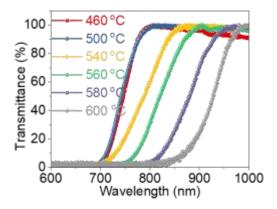



Figure S4. (a) The XRD of the $Sb_2(S, Se)_3$ films and (b) the enlarged [221] peaks of the $Sb_2(S, Se)_3$ films under different evaporating temperatures of the Sb_2Se_3 source.

Transmission spectroscopy at different Sb₂Se₃ source temperatures.

Figure S5. The UV-vis-NIR transmission spectroscopy of Sb₂(S, Se)₃ films under different evaporating temperatures of the Sb₂Se₃ source.

Top-view SEM images at different Sb₂S₃ source temperatures.

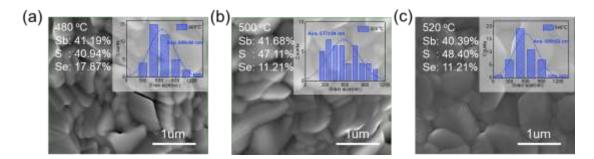
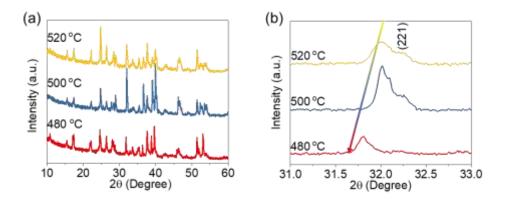



Figure S6. The top-view SEM images of Sb₂(S, Se)₃ films under Sb₂S₃ source temperature of (a) 480 °C,
(b) 500 °C, (c) 520 °C. The average grain size are 649±90 nm, 577±94 nm, and 609±92 nm, respectively.

XRD diffraction pattern at different Sb₂S₃ source temperatures.

Figure S7. (a) The XRD of the $Sb_2(S, Se)_3$ films and (b) the enlarged [221] peaks of the $Sb_2(S, Se)_3$ films under different evaporating temperatures of the Sb_2S_3 source.

Transmission spectroscopy under different Sb₂S₃ source temperatures.

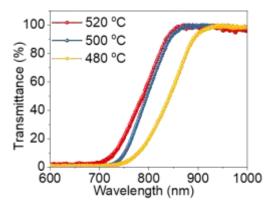
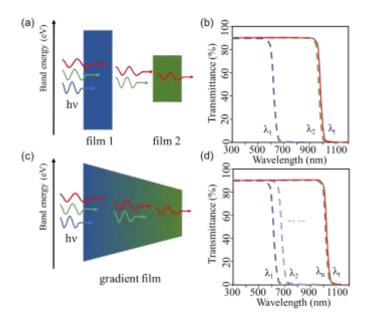



Figure S8. The UV-vis-NIR transmission spectroscopy of $Sb_2(S, Se)_3$ films under different evaporating temperatures of the Sb_2S_3 source.

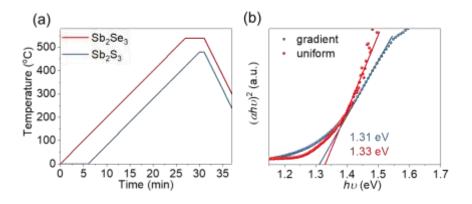
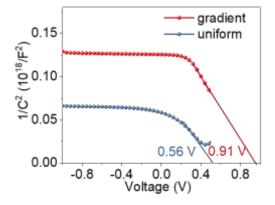

Schematic diagram of thin film light absorption.

Figure S9. Schematic diagram of a beam of light passing through (a) two layers of films and (c) a gradient film. The schematic transmittance curves of (b) two layers of films and (d) a gradient film.


As shown in Figure S9a, when a beam of light separately passes through two films with different bandgaps, only high-energy photons are absorbed by the wide-bandgap film, and the absorption cutoff edge is expressed as λ_1 . Whereas, the low-energy photons can further be absorbed by the thin film with a narrow bandgap, and the absorption cutoff edge is expressed as λ_2 . When the light continuously passes through two layers of films, the absorption cutoff edge (expressed as λ_1) is the same as that of the narrow bandgap film (Figure S9b). Further, when a beam of light continuously passes through a multilayer film (gradient bandgap film is the limiting case) (Figure S9c), high-energy photons are absorbed by the wide bandgap materials ($\lambda_1, \lambda_2...$), and only photons with energy lower than the narrowest bandgap are transmitted. Hence, the absorption cutoff edge (expressed as λ_1) is similar to that of the narrowest bandgap film (expressed as λ_n) (Figure S9d). As a result, the fitted bandgap through Tauc plot is determined by the narrowest bandgap in the film.

The heating process of the uniform Sb₂(S, Se)₃ films and bandgaps of Sb₂(S, Se)₃ films.

Figure S10. (a) The heating process of the uniform $Sb_2(S, Se)_3$ films. (b) Tauc plot of the gradient and uniform $Sb_2(S, Se)_3$ films.

 $1/C^2$ -V curves of the devices.

Figure S11. $1/C^2$ -V curves of the devices based on gradient and uniform Sb₂(S, Se)₃ films. The V_{bi} is 0.56 V and 0.91 V, respectively.

The bandgaps of the devices obtained from EQE data.

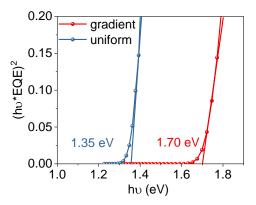


Figure S12. The bandgap of the devices based on gradient and uniform $Sb_2(S, Se)_3$ film obtained from EQE data.

The J-V curves under different light intensities.

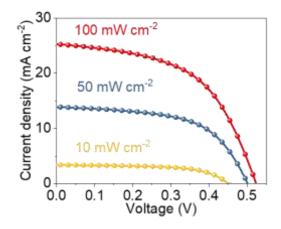


Figure S13. The *J-V* curves of the optimal device under different light intensities.

Atomic and ionic radius.

Table S1. The Atomic and Ionic Radius of Sulfur and Selenium.¹

Radius	S (pm)	Se (pm)
Atomic radius (M)	104	117
Ionic radius (M ²⁻)	184	198

Material parameters for SCAPS simulation.

Table S2. The Basic Material Parameters for SCAPS Simulation in Sb ₂ (S, Se	be) ₃ Solar Cells ²⁻³
--	---

Parameter	SnO ₂	CdS	$Sb_2(S, Se)_3$
Relative dielectric constant (ε_r)	9	10	15
Bandgap (eV)	3.6	2.4	1.3
Electron Affinity (eV)	4.0	4.0	4.15
Electron mobility (cm ² V ⁻¹ s ⁻¹)	100	100	10
Hole mobility (cm ² V ⁻¹ s ⁻¹)	25	25	1
$N_{\rm c}~({\rm cm}^{-3})$	2.2×10 ¹⁸	2.2×10 ¹⁸	1.0×10 ¹⁸
$N_{\rm v}~({\rm cm}^{-3})$	1.8×10 ¹⁹	1.8×10 ¹⁹	1.8×10 ²⁰
Doping density (cm ⁻³)	1.0×10 ¹⁸	1.1×10 ¹⁸	1.0×10 ¹⁴
Thickness (nm)	400	60	800

CdS trap states parameters for SCAPS simulation.

Parameter	Defect 1	
Defect type	Single acceptor (-/0)	
$E_{\rm t}$ (eV) above $E_{\rm v}$	1.2	
Electron capture cross section (cm ²)	1.0×10 ⁻¹⁷	
Hole capture cross section (cm ²)	1.0×10 ⁻¹²	
$N_{\rm t}~({\rm cm}^{-3})$	1.0×10^{18}	

Table S3. The CdS Trap States Parameters for SCAPS Simulation in Sb₂(S, Se)₃ Solar Cells²⁻³

 $Sb_2(S, Se)_3$ trap states parameters.

Parameter	Defect 1	Defect 2	Defect 3	
Defect type	Single acceptor (-/0)	Single acceptor (-/0)	Single donor (0/+)	
$E_{\rm t}$ (eV) above E_{ν} (below	0.48	0.71	0.61	
E _c)	0.46	0.71	0.61	
Electron capture cross	1.0×10 ⁻¹⁵	1.0×10 ⁻¹⁵	4.0×10 ⁻¹³	
section (cm ²)	1.0~10	1.0×10	4.0×10	
Hole capture cross	1.5×10 ⁻¹⁷	4.9×10 ⁻¹³	1.0×10 ⁻¹⁵	
section (cm ²)	1.5×10	4.7~10	1.0×10 **	
$N_{\rm t}~({\rm cm}^{-3})$	1.2×10 ¹⁵	1.1×10^{14}	2.6×10 ¹⁴	

Table S4. The Sb₂(S, Se)₃ Trap States Parameters for SCAPS Simulation in Sb₂(S, Se)₃ Solar Cells²⁻⁴

References

Speight, J. *Lange's Handbook of Chemistry, Sixteenth Edition*; McGraw-Hill Education, New York,
 2005; Vol. 4, pp 654-658.

(2) Li, K.; Lu, Y.; Ke, X.; Li, S.; Lu, S.; Wang, C.; Wang, S.; Chen, C.; Tang, J. Over 7% Efficiency of Sb₂(S,Se)₃ Solar Cells via V-Shaped Bandgap Engineering. *Sol. RRL* 2020, *4*, 2000220.

(3) Chen, C.; Wang, L.; Gao, L.; Nam, D.; Li, D.; Li, K.; Zhao, Y.; Ge, C.; Cheong, H.; Liu, H.; et al.
6.5% Certified Efficiency Sb₂Se₃ Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer. ACS Energy Lett. 2017, 2, 2125-2132.

(4) Wen, X.; Chen, C.; Lu, S.; Li, K.; Kondrotas, R.; Zhao, Y.; Chen, W.; Gao, L.; Wang, C.; Zhang, J.;
et al. Vapor Transport Deposition of Antimony Selenide Thin Film Solar Cells with 7.6% Efficiency. *Nat. Commun.* 2018, *9*, 2179.