Electronic Supplementary Information (ESI)

Functionalization Methodology for Synthesis of Silane-End-Functionalized Linear and Star Poly(aryl isocyanide)s by Combination of Cationic Polymerization and Hydrosilylation Reaction

Tuemay Abadi Belay, Jupeng Chen, HuanXu, ShaowenZhang,ShiluChen, *Xiaofang Li*

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China

Table of contents

Experimental Section

Materials

General Methods

Scheme S1. Synthesis of 1,3,5-Tris(dimethylsilyl) Benzene
Scheme S2. Synthesis of 4-Ethoxycarbonyl Phenyl Isocyanides (EPI)

Synthesis of 4-Aminobenzoate

Synthesis of 4-Formamidobenziate

Synthesis of 4-Ethoxycarbonyl Phenyl Isocyanide

Scheme S3. Synthesis of 4-Isocyano-4-(1,1,2-Triphenylvinyl)-1-Phenyl (ITPP)

Synthesis of (2-(4-Aminophenyl)-Ethene-1,1,2-Triyl)-Tribenzene

Synthesis of (2-(4-Formamidophenyl)-Ethene-1,1,2-Triyl-Tribenzene
Synthesis of (2-(4-Isocyanophenyl)-Ethene-1,1,2-Triyl)-Tribenzene

Scheme S4. Synthesis of 4-Isocyano-4-(1,1,2-Triphenylvinyl)-1-Phenyl-1-Anisol (ITPPA)

Synthesis of 4-Methoxytetraphenylethene
Synthesis of N-(4-Iodophenyl)-Formamide
Synthesis of N-(4'-(1,2,2-Triphenylvinyl)-[1-Phenoxy-1-Phenyl]-4-yl)-Formamide
Synthesis of 4-Isocyano-4'-(1,2,2-Triphenylvinyl)-1-Phenyl-1-Anisol
Scheme S5. Synthesis of ($1 S, 2 R, 5 S$)-2-Isopropyl-5-Metheylcyclohexyl-4-Isocyanobezoate (D-IMCI) and (1R,2S,5R)-2-Isopropyl-5-Metheylcyclohexyl-4-Isocyanobezoate (L-IMCI) Synthesis of (1S,2R,5S)-2-Isopropyl-5-Metheylcyclohexyl-4-Nitrobezoate Synthesis of ($1 S, 2 R, 5 S$)-2-Isopropyl-5-Metheylcyclohexyl-4-Aminobezoate Synthesis of (1S,2R,5S)-2-Isopropyl-5-Metheylcyclohexyl-4-Formamidobezoate Synthesis of (1S,2R,5S)-2-Isopropyl-5-Metheylcyclohexyl-4-Isocyanobezoate Synthesis of (1R,2S,5R)-2-Isopropyl-5-Metheylcyclohexyl-4-Nitrobezoate Synthesis of (1R,2S,5R)-2-Isopropyl-5-Metheylcyclohexyl-4-Aminobezoate Synthesis of (1R,2S,5R)-2-Isopropyl-5-Metheylcyclohexyl-4-Formamidobezoate Synthesis of (1R,2S,5R)-2-Isopropyl-5-Metheylcyclohexyl-4-Isocyanobezoate

A typical procedure for the linear polymerization of 4-ethoxycarbonyl phenyl isocyanide (EPI) with $\mathrm{Et}_{3} \mathrm{Si}$ H as end-functionalized agent (Table 1, entry 4).

A typical procedure for the three star random and homo-copolymerization of ($1 S, 2 R, 5 S$)-2-isopropyl-5-methylcyclohexyl-4-isocyanobenzoate (D-IMCI) with 4-isocyano-4'-(1,2,2-triphenylvinyl)-1-phenyl-1-anisol (ITPPA) with 1,3,5-tris(dimethylsilyl)benzene as core-first functional agent (Table 3, entry 5).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of4-ethoxycarbonyl phenyl isocyanide (a).
Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of4-ethoxycarbonyl phenyl isocyanide (a).
Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenyl (ITPP) (b).
Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenyl (ITPP) (b).
Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenoxy-1-anisol (ITPPA) (c).
Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenoxy-1-anisol (ITPPA) (c).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (d).
Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (d).
Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $(1 R, 2 S, 5 R)$-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (e).
Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of $(1 R, 2 S, 5 R)$-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (e).
Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Et}_{3} \mathrm{SiH}$.
Figure S12. (a) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Et}_{3} \mathrm{SiH}$ and (b) corresponding cationic species in situ generated by reaction of $\mathrm{Et}_{3} \mathrm{SiH}$ with catalyst $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR of poly(EPI) with $\mathrm{Et}_{3} \mathrm{SiH}$ as end group (Table 2, entry 4).
Figure S14. (a) ${ }^{1} \mathrm{H}$ NMR of poly(EPI) (Table 2, entry 4), (b) Poly(ITPPA) (Table 2, entry 8), (c) Poly(DIMCI) (Table 3, entry 9) and (d) Poly(L-IMCI) (Table 2, entry 10).

Figure S15. ${ }^{1} \mathrm{H}$ NMR of poly(EPI) with different silane source as end group (Table 2, entries 1-2).
Figure S16. ${ }^{1} \mathrm{H}$ NMR of poly(EPI) with different silane source as end group (Table 2, entries 3, 5-6).
Figure S17. ${ }^{29} \mathrm{SiNMR}$ spectrum of $\mathrm{Et}_{3} \mathrm{SiH}$ and $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 4).
Figure S18. $\left({ }^{1} \mathrm{H}+{ }^{29} \mathrm{Si}\right)$ gHMBC NMR spectrum of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 4).
Figure S19. ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of $\mathrm{Et}_{3} \mathrm{SiH}$ and $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(ITPPA) (Table 2, entry 8).
Figure S20. ${ }^{29}$ Si-NMR spectrum of PhSiH_{3} and PhSi -end-functionalized star poly(EPI) (Table 3, entry1).
Figure S21. ${ }^{29}$ Si-NMR spectrum of $\mathrm{PhMe}_{2} \mathrm{Si}$-end-functionalized poly(EPI)(Table 2, entry 1).
Figure S22. ${ }^{29}$ Si-NMR spectrum of $\left(4-{ }^{i} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2}$ Si-end-functionalized poly(EPI)(Table 2, entry 2).
Figure S23. ${ }^{29}$ Si-NMR spectrum of $\mathrm{Ph}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 3).
Figure S24. ${ }^{29}$ Si-NMR spectrum of ${ }^{i} \mathrm{Pr}_{3}$ Si-end-functionalized poly(EPI) (Table 2, entry 5).
Figure S25. ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of $(\mathrm{OEt})_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 6).
Figure S26. FT-IR spectra of monomers (a) $\mathrm{Et}_{3} \mathrm{SiH}$, (b) EPI, (c) ITPPA, (d) D-IMCIand (e) L-IMCI.
Figure S27. FT-IR spectra of (a) Poly(EPI) (Table 2, entry 4), (b) Poly(ITPPA) (Table 2, entry 8), (c) Poly(D-IMCI) (Table 2, entry 9), (d) Poly(L-IMCI) (Table 2, entry 10).

Figure S28. FT-IR spectra of PhSiH_{3} and PhSi -end-functionalized star poly(EPI) (Table 3, entry1).

Figure S29. FT-IR spectra of $\mathrm{PhMe}_{2} \mathrm{SiH}$ and $\mathrm{PhMe}_{2} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 1).
Figure S30. FT-IR spectra of $\left(4-{ }^{i} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2} \mathrm{SiH}$ and $\left(4-{ }^{i} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2 , entry 2).

Figure S31. FT-IR spectra of $\mathrm{Ph}_{3} \mathrm{SiH}$ and Ph_{3} Si-end-functionalized poly(EPI) (Table 2, entry 3).
Figure S32. FT-IR spectra of ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiH}$ and ${ }^{i} \mathrm{Pr}_{3}$ Si-end-functionalized poly(EPI) (Table 2, entry 5).
Figure S33. FT-IR spectra of $(\mathrm{OEt})_{3} \mathrm{SiH}$ and $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) (Table 2, entry 6).
Figure S34. Plots of fluorescence intensity vs water fraction in THF/water mixture ($0.01 \mathrm{mg} / \mathrm{mL}$) (A) ITPP, (B) Poly(ITPP) (Table 2, entry 7), (C) ITPPA, (D) Poly(ITPPA) (Table 3, entry 8) (conditions: EX wavelength: 290 nm , EX slit: 5 nm , EM slit: $5 \mathrm{~nm}, 700$ V).

Figure S35. UV absorption and transmittance spectra of (A) ITPP, (B) Poly(ITPP) (Table 2, entry 7), (C) ITPPA and (D) Poly(ITPPA) (Table 2, entry 8) with the water fraction in THF/water mixture ranging from 0 to 95%.

Figure S36. CD Spectra of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(D-IMCI) and Et_{3} Si-end-functionalized poly(LIMCI) (Table 2, entries 9-10).

Figure S37. (a) ${ }^{1} \mathrm{H}$ NMR spectra of $1,3,5-\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{3}-\mathrm{C}_{6} \mathrm{H}_{3}$ and (b) corresponding cationic species in situ generated by reaction of Poly-Si-H with catalyst $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.

Figure S38. ${ }^{1}$ H NMR spectra of Poly(ITPPA) (Table 2, entry 8), Poly(D-IMCI-co-ITPPA)s (Table 3, entries 4-8) and Poly(D-IMCI) (Table 3, entry 9).

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of Poly(ITPPA) (Table 2, entry 8), Poly(L-IMCI-co-ITPPA)s (Table 4, entries 9-13) and Poly(L-IMCI) (Table 3, entry 10).

Figure S40. ${ }^{29}$ Si-NMR spectrum of poly(D-IMCI) (Table 3, entry 2).
Figure S41. ${ }^{29}$ Si-NMR spectrum of poly(D-IMCI-co-ITPPA) (Table 3, entry 6).
Figure S42. Plots of fluorescence intensity vs water fraction in THF/water mixture ($0.01 \mathrm{mg} / \mathrm{mL}$) (A) Poly(D-IMCI-co-ITPPA) (Table 3, entry 4), (B) Poly(D-IMCI-co-ITPPA) (Table 3, entry 5), (C) Poly(D-IMCI-co-ITPPA) (Table 3, entry 6), (D) Poly(D-IMCI-co-ITPPA) (Table 3, entry 8), (F) Poly(L-IMCI-coITPPA) (Table 3, entry 9), (G) Poly(L-IMCI-co-ITPPA) (Table 3, entry 10), (H) Poly(L-IMCI-co-ITPPA)
(Table 3, entry 11) and (I) Poly(L-IMCI-co-ITPPA) (Table 3, entry 13) (conditions: EX wavelength: 290 nm , EX slit: 5 nm , EM slit: $5 \mathrm{~nm}, 700 \mathrm{~V}$).

Figure S43. UV absorption and transmittance spectra of (a) baseline, (b) ITPPA, (c) Poly(ITPPA) (Table 2, entry 8), (d-g) (Poly(D-IMCI-co-ITPPA)s (Table 3, entries 4-8) and (h-l) Poly(L-IMCI-co-ITPPA)s (Table 3, entries 9-13) in THF.

Figure S44. CD spectra of poly(D-IMCI) (Table 3, entry 2) and poly(L-IMCI) (Table 3, entry 3).
Figure S45. MALDI-TOF mass spectrum of EPI oligomer obtained by the binary $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] / \mathrm{Et}_{3} \mathrm{SiH}$ system.

Figure S46. GPC curve of Poly(EPI) by cationic catalyst $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right.$ in Table 1, entry 1.
Figure S47. GPC curve of Poly(EPI) by cationic catalyst $\left[\left(\mathrm{Et}_{3} \mathrm{Si}\right)_{2} \mathrm{H}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ in Table 1, entry 2.
Figure S49. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 3.
Figure S49. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 4.
Figure S49. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 5.
Figure S50. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 6.
Figure S51. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 7.
Figure S52. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 8.
Figure S53. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-End-Functionalized Poly(EPI) in Table 1, entry 9.
Figure S54. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 10.
Figure S55. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 11.
Figure S56. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 12.
Figure S57. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 13.
Figure S58. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 14.
Figure S59. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 15.
Figure S60. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 16.
Figure S61. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 17.

Figure S62. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 18.
Figure S63. GPC curve of PhMe_{2} Si-end-functionalized poly(EPI) in Table 2, entry 1.
Figure S64. GPC curve of $\left(4-{ }^{i} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2} \mathrm{Si}$-end-functionalized poly(EPI) in Table 2, entry 2.
Figure S65. GPC curve of Ph_{3} Si-end-functionalized poly(EPI) in Table 2, entry 3.
Figure S66. GPC curve of ${ }^{i} \mathrm{Pr}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 2, entry 5.
Figure S67. GPC curve of $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 6.
Figure S68. GPC curve of $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 7.
Figure S69. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(ITPP) in Table 2, entry 8.
Figure S70. GPC curve of Et_{3} Si-end-functionalized poly(ITPPA) in Table 2, entry 9.
Figure S71. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(D-IMCI) in Table 2, entry 10
Figure S72. GPC curve of PhSi-end-functionalized star poly(EPI) in Table 3, entry 1.
Figure S73. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(D-IMCI) in Table 3, entry 2.
Figure S74. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(L-IMCI) in Table 3, entry 3.
Figure S75. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 4.

Figure S76. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 5 .

Figure S77. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 6 .

Figure S78. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 7 .

Figure S79. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 8 .

Figure S80. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 9 .

Figure S81. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 10 .

Figure S82. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 11 .

Figure S83. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 12 .

Figure S84. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 13 .

COMPUTATIONALMETHODS

Density functional calculations

Figure S85. Optimized structures of the adduct between $\mathrm{Ph}_{3} \mathrm{C}^{+}$and a substrate $\mathbf{a}\left(\mathrm{Ph}_{3} \mathrm{C}-(\mathrm{a})_{1}{ }^{+}\right)$and the transition state $\left(\mathbf{T S}_{\mathbf{A}}\right)$ for the A^{+}formation activated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.

Figure S86. Free energy profile for the polymerization initiated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.
Figure S87. Free energy profile for the polymerization initiated by A^{+}.
Figure S88. Optimized structures of stationary points in the polymerization initiated by A^{+}.
Figure S89. Optimized structures of stationary points in the polymerization initiated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.
Figure S90. DSC curve of PhSi-end-functionalized star poly(EPI) in Table 3, entry 1.
Figure S91. DSC curve of Ph_{3} Si-end-functionalized poly(EPI) in Table 2, entry 3.
Figure S92. DSC curve of ${ }^{i} \mathrm{Pr}_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 5.
Figure S93. DSC curve of $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 6.
Figure S94. DSC curve of triethylsilane-end-capped Poly(D-IMCI) Table 2, entry 9.
Figure S95. DSC curve of triethylsilane-end-capped Poly(L-IMCI) in Table 2, entry 10.
Figure S96. DSC curve of silane-end-capped star Poly(D-IMCI) in Table 3, entry 2.
Figure S97. DSC curve of silane-end-capped star Poly(L-IMCI) in Table 3, entry 3.
Figure S98. AFM image of silane-end-capped star Poly(L-IMCI) in Table 3, entry 3.

Figure S99. SEM image of silane-end-capped star Poly(L-IMCI) in Table 3, entry 3.
Figure S100. The in situ ${ }^{1} \mathrm{H}$ NMR spectra of the polymerization of EPI by the $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] / \mathrm{PhSiH}_{3}$ binary system under the molar ratio of $[\mathrm{EPI}] /\left\{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right\} /\left[\mathrm{PhSiH}_{3}\right]$ as $10: 1: 10$ at room temperature in d^{8}-THF

Figure S101. The in situ ${ }^{29} \mathrm{Si}$ NMR spectra of the polymerization of EPI by the $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] / \mathrm{PhSiH}_{3}$ binary system under the molar ratio of $[\mathrm{EPI}] /\left\{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right\} /\left[\mathrm{PhSiH}_{3}\right]$ as $10: 1: 10$ at room temperature in d^{8}-THF .

Figure S102. The reaction of $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and PhSiH_{3} under the molar ratio of $[\mathrm{EPI}] /\left\{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right\} /\left[\mathrm{PhSiH}_{3}\right]$ as 10:1:10 at room temperature in 1 h .

References

EXPERIMENTAL SECTION

Materials

All manipulations of air and moisture-sensitive compounds were performed under a dry and oxygen free nitrogen atmosphere by using schlenk techniques or under nitrogen atmosphere in an Mbraunglovebox. Nitrogen (Beijing AP beifen gases Industrial Co.Ltd.) was purified through a dry clean column (4A molecular sieves, Dalian Replete Science and Technology Co.Ltd.) and a gas clean column (Dalian Replete Science and Technology Co.Ltd.). The nitrogen in glovebox was constantly circulated through copper/molecular sieves catalyst unit. The oxygen and moisture concentrations in the glovebox atmosphere were monitored by an $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$ Combi-Analyzer (Mbraun) to ensure both were always below 0.1 ppm . THF, Hexane, Toluene, Chlorobenzene, Dichlorobenzene and 1,1,2,2-tetrachloroethane were purified by a solvent purification system (SPS-800, Mbraun), and dried over fresh Na Chips in the glovebox. $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, $\left[\mathrm{PhMe}_{2} \mathrm{NH}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ were purchased from Tosoh finechem corporation and used without purification. All Silane monomers were also purchased from Tosoh Finechem Corporation and dried with CaH_{2} and Distilled.

Isocyanide monomers were synthesized according to literatures. ${ }^{[1]}$ The 1,3,5-tris(dimethylsilyl)benzene also synthesized according to literature. ${ }^{[2]}$ The deuterated solvents benzene-d6 (99.6 atom\% D) and Chloroforum-d1 (99.8 atom\% D) were obtained from Cambridge Isotope.

General Methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BrukerAvance (III-HD 400 MHz) Spectrometer. The molecular Weights and molecular weight distributions of EPI Polymers were determined against polystyrene standard at $25^{\circ} \mathrm{C}$ by GPC on waters HPLC-515 apparatus, CHCl_{3} was employed as the eluent at a flow rate of 1 $\mathrm{ml} / \mathrm{min}$. The molecular Weights and molecular weight distributions of the D-(or L-) IMCI and ITPA Polymers were determined against polystyrene standard at $25^{\circ} \mathrm{C}$ by GPC on waters HPLC-8320GPC apparatus, THF was employed as the eluent at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

FT-IR spectra were recorded on a thermo IS5 FT-IR system using KBr Pellets at room temperature. The UVVis spectra were recorded on a HITACHI F-7000 Fluorescence spectrometer. Quartz cells with 10.0 mm length were used in UV-Vis and fluorescence measurement, and the slit widths were set at 5.0 nm for both excitation and emission during the fluorescence measurement. Circular dichroism spectra were collected on a Jasco J-810 and quartz cell length was 1.0 nm . Optical rotations were measured on a Kruss P8000-T polarimeter using a 0.5 cm cell with a Na 589 nm filter. High resolution mass spectra were collected on an Agilent 6520 Accurate-mass Q-TOF LC/MS.

Scheme S1. Synthesis of 1,3,5-Tris(dimethylsilyl) Benzene

Synthesis of 1,3,5-tris(dimethylsilyl) benzene: The 1,3,5-tris(dimethylsilyl) benzene was synthesized according to the literature procedures. ${ }^{[3]}$ To a mixture of dimethylchlorosilane ($4.73 \mathrm{~g}, 50.0 \mathrm{mmol}$) and magnesium ($1.22 \mathrm{~g}, 50.0 \mathrm{mmol}$) in dry THF (15 mL) was added a solution of 1,3,5-tribromobenzene (3.15 g , $100 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. The rate of the addition was adjusted to maintain a reflux. When the addition was finished the reaction was heated under reflux for 3 h . The volatiles were removed in vacuo and the product extracted from the solid residue of hexane $(3 \times 20 \mathrm{~mL})$. The solvent was removed in vacuo. The product was purified by distillation under reduced pressure, Yield 75%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.21(18 \mathrm{H}, \mathrm{d},-$ $\left.\mathrm{CH}_{3}, \mathrm{~J} 1 / 43 \mathrm{~Hz}\right), 4.29(3 \mathrm{H}$, septet, $\mathrm{Si}-\mathrm{H}, \mathrm{J} 1 / 43 \mathrm{~Hz})$, $7.58(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{Ar})$.

Scheme S2. Synthesis of 4-Ethoxycarbonyl Phenyl Isocyanides (EPI)

Synthesis of ethyl-4-aminobenzoate: To a solution of 4-aminobenzoic acid ($5.26 \mathrm{~g}, 30.0 \mathrm{mmol}$) in 120 mL of EtOH was slowly added 16.3 mL of aqueous con. $\mathrm{H}_{2} \mathrm{SO}_{4}(300 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 7 h , cooled to room temperature, neutralized with a saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution and extracted with ethyl acetate $(3 \times 60 \mathrm{~mL})$, the combined organic phases were washed with brine $(2 \times 40 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum, the residue was purified by column chromatography (silica gel, 4:1-2:1 hexane to ethyl acetate, v / v) to afford compoundas a white solid (4.35 g , 93% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.36 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 4.06 (br, 2H), 4.31 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.63 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.85 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$).

Synthesis of ethyl-4-formamidobenzoate: Compoundethyl 4-aminobenzoate ($4.35 \mathrm{~g}, 26.3 \mathrm{mmol}$) was dissolved in a formic acid ($1.5 \mathrm{~mL}, 39.5 \mathrm{mmol}$) the resulting mixture was heated at $60^{\circ} \mathrm{C}$ for 30 min . After the reaction mixture was cooled to room temperature, the excess formic acid was removed under reduced pressure, the residue was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(25 \mathrm{~mL})$ and filtered, the filter cake was washed twice with water and dried in vacuum to afford crude compoundas a white solid (4.71 g , crude), this compound was used directly for the next step without purification.

Synthesis of 4-ethoxycarbonyl phenyl isocyanide: Compound ethyl-4-formamidobenzoate (4.71 g, $28.5 \mathrm{mmol})$ and triethylamine ($27.60 \mathrm{~mL}, 191.0 \mathrm{mmol}$) were dissolved in dry THF (45 mL) under an atmosphere of nitrogen, after the mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{POCl}_{3}(4.50 \mathrm{~mL}, 48.4 \mathrm{mmol})$ was added drop wise to the mixture, the resulting mixture was slowly warmed to room temperature and stirred for 1 h , then the reaction mixture was slowly poured into 40 mL saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and stirred at room temperature for 1 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$, the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, the residue was purified by column chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}, 10: 1$ hexane to ethyl acetate, v / v) to afford the desired compound as brown solid ($3.71 \mathrm{~g}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.08 (dt, $J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.33, 61.66, $126.48,129.94$, 130.88, 131.38, 165.06, 167.10.

Scheme S3. Synthesis of 4-Isocyano-4-(1,1,2-Triphenylvinyl)-1-Phenyl (ITPP)

Synthesis of (2-(4-aminophenyl)ethene-1,1,2-triyl)tribenzene: The (2-(4-aminophenyl)ethene-1,1,2triyl)tribenzene was synthesized by the typical McMurry reaction according to the literature procedures. ${ }^{[4]}$ Into a two-necked round-bottom flask $(100 \mathrm{~mL})$ with reflux condenser were added of Zinc powder $(\mathrm{Zn}, 1.49$ $\mathrm{g}, 22.8 \mathrm{mmol}$) and THF (60 mL). The flask was evacuated and flushed with dry nitrogen three times. After cooling to $-15^{\circ} \mathrm{C}, \mathrm{TiCl}_{4}(4.33 \mathrm{~g}, 22.8 \mathrm{mmol})$ was slowly added. The mixture was stirred for 2.5 h at room temperature. After cooling to $-5^{\circ} \mathrm{C}$, again, Pyridine ($1.53 \mathrm{~mL}, 19.0 \mathrm{mmol}$) was added and the mixture was stirred for 10 min . Then the solution of benzophenone ($1.50 \mathrm{~g}, 7.6 \mathrm{mmol}$) and 4-benzylaniline ($1.66 \mathrm{~g}, 9.1$ mmol) in THF (40 mL) was added, the mixture was refluxed overnight. Afterwards, $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to quench the reaction. After cooling to room temperature, THF was removed by a rotary evaporator. The solution was poured in to water and extracted with DCM. The collected organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After extraction and evaporation of solvent, the crude product was recrystallized from Methanol. A yellow solid was obtained in 56%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.13-6.99 (m, 17H); 6.85-6.82 (d, 2H); 6.52-6.49 (d, 2H). ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): 114.69, 144.57, 144.52, 144.44, 141.25, 139.87, 135.04, 132.94, 131.89.

Synthesis of (2-(4-formamidophenyl) ethene-1,1,2-triyl) tribenzene: Into a 100 mL two-necked flask was added compound (2-(4-aminophenyl)ethene-1,1,2-triyl)tribenzene ($1.50 \mathrm{~g}, 4.3 \mathrm{mmol}$) and THF (40 mL). After cooling to $0^{\circ} \mathrm{C}$, acetic formal anhydride was tardily added by a syringe. The mixture was stirred at room temperature for 2 h . Then the reaction was quenched by the saturated solution of NaHCO_{3}. The mixture was extracted with ethyl acetate (EA), and then the collected organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$
and concentrated in Vacuum. The crude product was recrystallized from Methanol. A crude yellow solid was obtained in 82% and used directly for next step.

Synthesis of 4-Isocyano-4-(1,1,2-Triphenylvinyl)-1-Phenyl(ITPP): Compound (2-(4-formamidophenyl) ethene-1,1,2-triyl) tribenzene $(1.39 \mathrm{~g}, 3.7 \mathrm{mmol})$ and triethylamine ($3.50 \mathrm{~mL}, 24.8 \mathrm{mmol}$) were dissolved in dry THF (20 mL) under an atmosphere of nitrogen, after the mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{POCl}_{3}(0.60 \mathrm{~mL}, 6.3$ mmol) was added drop wise to the mixture, the resulting mixture was slowly warmed to room temperature and stirred for 1 h , then the reaction mixture was slowly poured into 15 mL saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and stirred at room temperature for 1 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, the residue was purified by column chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}, 30: 1$ hexane to ethyl acetate, v / v) to afford the desired compound as light yellow solid ($0.84 \mathrm{~g}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.17-7.10(\mathrm{~m}, 11 \mathrm{H}), 7.21-6.93(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.01, 148.40, 145.13, 145.08, $144.94,144.78$, $141.27,133.38,133.15,132.35,132.29,129.09,129.05,128.86,128.12,126.99,127.96$, 126.88, 125.55 .

Scheme S4. Synthesis of 4-Isocyano-4-(1,1,2-Triphenylvinyl)-1-Phenyl-1-Anisol(ITPPA)

Synthesis of 4-methoxytetraphenylethene: Under nitrogen atmosphere, compounddiphenylmethane (8.60 g, 51.0 mmol) was dissolved in 50 mL of dry THF, after the solution was cooled to $-78^{\circ} \mathrm{C}, \mathrm{n}-\mathrm{BuLi}(22.30 \mathrm{~mL}$, 2.5 M in hexane) was added drop wise and the resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 2 h , then compound (4-methoxyphenyl)(phenyl)methanone ($9.0 \mathrm{~g}, 42.4 \mathrm{mmol}$) in 15 mL THF was added drop wise and the mixture was allowed to warmed to room temperature and stirred for 10 h . Then the reaction mixture was quenched with an aqueous solution of ammonium chloride, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to remove the solvent. The
residue was dissolved in toluene (100 mL), p-toluene sulfonic acid ($1.06 \mathrm{~g}, 6.2 \mathrm{mmol}$) as catalyst was added, the resulting mixture was refluxed for 10 h . after the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, the residue was recrystallized from methanol to afford the desired compound 4-methoxytetraphenyletheneas a white solid ($14.8 \mathrm{~g}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): 7.21-7.01 (m, 15H, $\left.\operatorname{Ar}-H\right), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 6.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 3.77(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$).

Synthesis of 4-hydroxytetraphenylethene: Two-necked flask containing compound 4methoxytetraphenylethene $(8.25 \mathrm{~g}, 22.7 \mathrm{mmol})$ and dried $\mathrm{DCM}(120 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$, and BBr_{3} $(17.10 \mathrm{~g}, 68.2 \mathrm{mmol})$ was slowly added. The mixture was warmed to room temperature and allows standing for 8 h , and then poured into saturated aqueous solution of NaHCO_{3}. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the crude product was recrystallized from petroleum ether to obtained white solid ($7.65 \mathrm{~g}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.01-7.13 (m, 15H, Ar-H). 6.90 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H$). 6.56 (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 4.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}-H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 154.08, 144.12, 144.01, 140.54, 140.34, 136.54, 132.87, 131.49, 131.46, 127.84,127.74, 126.52, 126.4, 114.72.

Synthesis of N-(4-iodophenyl) formamide: The synthetic procedure was the same with that of compound (2-(4-formamidophenyl) ethene-1, 1, 2-triyl) tribenzene, and the crude product was directly used for the next step without further purification ($11.5 \mathrm{~g}, 92 \%$ yield).

Synthesis of \mathbf{N}-(4'-(1,2,2-triphenylvinyl)-[1-phenyl-1-anisol]-4-yl) formamide: Compound N -(4iodophenyl) formamide ($4.40 \mathrm{~g}, 17.8 \mathrm{mmol}$), 4-hydroxytetraphenylethene ($5.64 \mathrm{~g}, 16.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.26 \mathrm{~g}, 24.3 \mathrm{mmol}$) in $100 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$ were reflux overnight (16 h). After the reaction completed, water was added and the resulting mixture was extracted with ethyl acetate. The organic layer was collected, washed with water and brine, dried over anhydrous MgSO_{4} and evaporated. The crude product was washed with Petroleum ether to obtain a yellow solid ($8.5 \mathrm{~g}, 84.7 \%$ yield) and directly used for next the step without further purification.
Synthesis of 4-isocyano-4'-(1,2,2-triphenylvinyl)-1-phenyl-1-anisol (ITPPA): The synthetic procedure was the same with that of compound 4-Isocyano-4-(1, 1, 2-Triphenylvinyl)-1-Phenyl (ITPP). (Weight solid, 83% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.03-7.15(\mathrm{~m}, 17 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{dt}, J=1.6,8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 125.50, 126.36, 126.69, 126.73, 126.76, $126.83,127.81,127.84,127.90,127.95,131.43,131.46,131.50,132.15,137.06,140.28,141.75,141.99$, 143.64, 143.69, 144.02, 164.69.

Scheme S5. Synthesis of (1S,2R,5S)-2-Isopropyl-5-Metheylcyclohexyl-4-Isocyanobezoate (D-IMCI) and (1R,2S,5R)-2-Isopropyl-5-Metheylcyclohexyl-4-Isocyanobezoate (L-IMCI)

Synthesis of (1S,2R,5S)-2-isopropyl-5-metheylcyclohexyl-4-nitrobezoate: Under nitrogen atmosphere, compound 4-nitrobenzoyl chloride ($1.80 \mathrm{~g}, 9.7 \mathrm{mmol}$) was dissolved in dry pyridine (20 mL), then Dmenthol ($1.50 \mathrm{~g}, 9.7 \mathrm{mmol}$) was added in one portion and the resulting mixture was stirred at room temperature for 16 h , after removal of pyridine under reduced pressure, the residue was dissolved indichloromethane (30 mL) and washed with 1 N HCl , saturated NaHCO_{3} aqueous solution and brine, the separated organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, the residue was purified by column chromatography (silica gel, 10:1 hexane to ethyl acetate, v / v) to afford the desired compound ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-nitrobezoate as a yellow solid (2.40 g , 81% yield) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.88-0.98(\mathrm{~m}$, $1 \mathrm{H}), 1.08-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.97$ (dt, $J=4.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.28$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of (1S,2R,5S)-2-isopropyl-5-metheylcyclohexyl-4-aminobezoate: Under nitrogen atmosphere, compound ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-nitrobezoate ($2.40 \mathrm{~g}, 7.9 \mathrm{mmol}$) was dissolved in 30 mL of acetic acid, then iron powder ($4.4 \mathrm{~g}, 78.6 \mathrm{mmol}$) was added in one portion, the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ overnight. Then the mixture was filtered and the filter cake was washed with ethyl acetate $(20 \mathrm{~mL})$, the filtrate was concentrated under reduced pressure, the residue was purified by column chromatography (silica gel, 4:1 hexane to ethyl acetate, v/v) to afford the desired compound ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-aminobezoate as yellow solid ($1.55 \mathrm{~g}, 72 \%$ yield) ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 0.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.96(\mathrm{~m}, 1 \mathrm{H})$,
$1.02-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.12(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}$, 2 H), 4.87 (dt, $J=4.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
Synthesis of (1S,2R,5S)-2-isopropyl-5-metheylcyclohexyl 4-formamidobezoate: Compound (1S,2R,5S)-2-isopropyl-5-metheylcyclohexyl-4-aminobezoate ($1.55 \mathrm{~g}, 5.6 \mathrm{mmol}$) was dissolved in a mixture of formic acid $(16 \mathrm{~mL})$ and acetic acid $(3 \mathrm{~mL})$, the resulting mixture was refluxed overnight. After the reaction mixture was cooled to room temperature, the solvents were removed under reduced pressure, the residue was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ and filtered, the filter cake was washed twice with water and dried in vacuum to afford crude compound ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl 4-formamidobezoateas a white solid (1.70 g , crude), this compound was used directly for the next step without purification.

Synthesis of (1S,2R,5S)-2-isopropyl-5-metheylcyclohexyl 4-isocyanobezoate: Compound (1S,2R,5S)-2-isopropyl-5-metheylcyclohexyl 4-formamidobezoate (1.70 g , crude) and triethylamine ($5.2 \mathrm{~mL}, 37.5 \mathrm{mmol}$) were dissolved in dry THF (15 mL) under an atmosphere of nitrogen, after the mixture was cooled to $0^{\circ} \mathrm{C}$, $\mathrm{POCl}_{3}(0.90 \mathrm{~mL}, 9.5 \mathrm{mmol})$ was added drop wise to the mixture, the resulting mixture was slowly warmed to room temperature and stirred for 1.5 h , then the reaction mixture was slowly poured into 20 mL saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and stirred at room temperature for 1 h , the mixture was extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$, the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, the residue was purified by column chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}, 10: 1$ hexane to ethyl acetate, v / v) to afford the desired compound ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl 4isocyanobezoateas a black syrup $\left(1.35 \mathrm{~g}, 81 \%\right.$ yield for two steps) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.77(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{dd}, J=5.6,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.86-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.12(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dt}, J=4.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), 8.07 (dt, $J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 16.60, 20.82, 22.10, 23.71, 26.66, 31.53, $34.32,40.98,47.30,75.75,126.48,129.88,130.90,131.74,164.58,167.05$.
Synthesis of (1R,2S,5R)-2-isopropyl-5-metheylcyclohexyl 4-nitrobezoate: was the same with that of (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-isocyanobenzoate.

Synthesis of (1R,2S,5R)-2-isopropyl-5-metheylcyclohexyl 4-aminobezoate: (yellow solid, 83\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.79 (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.93(\mathrm{t}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.88-0.98(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.19(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dt}, J=4.4$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of (1R,2S,5R)-2-isopropyl-5-metheylcyclohexyl 4-formamidobezoate: (yellow oil, 72\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, d6-DMSO): 0.73 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ (t, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.82-0.92$ (m, 1H), 0.97-1.09 $(\mathrm{m}, 2 \mathrm{H}), 1.43-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.95(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dt}, J=4.4,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of (1R,2S,5R)-2-isopropyl-5-metheylcyclohexyl 4-isocyanobezoate: (black syrup, 80\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.87-0.90(\mathrm{~m}, 1 \mathrm{H})$, $1.04-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.13(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dt}$, $J=4.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{dt}, J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $16.63,20.86,22.13,23.74,26.69,31.57,34.35,41.01,47.35,75.81,126.52,129.92,130.94,131.78,164.63$, 167.03.

A typical procedure for the linear polymerization of 4-ethoxycarbonyl phenyl isocyanide (EPI) with $\mathrm{Et}_{3} \mathrm{SiHas}$ end-functionalized agent (Table 1, entry 4). In the glove box, a 50 mL round bottom flask was charged with a solution of $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](9.22 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ in chlorobenzene $(2 \mathrm{~mL})$, then 11.5 mg (10 equiv.) of triethylsilane was added. After stirring for 5 min , a solution of 4-ethoxycarbonyl phenyl isocyanide ($875 \mathrm{mg}, 5 \mathrm{mmol}$) in chlorobenzene (3 mL) was added in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 min , then the flask was taken out of the glove box and the reaction mixture was poured into methanol $(100 \mathrm{~mL})$ to precipitate the polymer product, the yellow polymer solid was collected by filtration, and dried in vacuum at $40^{\circ} \mathrm{C}$ to a constant weight ($868 \mathrm{mg}, 99 \%$ yield), The product obtained is soluble thoroughly in CHCl_{3} at $25^{\circ} \mathrm{C}$.

A typical procedure for the three star random and homocopolymerization of ($1 S, 2 R, 5 S$)-2-isopropyl-5-methylcyclohexyl-4-isocyanobenzoate (D-IMCI) with 4-isocyano-4'-(1,2,2-triphenylvinyl)-1-phenyl-1-anisol (ITPPA) with 1,3,5-tris(dimethylsilyl)benzene as core-first functional agent (Table 2, entry 5). In the glove box, a 50 mL round bottom flask was charged with a solution of $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](7.5 \mathrm{mg}, 8.1 \mu \mathrm{~mol})$ in chlorobenzene (2 mL). Then 1,3,5-tris(dimethylsilyl)benzene ($0.68 \mathrm{mg}, 2.7 \mu \mathrm{~mol}$) was added tothe bottom, after stirring for $5 \mathrm{~min}, 10.8 \mu \mathrm{~mol}$ (4 equiv.) of 1,3,5-tris(dimethylsilyl)benzene was added and subsequently, a solution of ($1 S, 2 R, 5 S$)-2-isopropyl-5-methylcyclohexyl 4-isocyanobenzoate ($77 \mathrm{mg}, 0.3$ mmol) and 4-isocyano-4'-(1,2,2-triphenylvinyl)-1-biphenyl-1-anisol (121 mg, 0.3 mmol) in chlorobenzene (3 mL) was added, the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 min , then the flask was taken out of the glove box and the reaction mixture was poured into methanol $(100 \mathrm{~mL})$ to precipitate the copolymer product, the
orange copolymer solid was collected by filtration, and dried in vacuum at $40^{\circ} \mathrm{C}$ to a constant weight (149 $\mathrm{mg}, 91 \%$ yield). The product obtained is soluble thoroughly in CHCl_{3} and THF at $25^{\circ} \mathrm{C}$.

Calculation for the activity of catalyst

$$
\mathrm{A}=\mathrm{m}_{\text {polymer }} /\left(\mathrm{n}_{\text {cat. }} \cdot \mathrm{t}\right)
$$

A: the activity of (co)polymerization (g of polymer/($\mathrm{mol}_{\text {cat. }} \cdot \mathrm{h}$)), $\mathrm{m}_{\text {polymer }}$: the mass of (co)polymer (g), t : the reaction time of (co)polymerization (h), $\mathrm{n}_{\text {cat. }}$: molar amount of catalyst (mol).

$$
\mathrm{n}_{\text {cat. }}=\mathrm{m}_{\text {catalyst }} / \mathrm{M}_{\text {catalyst }}
$$

$\mathrm{m}_{\text {catalyst: }}$: the mass of catalysts (g), and $\mathrm{M}_{\text {catalysts }}$: the relative molecular weight of catalyst.

Calculation of the IMCI contents of the copolymers

The IMCI contents of the copolymers were calculated from the ${ }^{1} \mathrm{H}$ NMR spectra according to the following formula

$$
\omega(\mathrm{mol} \%)_{\mathrm{IMCI}}=\left\{\left[23\left(\mathrm{I}_{\mathrm{H} 3}+\mathrm{I}_{\mathrm{H} 4}\right)\right] /\left[19\left(\mathrm{I}_{\mathrm{H} 1}+\mathrm{I}_{\mathrm{H} 2}+\mathrm{I}_{\mathrm{H} 3}+\mathrm{I}_{\mathrm{H} 4}\right)\right]\right\} \times 100
$$

In which $\mathrm{I}_{\mathrm{H} 1}$ is the integration of the peak at 7.05 ppm which assigned to the aryl protons of ITPPA units and the β-H of the aryl ring of IMCI units. $\mathrm{I}_{\mathrm{H} 2}$ is the integration of the peak at 5.76 ppm which assigned to the α H of the aryl ring of IMCI units. $\mathrm{I}_{\mathrm{H} 3}$ is the integration of the peak at 4.86 ppm ascribed to the proton of the cyclohexyl carbon connected with the oxygen. $\mathrm{I}_{\mathrm{H} 4}$ is the integration of the peaks between 0.3 to 2.5 ppm which assigned to the rest protons of the cyclohexyl group as well as the substituted methyl and the isopropyl. The IMCI contents of poly(D-IMCI-co-ITPA)s and poly(L-IMCI-co-ITPA)s were calculated from the ${ }^{1} \mathrm{H}$ NMR spectra according to the following formula:

$$
\omega(\mathrm{mol} \%) \mathrm{IMCI}=\left\{\left[5 \times \mathrm{I}_{\mathrm{H} 4}-6\left(\mathrm{I}_{\mathrm{H} 1}+\mathrm{I}_{\mathrm{H} 2}+\mathrm{I}_{\mathrm{H} 3}\right)\right] /\left[12\left(\mathrm{I}_{\mathrm{H} 1}+\mathrm{I}_{\mathrm{H} 2}+\mathrm{I}_{\mathrm{H} 3}\right)\right]\right\} \times 100
$$

In which $\mathrm{I}_{\mathrm{H} 1}$ is the integration of the peak at 7.05 ppm which assigned to the aryl protons of ITPPA units and the H of the aryl ring of IMCI units. $\mathrm{I}_{\mathrm{H} 2}$ is the integration of the peak at 5.76 ppm which assigned to the H of the aryl ring of IMCI and ITPA units. $\mathrm{I}_{\mathrm{H} 3}$ is the integration of the peak at 4.86 ppm ascribed to the proton of the cyclohexyl carbon connected with the oxygen and the proton of the isopropyl carbon connected with the
oxygen. $\mathrm{I}_{\mathrm{H} 4}$ is the integration of the peaks between 0.3 to 2.5 ppm which assigned to the rest protons of the cyclohexyl group as well as the substituted methyl and the isopropyl and the rest protons of the isopropyl.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-ethoxycarbonyl phenyl isocyanide (a).

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-ethoxycarbonyl phenyl isocyanide (a).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenyl (ITPP) (b).

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenyl (ITPP) (b).

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenoxy-1-anisol (ITPPA) (c).

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-isocysno-4-(1,1,2-triphenylvinyl)-1-phenoxy-1-anisol (ITPPA) (c).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (d).

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of ($1 S, 2 R, 5 S$)-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (d).

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of ($1 R, 2 S, 5 R$)-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (e).

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of ($1 R, 2 S, 5 R$)-2-isopropyl-5-metheylcyclohexyl-4-isocyanobezoate (e).

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Et}_{3} \mathrm{SiH}$.

Figure S12. (a) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Et}_{3} \mathrm{SiH}$ and (b) corresponding cationic species in situ generated by reaction of $\mathrm{Et}_{3} \mathrm{SiH}$ with catalyst $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR of poly(EPI) with $\mathrm{Et}_{3} \mathrm{SiH}$ as end group (Table 1, entry 4).

Figure S14. (a) ${ }^{1} \mathrm{H}$ NMR of poly(EPI) (Table 2, entry 4), (b) Poly(ITPPA) (Table 2, entry 8), (c) Poly(DIMCI) (Table 2, entry 9) and (d) Poly(L-IMCI) (Table 2, entry 10).

Figure S15. ${ }^{1} \mathrm{H}$ NMR of poly(EPI) with different silane source as end group (Table 2, entries 1-2).

Figure S16. ${ }^{1} \mathrm{H}$ NMR of poly(EPI) with different silane source as end group (Table 2, entries 3,5-6).

Figure S17. ${ }^{29}$ SiNMR spectrum of $\mathrm{Et}_{3} \mathrm{SiH}$ and $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 4).

Figure S18. $\left({ }^{1} \mathrm{H}+{ }^{29} \mathrm{Si}\right)$ gHMBC NMR spectrum of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 4).

Figure S19. ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of $\mathrm{Et}_{3} \mathrm{SiH}$ and $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(ITPPA) (Table 2, entry 8).

Figure S20. ${ }^{29}$ Si-NMR spectrum of PhSiH_{3} and PhSi -end-functionalized star poly(EPI) (Table 3, entry1).

Figure S21. ${ }^{29}$ Si-NMR spectrum of PhMe_{2} Si-end-functionalized poly(EPI) (Table 2, entry 1).

$\begin{array}{llllllllllllllllllllllllllllllll}40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190\end{array}$

Figure S22. ${ }^{29}$ Si-NMR spectrum of $\left(4-{ }^{-} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2}$ Si-end-functionalized poly(EPI) (Table 2, entry 2).

$$
\begin{array}{|lll}
\hline 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 \\
\hline
\end{array}
$$

Figure S23. ${ }^{29}$ Si-NMR spectrum of Ph_{3} Si-end-functionalized poly(EPI) (Table 2, entry 3).

Figure S24. ${ }^{29} \mathrm{Si}$-NMR spectrum of ${ }^{i} \mathrm{Pr}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 5).

Figure S25. ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of $(\mathrm{OEt})_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 6).

Figure S26. FT-IR spectra of monomers (a) $\mathrm{Et}_{3} \mathrm{SiH}$, (b) EPI, (c) ITPPA, (d) D-IMCI and (e) L-IMCI.

Figure S27. FT-IR spectra of (a) Poly(EPI) (Table 2, entry 4), (b) Poly(ITPPA) (Table 2, entry 8), (c) Poly(D-IMCI) (Table 2, entry 9), (d) Poly(L-IMCI) (Table 2, entry 10).

Figure S28. FT-IR spectra of PhSiH_{3} and PhSi -end-functionalized star poly(EPI) (Table 3, entry1).

Figure S29. FT-IR spectra of $\mathrm{PhMe}_{2} \mathrm{SiH}$ and $\mathrm{PhMe}_{2} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 1).

Figure S30. FT-IR spectra of $\left(4-{ }^{i} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2} \mathrm{SiH}$ and $\left(4-{ }^{i} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2 , entry 2).

Figure S31. FT-IR spectra of $\mathrm{Ph}_{3} \mathrm{SiH}$ and $\mathrm{Ph}_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 3).

Figure S32. FT-IR spectra of ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiH}$ and ${ }^{i} \mathrm{Pr}_{3}$ Si-end-functionalized poly(EPI) (Table 2, entry 5).

Figure S33. FT-IR spectra of $(\mathrm{OEt})_{3} \mathrm{SiH}$ and $(\mathrm{OEt})_{3} \mathrm{Si}$-end-functionalized poly(EPI) (Table 2, entry 6).

Figure S34. Plots of fluorescence intensity vs water fraction in THF/water mixture ($0.01 \mathrm{mg} / \mathrm{mL}$) (A) ITPP,
(B) Poly(ITPP) (Table 2, entry 7), (C) ITPPA, (D) Poly(ITPPA) (Table 3, entry 8) (conditions: EX wavelength: 290 nm , EX slit: 5 nm , EM slit: $5 \mathrm{~nm}, 700$ V).

Figure S35. UV absorption and transmittance spectra of (A) ITPP, (B) Poly(ITPP) (Table 2, entry 7), (C) ITPPA and (D) Poly(ITPPA) (Table 2, entry 8) with the water fraction in THF/water mixture ranging from 0 to 95%.

Figure S36. CD Spectra ofEt ${ }_{3}$ Si-end-functionalized poly(D-IMCI) and $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalizedpoly(LIMCI) (Table 2, entries 9-10).

Figure S37. (a) ${ }^{1} \mathrm{H}$ NMR spectra of $1,3,5-\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{3}-\mathrm{C}_{6} \mathrm{H}_{3}$ and (b) corresponding cationic species in situ generated by reaction of Poly-Si-H with catalyst $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.

Figure S38. ${ }^{1}$ H NMR spectra of Poly(ITPPA) (Table 2, entry 8), Poly(D-IMCI-co-ITPPA)s (Table 3, entries 4-8) and Poly(D-IMCI) (Table 3, entry 9).

Figure S39. ${ }^{1}$ H NMR spectra of Poly(ITPPA) (Table 2, entry 8), Poly(L-IMCI-co-ITPPA)s (Table 4, entries 9-13) and Poly(L-IMCI) (Table 3, entry 10).
${ }^{29}$ Si-NMR in star homopolymer

Figure S40. ${ }^{29}$ Si-NMR spectrum of poly(D-IMCI) (Table 3, entry 2).
${ }^{29}$ Si-NMR in star copolymer

Figure S41. ${ }^{29}$ Si-NMR spectrum of poly(D-IMCI-co-ITPPA) (Table 3, entry 6).

Figure S42. Plots of fluorescence intensity vs water fraction in THF/water mixture ($0.01 \mathrm{mg} / \mathrm{mL}$) (A) Poly(D-IMCI-co-ITPPA) (Table 3, entry 4), (B) Poly(D-IMCI-co-ITPPA) (Table 3, entry 5), (C) Poly(D-IMCI-co-ITPPA) (Table 3, entry 6), (D) Poly(D-IMCI-co-ITPPA) (Table 3, entry 8), (F) Poly(L-IMCI-coITPPA) (Table 3, entry 9), (G) Poly(L-IMCI-co-ITPPA) (Table 3, entry 10), (H) Poly(L-IMCI-co-ITPPA) (Table 3, entry 11) and (I) Poly(L-IMCI-co-ITPPA) (Table 3, entry 13) (conditions: EX wavelength: 290 nm , EX slit: 5 nm , EM slit: $5 \mathrm{~nm}, 700 \mathrm{~V}$).

Figure S43. UV absorption and transmittance spectra of (a) baseline, (b) ITPPA, (c) Poly(ITPPA) (Table 2, entry 8), (d-g) (Poly(D-IMCI-co-ITPPA)s (Table 3, entries 4-8) and (h-l) Poly(L-IMCI-co-ITPPA)s (Table 3, entries 9-13) in THF.

Figure S44. CD spectra of poly(D-IMCI) (Table 3, entry 2) and poly(L-IMCI) (Table 3, entry 3).

Figure S45. MALDI-TOF mass spectrum of EPI oligomer obtained by the binary $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] / \mathrm{Et}_{3} \mathrm{SiH}$ system.

GPC Curve Synthesis of Silane-End-Functionalized Linear Poly(aryl isocyanide)s through Cationic Polymerization of Aryl Isocyanides Promoted by Cationic Initiator Borates or Borane in the Presence of Hydrosilane.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	Intrinsic alpha Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1					59102	229311	168209	549354	912038	3.879944	2.395673

Figure S46. GPC curve of Poly(EPI)by cationic catalyst $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right.$ in Table 1, entry 1 .

Broad Unknow n Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$\mathrm{Mz+1}$ (Daltons)	Polydispersity	$\mathrm{Mz/Mw}$
1						95602	405689	295307	1011338	1701846	4.243529	2.492891

Figure S47. GPC curve of Poly(EPI) by cationic catalyst $\left[\left(\mathrm{Et}_{3} \mathrm{Si}\right)_{2} \mathrm{H}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ in Table 1, entry 2.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \mathrm{Mv} \\ \text { (Daltons) } \end{gathered}$	$\underset{(\mathrm{d} / / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz}+1 \\ \text { (Daltons) } \end{gathered}$	Polydispersity	Mz/Mw
1						77439	281900	205414	657661	1081943	3.640275	2.332958

Figure S49. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 3.

Broad Unknown Modified Univ ersal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha (ntrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1					75636	272626	193200	648352	1087787	3.604437	2.378169

Figure S49. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 4.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \mathrm{Mv} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{K} \\ (\mathrm{~d} / \mathrm{g}) \end{gathered}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mw} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (Daltons) } \end{gathered}$	$\begin{array}{\|c\|} \mathrm{Mz}+1 \\ \text { (Daltons) } \end{array}$	Polydispersity	Mz/Mw
1						67507	268870	189187	665567	1132481	3.982856	2.475423

Figure S49. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 5.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						64750	259807	180082	645787	1093301	4.012448	2.485644

Figure S50. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 6.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \mathrm{Mv} \\ \text { (Daltons) } \end{gathered}$	$\underset{(\mathrm{d} / / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						55478	237557	173743	589276	975952	4.282008	2.480563

Figure S51. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 7.

Broad Unknown Modified Univ ersal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$\mathrm{Mz+1}$ (Daltons)	Polydispersity	$\mathrm{Mz/Mw}$
1						89222	289140	220786	612644	965680	3.240689	$2.11885 C$

Figure S52. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 8.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (d//g)	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						95716	355640	291205	783629	1253092	3.715588	2.203431

Figure S53. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-End-Functionalized Poly(EPI) in Table 1, entry 9.

	Distribution Name	Mv (Daltons)	K (dl/g)	Intrinsic alpha Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$\mathrm{Mz+1}$ (Daltons)	Polydispersity	$\mathrm{Mz} / \mathrm{Mw}$	
1						86536	326841	263650	733599	118999 C	3.776956	2.244511

Figure S54. GPC curve of Et_{3} Si-end-functionalized poly(EPI) in Table 1, entry 10.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{array}{c\|} \mathrm{Mv} \\ \text { (Daltons) } \end{array}$	$\underset{(\mathrm{d} / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mw} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz}+1 \\ \text { (Daltons) } \end{gathered}$	Polydispersity	Mz/Mw
1						53165	224438	147460	579055	988682	4.221503	2.580021

Figure S55. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 11.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1					61134	231339	157892	576059	984709	3.784110	2.490105

Figure S56. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 12.

Broad Unknown Modified Universal Peak Table

| | Distribution
 Name | Mv
 (Daltons) | K
 (dl/g) | Intrinsic
 alpha
 Viscosity
 (dl/g) | Mn
 (Daltons) | Mw
 (Daltons) | MP
 (Daltons) | Mz
 (Daltons) | $\mathrm{Mz+1}$
 (Daltons) | Polydispersity | $\mathrm{Mz} / \mathrm{Mw}$ |
| :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | | | | | 63580 | 286366 | 196903 | 726279 | 1225562 | 4.504001 | 2.536188 |

Figure S57. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 13.

Broad Unknown Modified Univ ersal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						62297	239798	166294	590950	1002743	3.849237	2.464370

Figure S58. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 14.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	Intrinsic alpha Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	
1						72213	295664	215511	721397	1226832	4.094348	2.439918

Figure S59. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 15.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	Intrinsic alpha	Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						58365	232014	157371	585538	1012901	3.975224	2.523718

Figure S60. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 16.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	Intrinsic alpha	Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1					61905	238908	163630	596029	1033177	3.859246	2.494803	

Figure S61. GPC curve of Et_{3} Si-end-functionalized poly(EPI) in Table 1, entry 17.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \mathrm{Mv} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{K} \\ (\mathrm{~d} / \mathrm{g}) \end{gathered}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mw} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz}+1 \\ \text { (Daltons) } \end{gathered}$	Polydispersity	Mz/Mw
1						63232	262249	184192	672196	116829C	4.147401	2.563199

Figure S62. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 1, entry 18.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	K (dl/g)	Intrinsic alpha Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$\mathrm{Mz+1}$ (Daltons)	Polydispersity	$\mathrm{Mz/Mw}$	
1						57855	209883	140548	521933	902777	3.627734	2.486782

Figure S63. GPC curve of PhMe_{2} Si-end-functionalized poly(EPI) in Table 2, entry 1.

Broad Unknown Modified Universal Peak Table

	Distribution Name	Mv (Daltons)	$\underset{(\mathrm{d} / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { Mw } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { Mz } \\ \text { (Daltons) } \end{gathered}$	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						71822	260754	176453	629250	1064576	3.630539	2.413193

Figure S64. GPC curve of $\left(4-{ }^{-} \mathrm{PrC}_{6} \mathrm{H}_{4}\right) \mathrm{Me}_{2} \mathrm{Si}$-end-functionalized poly(EPI) in Table 2, entry 2.

Broad Unknown Modified Universal Peak Table

$\left.$| | Distribution
 Name | Mv
 (Daltons) | K
 (dl/g) | alpha | Intrinsic
 Viscosity
 (dl/g) | Mn
 (Daltons) | Mw
 (Daltons) | MP
 (Daltons) | Mz
 (Daltons) | $\mathrm{Mz+1}$
 (Daltons) | Polydispersity |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $\mathrm{Mz/Mw} \right\rvert\,$

Figure S65. GPC curve of Ph_{3} Si-end-functionalized poly(EPI) in Table 2, entry 3.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \mathrm{Mv} \\ \text { (Daltons) } \end{gathered}$	$\underset{(\mathrm{d} / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						54327	220242	153164	546000	925151	4.054013	2.479095

Figure S66. GPC curve of ${ }^{i} \mathrm{Pr}_{3} \mathrm{Si}$-end-functionalized poly(EPI) in Table 2, entry 5.

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \mathrm{Mv} \\ \text { (Daltons) } \end{gathered}$	$\underset{(\mathrm{d} / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	Mw (Daltons)	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw
1						62394	225135	165769	522785	869546	3.608279	2.322095

Figure S67. GPC curve of $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 6.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz} / \mathrm{Mw}$	$\mathrm{Mz}+1 / \mathrm{Mw}$
1		17.457	17.457	17.457	6920	11488	6552	$2011 ?$	32894	1.750815	2.863346

Figure S68. GPC curve of $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 7.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz} / \mathrm{Mw}$
1		13.307	13.307	13.307	68717	232328	188883	626163	1032547	2.695171

Figure S69. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(ITPP) in Table 2, entry 8.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz} / \mathrm{Mw}$
1		11.930	11.930	11.930	$71113 i$	1643957	1579212	3131660	4798522	1.904953

Figure S70. GPC curve of Et_{3} Si-end-functionalized poly(ITPPA) in Table 2, entry 9.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz} / \mathrm{Mw}$
1		11.914	11.914	11.914	837738	1919038	1626736	3708980	5803431	1.932729

Figure S71. GPC curve of $\mathrm{Et}_{3} \mathrm{Si}$-end-functionalized poly(D-IMCI) in Table 2, entry 10

Broad Unknown Modified Universal Peak Table

	Distribution Name	$\begin{gathered} \text { Mv } \\ \text { (Daltons) } \end{gathered}$	$\underset{(\mathrm{d} / / \mathrm{g})}{\mathrm{K}}$	alpha	Intrinsic Viscosity (dl/g)	$\begin{gathered} \mathrm{Mn} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mw} \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \text { MP } \\ \text { (Daltons) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (Daltons) } \end{gathered}$	$\begin{array}{c\|} \mathrm{Mz}+1 \\ \text { (Daltons) } \end{array}$	Polydispersity	Mz/Mw
1						65341	262042	191028	623403	1043958	4.010387	2.379017

Figure S72. GPC curve of PhSi-end-functionalized star poly(EPI) in Table 3, entry 1.

Figure S73. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(D-IMCI) in Table 3, entry 2.

Figure S74. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(L-IMCI) in Table 3, entry 3.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz} / \mathrm{Mw}$	$\mathrm{Mz}+1 / \mathrm{Mw}$
1		14.408	14.408	14.408	30620	69992	57005	147851	236310	2.112394	3.376241

Figure S75. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 4.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz/Mw}$
1		13.681	13.681	13.681	61084	143429	120630	300062	469015	2.092061

Figure S76. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 5 .

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz} / \mathrm{Mw}$
1		12.800	12.800	12.800	142082	524779	376267	1376036	2241342	2.622126

Figure S77. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 6 .

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz} / \mathrm{Mw}$
1		12.278	12.278	12.278	251163	925273	853813	2518422	6204822	2.721816

Figure S78. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 7.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz} / \mathrm{Mw}$
1		12.297	12.297	12.297	270146	809970	827142	1831794	3505487	2.261558

Figure S79. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(D-IMCI-co-ITPPA) in Table 3, entry 8.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz} / \mathrm{Mw}$	$\mathrm{Mz}+1 / \mathrm{Mw}$
1		14.821	14.821	14.821	22567	55195	39568	126988	216504	2.300719	3.922520

Figure S80. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 9 .

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz} / \mathrm{Mw}$
1		13.450	13.450	13.450	78223	205982	158203	465004	763082	2.257500

Figure S81. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 10 .

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz+1}$	$\mathrm{Mz/Mw}$
1		13.072	13.072	13.072	91079	324849	256809	865924	1446682	2.665616

Figure S82. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 11.

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz} / \mathrm{Mw}$
1		12.285	12.285	12.285	323685	923617	843217	1871372	2980905	2.026134

Figure S83. GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}_{3}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 12 .

GPC Results

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{Mz/Mw}$
1		12.436	12.436	12.436	162105	659013	657848	1618757	2721924	2.456336

Figure S84.GPC curve of $\mathrm{C}_{6} \mathrm{H}_{3}-1,3,5-\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{3}$-end-functionalized poly(L-IMCI-co-ITPPA) in Table 3, entry 13.

COMPUTATIONALMETHODS

All calculations presented in this paper were performed using density functional theory (DFT) with the hybrid functional B3LYP ${ }^{5-7}$ as implemented in Gaussian 09 package. ${ }^{8}$ Geometry optimizations were carried out with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. On the basis of the optimized geometries, more accurate energies were obtained by performing single-point calculations with a larger $6-311+\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$ basis set. Using an empirical formula by Grimme et al, ${ }^{9-12}$ dispersion effects were taken into account throughout geometry optimizations and single-point calculations. Solvation effects were also considered throughout geometry optimizations and single-point calculations, using a conductor-like polarizable continuum model (CPCM) ${ }^{13-16}$ method with chlorobenzene as the solvent. Frequency calculations were performed at the same level of theory as in the optimizations to further confirm the nature of stationary points and to obtain zero-point energies (ZPE) and entropy effects. The energies reported in this paper are the free energies which have been corrected for dispersion, solvation, ZPE, and entropy effects.

Density functional calculations

Initiation

We first considered which species is the one essentially initiating the polymerization. The adduct of $\mathrm{Ph}_{3} \mathrm{C}^{+}$and a substrate a (see $\mathrm{Ph}_{3} \mathrm{C}-(\mathrm{a})_{1}{ }^{+}$in Figure S85) was optimized, having an energy $1.6 \mathrm{kcal} / \mathrm{mol}$ higher than the reactant state of $\mathrm{Ph}_{3} \mathrm{C}^{+}+\mathbf{a}$ (Figure S 86). This indicates that $\mathrm{Ph}_{3} \mathrm{C}^{+}$is an effective species to initiate the polymerization, especially considering that no transition state exists during the addition between $\mathrm{Ph}_{3} \mathrm{C}^{+}$ and a because the nature of this step is a simple one bond formation.

The species of A^{+}(Figure S87) was also taken into account as an initiating species. Its formation should be activated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$via a hydride transfer transition state (see $\mathbf{T S}_{\mathbf{A}}$ in Figure S 85), which shows a barrier of $16.4 \mathrm{kcal} / \mathrm{mol}$ (Figure S 87). Although such an activation is energetically accessible, the subsequent addition of the substrate \mathbf{a} is unreachable with an accumulated barrier of $28.6 \mathrm{kcal} / \mathrm{mol}$ (see TS1' in Figure

S88 for structures and Figure S87 for energies). This means that A^{+}is unable to work as a species to initiate the polymerization, at least in the first polymer chain.

$\mathbf{a} \mathbf{T S}_{\mathrm{A}}$

Figure S85. Optimized structures of the adduct between $\mathrm{Ph}_{3} \mathrm{C}^{+}$and a substrate $\mathbf{a}\left(\mathrm{Ph}_{3} \mathrm{C}-(\mathrm{a})_{1}{ }^{+}\right)$and the transition state $\left(\mathbf{T S}_{\mathbf{A}}\right)$ for the A^{+}formation activated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.

Figure S86. Free energy profile for the polymerization initiated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.

Figure S87. Free energy profile for the polymerization initiated by A^{+}.

TS1'
TS2'

TS3'
TSQ'

Figure S88. Optimized structures of stationary points in the polymerization initiated by A^{+}.

Polymerization and termination

Once the adduct of $\mathrm{Ph}_{3} \mathrm{C}-(\mathrm{a})_{1}{ }^{+}$is formed, it is able to accept the addition of the second substrate a via a C-C bond formation transition state (see TS1 in Figure S89 for structures and Figure S86 for energies). The barrier for this step is quite feasible, with a value of $15.4 \mathrm{kcal} / \mathrm{mol}$ accumulated from the initial state of $\mathrm{Ph}_{3} \mathrm{C}^{+}$ $+\mathbf{a}$ (Figure S86). The subsequent additions of the third and fourth substrates (via TS2 and TS3 in Figure S89, respectively) are both energetically reachable with a little exothermicity (see Figure S 86 for energies). It is expected that the following polymerization steps should have the same nature with reasonable barrier and exothermicity, making the overall polymerization reaction energetically feasible. With an adequate number (estimated as n in Figure S86) of substrates polymerized, the accumulated exothermicity should be sufficient for the final chain termination through a hydride transfer transition state from an A to the cyano carbon of the late substrate in the chain (see $\mathbf{T S}_{\mathbf{Q}}$ in Figure S 89 for structures and Figure S 86 for energies), which has a barrier of $10.3 \mathrm{kcal} / \mathrm{mol}$. In summary, $\mathrm{Ph}_{3} \mathrm{C}^{+}$is an effective species to initiate the polymerization, which is able to be terminated by A.

TS1

TS2

Figure 89. Optimized structures of stationary points in the polymerization initiated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.

Interestingly, the termination step in the $\mathrm{Ph}_{3} \mathrm{C}^{+}$-initiated polymerization is slightly exothermic by 1.8 $\mathrm{kcal} / \mathrm{mol}$ (see red curve in Figure S86), making the A^{+}formation quite feasible, unlike the activation by $\mathrm{Ph}_{3} \mathrm{C}^{+}$described above (see the blue curve in Figure S 87). The A^{+}obtained from the termination of the $\mathrm{Ph}_{3} \mathrm{C}^{+}$-initiated polymerization is able to initiate the addition of substrate via $\mathbf{T S 1}$ ' with a reasonable barrier of $13.2 \mathrm{kcal} / \mathrm{mol}$. The following addition of more substrates are also shown to have feasible barriers and slight exothermicities (see TS2' and TS3' in Figure xx4 for structures and the green curve in Figure S87 for energies), making the polymerization sustainable. Such an A^{+}-initiated polymerization chain can also be terminated by a hydride transfer from an A to the cyano carbon of the late substrate in the chain (see $\mathbf{T S}_{\mathbf{Q}}{ }^{\prime}$ in Figure xx 4 for structures and Figure S 87 for energies), which has a barrier of $10.4 \mathrm{kcal} / \mathrm{mol}$.

With these computational results, it can be concluded that the first polymerization chain should be initiated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$, while the following chains can be initiated by $\mathrm{Ph}_{3} \mathrm{C}^{+}$or A^{+}. The A^{+}species is most likely formed in the termination steps of polymerization chains through a hydride transfer from A to the cyano carbon of the late substrate in the chain, instead in the activation by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.
a

1 C1 3.9307-0.0336 0.1056
2 C 24.67970 .17841 .4417
3 C 35.52911 .27641 .6016
4 C4 4.5618-0.7639 2.4716
5 C 56.25341 .42922 .7853
6 H6 5.6288 2.00780 .8084
7 C7 5.2781-0.6016 3.6564
8 H8 3.9230-1.6345 2.3505
9 C9 6.12660 .49643 .8156
10 H10 6.91432 .28242 .8996
11 H11 5.1751-1.3340 4.4505
12 H12 6.68580 .62284 .7371
13 C13 $3.69101 .2990-0.6536$
14 C14 4.3919 1.5935-1.8243
15 C15 $2.78992 .2357-0.1288$
16 C16 4.1828 2.8143-2.4705
17 H17 5.0965 0.8798-2.2332
18 C18 $2.57393 .4460-0.7836$
19 H19 2.26032 .02950 .7972
20 C20 3.2695 3.7369-1.9600
21 H21 $4.73423 .0373-3.3783$
22 H22 1.8675 4.1603-0.3730
23 H23 3.1024 4.6790-2.4722
24 C24 4.5640-1.1361-0.7826
25 C25 3.8552-1.6008-1.9008
26 C26 5.8345-1.6436-0.5031

27 C27 4.4156-2.5741-2.7254 28 H28 2.8827-1.1810-2.1450 29 C29 6.3946-2.6116-1.3405 30 H30 6.3902-1.2875 0.3557 31 C31 5.6872-3.0826-2.4466 32 H32 3.8614-2.9291-3.5884 33 H33 7.3853-2.9967-1.1214 34 H34 6.1243-3.8388-3.0909 35 C35 0.1666-1.1386 0.8732 36 C36-0.4801-2.0151-0.0060 37 C37-1.8533-2.1767 0.1235 38 C38-2.5550-1.4765 1.1153 39 C39-1.8755-0.6438 2.0126

40 C40 -0.5034-0.4649 1.9012
41 H41 0.0787-2.5168-0.7865
42 H42-2.3889-2.8202 -0.5624
43 H43-2.4411-0.1146 2.7700
44 H44 0.03720 .20242 .5617
45 N45 1.5066-0.8582 0.6657
46 C46 $2.5873-0.52420 .4396$
47 C47-4.0483-1.5280 1.2121
48 O48-4.6882-0.9152 2.0482
49 O49-4.5908-2.2878 0.2542
50 C50 -6.0457-2.3412 0.2196
51 H51-6.3959-2.8070 1.1452
52 H52 -6.4166-1.3153 0.1859
53 C53-6.4339-3.1326-1.0110

54 H54-7.5239-3.1979-1.0740	1 Sil $0.67520 .0534-2.3839$
55 H55 -6.0644-2.6448-1.9175	2 H2 0.1528-1.1786-2.9890
56 H56-6.0290-4.1475-0.9690	3 H3 0.2982 1.3137-3.0363
57 C57-1.5289 0.9736-1.4904	4 C39 2.3404-0.0071-1.6463
58 C58-2.6767 0.3569-2.0058	5 C 40 2.8190-1.2009-1.0621
59 C59-3.9097 0.6228-1.4212	$6 \mathrm{C} 413.11091 .1717-1.5302$
60 C60-3.9969 1.4940-0.3263	7 C42 4.0302-1.2120-0.3771
61 C61-2.8435 2.1217 0.1620	8 H43 2.2447-2.1198-1.1408
62 C62-1.6063 1.8699-0.4166	$9 \mathrm{C} 444.32981 .1505-0.8578$
63 H63-2.5884-0.3323-2.8373	10 H 452.7527 2.1027-1.9610
64 H64-4.8029 0.1423-1.8001	11 C46 4.7826-0.0370-0.2734
65 H65-2.9309 2.79211 .0090	$12 \mathrm{H} 474.3880-2.13000 .0776$
66 H66-0.7022 $2.3348-0.0408$	$13 \mathrm{H} 484.92112 .0570-0.7777$
67 N67-0.2883 0.6590-2.0209	14 H49 5.7260-0.0473 0.2640
68 C68 $0.77300 .3564-2.4328$	15 H4-0.2797 0.0829-1.0137
69 C69-5.2869 1.7644 0.3770	$16 \mathrm{C} 5-0.94370 .02280 .1592$
70 O70-5.3857 2.47961 .3570	$17 \mathrm{C} 6-1.68861 .32990 .1134$
71 O71-6.3258 1.1298-0.1942	18 C 7 -1.7460 2.16821 .2375
$72 \mathrm{C} 72-7.61871 .30740 .4472$	$19 \mathrm{C} 8-2.40911 .6859-1.0404$
73 H73-7.5745 0.83701 .4344	$20 \mathrm{C} 9-2.50443 .34011 .2021$
74 H74-7.7952 2.37700 .5875	$21 \mathrm{H} 10-1.21851 .89642 .1442$
75 C75-8.6591 $0.6699-0.4506$	$22 \mathrm{C} 11-3.15122 .8613-1.0786$
76 H76-9.6501 0.7914-0.0042	$23 \mathrm{H} 12-2.38811 .0339-1.9096$
77 H77-8.6629 1.1443-1.4358	24 C13-3.2003 3.69350 .0461
78 H78-8.4718-0.3996-0.5810	25 H14-2.5477 3.97472 .0814
	26 H15-3.6918 3.1291-1.9808
TSA	27 H16-3.7805 4.61050 .0182

28 C17 $0.1941-0.07181 .1253$
29 C18 $0.3604-1.17891 .9770$
30 C 191.13550 .97641 .1865
31 C20 1.4383-1.2331 2.8593
32 H21-0.3637-1.9838 1.9691
33 C22 2.21570 .91322 .0577
34 H23 1.02051 .83650 .5360
35 C24 $2.3728-0.19642 .8948$
36 H25 1.5461-2.0878 3.5193
37 H26 2.94031 .71992 .0757
38 H27 3.2180-0.2488 3.5740
39 C28-1.7809-1.2088-0.0506
40 C29-1.1784-2.4229-0.4291
41 C30 -3.1686-1.1788 0.1617
42 C31-1.9404-3.5738-0.5972
43 H32-0.1055-2.4640-0.5883
44 C33-3.9297-2.3386 0.0074
45 H34-3.6498-0.2571 0.4658
46 C35 -3.3222-3.5340-0.3778
47 H36 -1.4603 -4.4993-0.8983
48 H37-4.9996-2.3028 0.1862
49 H38 -3.9188-4.4315-0.5079

TS1'

1 Sil -2.3979 0.80781 .5743
2 H2 -1.3459 0.16222 .3728
3 H3-2.3584 2.27751 .5948

4 C4 -4.0895 0.10851 .8129
5 C5-4.2576-1.2399 2.1849
6 C6 -5.2317 0.89681 .5682
7 C7-5.5356-1.7845 2.3085
8 H8 -3.3911-1.8661 2.3827
9 C9-6.5087 0.34861 .6927
10 H10 -5.1257 1.94051 .2849
11 C11-6.6599-0.9909 2.0608
12 H12-5.6556-2.8235 2.5995
13 H13-7.3827 0.96491 .5061
14 H14 -7.6542-1.4161 2.1592
15 C15 -0.9688-0.5153-2.2838
16 C16-1.7085-1.5772-2.8223
17 C17-1.6470 -1.8080-4.1920
18 C18-0.8464-0.9974-5.0075
19 C19-0.0594 0.0136-4.4376
20 C20-0.1066 0.2594-3.0714
21 H21-2.3481-2.1730-2.1813
22 H22-2.2452-2.5943-4.6347
23 H23 $0.56250 .6205-5.0856$
24 H24 0.4702 1.0591-2.6215
25 N25-1.1566-0.1791-0.9406 26 C26-1.9471 0.4025-0.2382

27 C27-0.8329-1.1391-6.4957
28 O28-0.1297-0.4710-7.2322
29 O29-1.7041-2.0646-6.9228
30 C30-1.7783-2.2762-8.3601

31 H31-2.0242-1.3232-8.8362	58 H58-7.5245-1.9795-9.2439
32 H32-0.7940-2.5940-8.7161	
33 C33-2.8447-3.3288-8.5878	TS2'
34 H34-2.9629-3.5095-9.6602	1 Sil -3.2060 1.02410.9868
35 H35-2.5713-4.2719-8.1067	2 H2-2.8206-0.2951 1.5187
36 H36-3.8035-2.9947-8.1826	3 H3-2.7691 2.12471 .8631
37 C37-3.8849 0.7728-3.7974	$4 \mathrm{C} 4-5.01851 .06760 .5659$
38 C38-4.8131-0.2043-4.1853	$5 \mathrm{C} 5-5.7922-0.10760 .6086$
39 C39-4.9958-0.4490-5.5403	$6 \mathrm{C} 6-5.62962 .25710 .1211$
40 C40-4.2589 0.2717-6.4920	7 C7-7.1330-0.0969 0.2162
41 C41-3.3485 1.2554-6.0849	8 H8-5.3468-1.0397 0.9464
42 C42-3.1544 1.5165-4.7345	9 C9-6.9675 2.2678-0.2777
43 H43-5.3563-0.7645-3.4333	$10 \mathrm{H} 10-5.06103 .18340 .0807$
44 H44-5.6998-1.2053-5.8642	11 C11-7.7192 1.0889-0.2342
45 H45-2.7853 1.7952-6.8371	$12 \mathrm{H} 12-7.7176-1.01100 .2622$
46 H46-2.4392 2.2582-4.4004	13 H13-7.4245 3.1929-0.6163
47 N47-3.6273 0.9586-2.4509	14 H14-8.7603 1.0976-0.5429
48 C48-3.3782 1.0922-1.3154	$15 \mathrm{C} 15-0.19011 .6054-1.8029$
49 C49-4.4002 0.0234-7.9601	16 C16-0.2962 $0.6582-2.8401$
50 O50-3.7299 0.5917-8.8049	$17 \mathrm{C} 170.49320 .7870-3.9775$
51 O51-5.3331-0.8973-8.2389	18 C 181.3890 1.8594-4.0933
$52 \mathrm{C} 52-5.5572-1.1828-9.6488$	19 C 191.5145 2.7815-3.0431
53 H53-5.8940-0.2624-10.1346	$20 \mathrm{C} 200.75142 .6448-1.8917$
54 H54-4.6047-1.4747-10.0994	21 H21-0.9614-0.1930-2.7353
$55 \mathrm{C} 55-6.5903-2.2874-9.7216$	22 H22 0.4215 0.0567-4.7746
56 H56-6.7982-2.5238-10.7691	23 H23 2.2239 3.5950-3.1442
57 H57-6.2269-3.1938-9.2289	24 H24 0.8456 3.3457-1.0695

25 N25-0.9696 1.5294-0.6385 26 C26-2.2266 1.2864-0.6427 27 C27 2.2422 2.0547-5.3035 28 O28 3.0422 2.9657-5.4288 29 O29 $2.02401 .1175-6.2400$ 30 C30 2.8084 1.2293-7.4573 31 H31 2.6095 2.2049-7.9110 32 H32 3.8694 1.1916-7.1924 33 C33 2.3998 0.0819-8.3587 34 H34 $2.96830 .1276-9.2920$ 35 H35 2.6003 -0.8801-7.8784 36 H36 1.3344 0.1373-8.5998 37 C37-4.1721 1.9485-3.9338 38 C38-5.5602 2.0943-3.8147 39 C39-6.3473 1.8932-4.9427 40 C40 -5.7514 1.5680-6.1688 41 C41-4.3545 1.4963-6.2782 42 C42-3.5498 1.6933-5.1644 43 H43-6.0031 2.3019-2.8474 44 H44-7.4255 1.9543-4.8664 45 H45-3.9162 1.2541-7.2395 46 H46 -2.4705 1.6073-5.2199 47 N47-3.3934 1.9746-2.7795

48 C48-3.0046 1.2546-1.9023 49 C49-6.5634 1.2421-7.3817 50 O50-6.0783 0.9577-8.4620 51 O51-7.8799 1.2744-7.1327

52 C52-8.7615 0.9689-8.2492
53 H53-8.5677 1.6868-9.0513
54 H54-8.5163-0.0312-8.6164
55 C55-10.1785 1.0598-7.7194
56 H56-10.8868 0.8044-8.5128
57 H57-10.3205 0.3649-6.8876
58 H58-10.4007 2.0720-7.3703
59 C59 -5.5950-1.2601-3.7978
60 C60 -6.9461-1.1884-3.4283
61 C61-7.9131-1.4945-4.3770
62 C62 -7.5335-1.8614-5.6771
63 C63-6.1783-1.9356-6.0241
64 C64-5.1963-1.6371-5.0875
65 H65 -7.2136-0.8761-2.4257
66 H66 -8.9630-1.4398-4.1176
67 H67-5.9089 -2.2126-7.0365
68 H68 -4.1442-1.6718-5.3426
69 N69-4.6324-0.8840-2.8785
70 C70 -3.8435 -0.5443-2.0819
71 C71-8.5387-2.1826-6.7369
72 O72-8.2395-2.4527-7.8874
73 O73-9.7987-2.1322-6.2831
74 C74-10.8440-2.4735-7.2372
75 H75 -10.7382 -1.8302 -8.1146
76 H76-10.6907-3.5088-7.5556
77 C77-12.1707-2.2749-6.5347
78 H78-12.9864-2.5360 -7.2150

79 H79-12.2415-2.9114-5.6484	24 H24-3.2891 4.7706-2.3605
80 H80-12.2975-1.2325-6.2284	25 N25-4.5167 2.7062-1.2128
	26 C26-4.5493 1.4760-1.5746
TS3 ${ }^{\prime}$	27 C 270.21615 .24380 .6328
1 Si1-6.2580 0.6503-1.8228	$28 \mathrm{O} 280.86675 .9465-0.1241$
2 H2-7.2254 1.7631-1.7523	29 O 290.62614 .86961 .8595
3 H3-6.3540-0.0442-3.1187	30 C 301.92285 .35252 .3115
4 C4-6.5257-0.5169-0.3852	31 H31 2.16056 .27521 .7801
$5 \mathrm{C} 5-6.9098$-0.0097 0.8707	32 H 321.78025 .57103 .3719
6 C6 -6.3245-1.9048-0.5102	33 C 332.98974 .29132 .1008
7 C7-7.0929-0.8608 1.9651	34 H34 3.94974 .65732 .4783
8 H8-7.0765 1.0575 0.9989	35 H35 2.73513 .38112 .6511
9 C9-6.5123-2.7583 0.5792	36 H36 3.11424 .04871 .0416
$10 \mathrm{H} 10-6.0147-2.3209-1.4646$	37 C37-2.7044-1.6709-2.1013
11 C11-6.8979-2.2369 1.8192	38 C38-2.6229-2.6358-1.0846
12 H12-7.3967-0.4519 2.9243	39 C39-1.5360-3.5030-1.0469
13 H13-6.3626-3.8276 0.4613	40 C40-0.5717-3.4698-2.0633
14 H14-7.0488-2.9008 2.6654	41 C41-0.7517-2.6144-3.1587
$15 \mathrm{C} 15-3.3868$ 3.3704-0.7219	42 C42-1.8021-1.7026-3.1759
$16 \mathrm{C} 16-2.85053 .01220 .5288$	43 H43-3.3897-2.6664-0.3201
$17 \mathrm{C} 17-1.71423 .65251 .0190$	44 H44-1.4233-4.1999-0.2253
$18 \mathrm{C} 18-1.10764 .66660 .2712$	45 H45-0.0248-2.6323-3.9639
$19 \mathrm{C} 19-1.70675 .0870-0.9308$	46 H46-1.9025-0.9861-3.9833
$20 \mathrm{C} 20-2.84364 .4617-1.4214$	47 N47-3.7025-0.6735-1.9993
$21 \mathrm{H} 21-3.34702 .25001 .1147$	48 C48-3.3839 0.5348-1.7004
$22 \mathrm{H} 22-1.28223 .34211 .9636$	49 C49 0.6838-4.2680-1.9895
23 H23-1.2379 5.8886-1.4914	50 O50 1.4237-4.4802-2.9324

51 O51 0.9389-4.6726-0.7284	78 H78 8.0473-0.4479-1.1415
$52 \mathrm{C} 522.1768-5.4032-0.5199$	79 H79 6.4283-1.1689-1.0215
53 H53 2.1186-6.3514-1.0627	80 H80 $7.0277-0.5866-2.5870$
54 H54 3.0000-4.8216-0.9457	$81 \mathrm{C} 811.0319-0.09980 .6144$
$55 \mathrm{C} 552.3291-5.60670 .9744$	$82 \mathrm{C} 821.5480-1.39270 .4228$
56 H56 3.2512-6.1580 1.1793	83 C83 2.8822-1.6283 0.7254
57 H57 2.3795-4.6466 1.4960	84 C84 3.6882-0.6014 1.2350
58 H58 1.4880-6.1782 1.3775	85 C 853.14310 .67261 .4517
$59 \mathrm{C} 590.17691 .6016-2.2739$	86 C 861.81840 .93861 .1420
60 C 601.0440 0.5259-2.5202	87 H87 0.9156-2.1794 0.0318
61 C61 $2.41040 .6860-2.3188$	88 H88 3.3036-2.6126 0.5637
$62 \mathrm{C} 622.92391 .9128-1.8772$	89 H89 3.78431 .45471 .8406
63 C63 2.0610 3.0070-1.7326	90 H90 1.3937 1.92681 .2698
64 C64 0.6975 2.8627-1.9539	91 N91-0.2443 0.16540 .2143
65 H65 0.6406-0.4382-2.7997	$92 \mathrm{C} 92-1.35660 .3599-0.1715$
66 H66 3.0736-0.1609-2.4465	93 C93 5.1231-0.8156 1.5750
67 H67 $2.45663 .9651-1.4142$	94 O 945.84690 .04752 .0437
68 H68 0.0292 3.7007-1.8347	95 O95 5.5332-2.0645 1.3003
69 N69-1.2227 1.4244-2.3757	96 C96 6.9090-2.3863 1.6408
70 C70-1.9319 0.8866-1.4711	97 H97 7.5677-1.6577 1.1607
71 C71 4.3403 2.0686-1.4484	98 H98 7.0277 -2.2877 2.7242
$72 \mathrm{O} 724.78293 .0708-0.9100$	99 C99 7.1644-3.7988 1.1572
73 O73 5.0678 0.9631-1.6762	$100 \mathrm{H} 1008.1859-4.09591 .4115$
74 C74 $6.44410 .9807-1.2136$	$101 \mathrm{H} 1016.4714-4.50221 .6277$
75 H75 $6.97951 .7792-1.7359$	$102 \mathrm{H} 1027.0453-3.86440 .0718$
76 H76 $6.44871 .2041-0.1435$	103 Si103-3.1758-0.6000 2.0462
77 C77 7.0194-0.3900-1.5113	104 H104-3.6572 0.64202 .6635

$105 \mathrm{H} 105-4.1861-1.51191 .5110$	13 H13-6.3626-3.8276 0.4613
106 C107-1.6640-1.3229 2.7683	14 H14-7.0488-2.9008 2.6654
107 C108-0.7481-0.4966 3.4570	15 C15-3.3868 3.3704-0.7219
108 C109-1.3106-2.6651 2.5040	16 C16-2.8505 3.01220 .5288
109 C110 $0.4867-0.99793 .8624$	$17 \mathrm{C} 17-1.71423 .65251 .0190$
$110 \mathrm{H} 111-0.99550 .54223 .6602$	$18 \mathrm{C} 18-1.10764 .66660 .2712$
111 C112-0.0766-3.16172.9117	19 C19-1.7067 5.0870-0.9308
$112 \mathrm{H} 113-2.0031-3.31841 .9818$	20 C20-2.8436 4.4617-1.4214
113 C114 0.8254-2.3247 3.5798	$21 \mathrm{H} 21-3.34702 .25001 .1147$
114 H115 1.1908-0.3542 4.3790	$22 \mathrm{H} 22-1.28223 .34211 .9636$
115 H116 0.1911 -4.1913 2.6989	23 H23-1.2379 5.8886-1.4914
$116 \mathrm{H} 1171.7963-2.70803 .8780$	24 H24-3.2891 4.7706-2.3605
117 H106-2.3823 0.0430 0.6384	25 N25-4.5167 2.7062-1.2128
	26 C26-4.5493 1.4760-1.5746
TSQ'	27 C 270.21615 .24380 .6328
1 Si1-6.2580 0.6503-1.8228	$28 \mathrm{O} 280.86675 .9465-0.1241$
2 H2-7.2254 1.7631-1.7523	29 O 290.62614 .86961 .8595
3 H3-6.3540-0.0442-3.1187	30 C 301.92285 .35252 .3115
$4 \mathrm{C} 4-6.5257-0.5169-0.3852$	31 H31 2.16056 .27521 .7801
$5 \mathrm{C} 5-6.9098-0.00970 .8707$	32 H32 1.7802 5.5710 3.3719
6 C6 -6.3245-1.9048-0.5102	33 C33 2.98974 .29132 .1008
7 C7-7.0929-0.8608 1.9651	34 H34 3.94974 .65732 .4783
8 H8-7.0765 1.0575 0.9989	35 H35 2.73513 .38112 .6511
9 C9-6.5123-2.7583 0.5792	36 H36 3.11424 .04871 .0416
$10 \mathrm{H} 10-6.0147-2.3209-1.4646$	37 C37-2.7044-1.6709-2.1013
11 C11-6.8979-2.2369 1.8192	38 C38-2.6229-2.6358-1.0846
$12 \mathrm{H} 12-7.3967-0.45192 .9243$	39 C39-1.5360-3.5030-1.0469

```
40 C40-0.5717-3.4698-2.0633
41 C41-0.7517-2.6144-3.1587
42 C42-1.8021-1.7026-3.1759
43 H43 -3.3897-2.6664-0.3201
44 H44 -1.4233-4.1999-0.2253
45 H45 -0.0248-2.6323-3.9639
46 H46 -1.9025 -0.9861-3.9833
47 N47-3.7025-0.6735-1.9993
48 C48 -3.3839 0.5348-1.7004
49 C49 0.6838-4.2680-1.9895
50 O50 1.4237 -4.4802 -2.9324
51 O51 0.9389-4.6726-0.7284
52 C52 2.1768-5.4032 -0.5199
53 H53 2.1186 -6.3514-1.0627
54 H54 3.0000-4.8216 -0.9457
55 C55 2.3291 -5.6067 0.9744
56 H56 3.2512 -6.1580 1.1793
57 H57 2.3795 -4.6466 1.4960
58 H58 1.4880-6.1782 1.3775
59 C59 0.1769 1.6016-2.2739
60 C60 1.0440 0.5259-2.5202
61 C61 2.4104 0.6860-2.3188
62 C62 2.9239 1.9128-1.8772
63 C63 2.0610 3.0070-1.7326
64 C64 0.6975 2.8627-1.9539
65 H65 0.6406 -0.4382 -2.7997
6 6 ~ H 6 6 ~ 3 . 0 7 3 6 - 0 . 1 6 0 9 ~ - 2 . 4 4 6 5 ~
```

67 H67 2.4566 3.9651-1.4142
68 H68 0.0292 3.7007-1.8347
69 N69-1.2227 1.4244-2.3757
70 C70-1.9319 0.8866-1.4711
71 C71 $4.34032 .0686-1.4484$
72 O72 $4.78293 .0708-0.9100$
73 O73 5.0678 0.9631-1.6762
74 C74 $6.44410 .9807-1.2136$
75 H75 6.9795 1.7792-1.7359
76 H76 6.4487 1.2041-0.1435
77 C77 7.0194-0.3900-1.5113 78 H78 8.0473 -0.4479-1.1415 79 H79 6.4283-1.1689-1.0215 80 H80 7.0277-0.5866-2.5870 81 C81 1.0319-0.0998 0.6144 82 C82 1.5480-1.3927 0.4228 83 C83 2.8822 -1.6283 0.7254 84 C84 3.6882 -0.6014 1.2350

85 C85 3.14310 .67261 .4517
86 C86 1.81840 .93861 .1420
87 H87 0.9156-2.1794 0.0318
88 H88 3.3036-2.6126 0.5637
89 H89 3.78431 .45471 .8406
90 H90 1.39371 .92681 .2698
91 N91-0.2443 0.16540 .2143
92 C92-1.3566 0.3599-0.1715
93 C93 5.1231-0.8156 1.5750
940945.84690 .04752 .0437

95 O95 5.5332-2.0645 1.3003
96 C96 6.9090-2.3863 1.6408
97 H97 7.5677-1.6577 1.1607
98 H98 7.0277 -2.2877 2.7242
99 C99 7.1644-3.7988 1.1572
100 H100 $8.1859-4.09591 .4115$
101 H101 6.4714-4.5022 1.6277
102 H102 $7.0453-3.86440 .0718$
103 Si103-3.1758-0.6000 2.0462
104 H104-3.6572 0.64202 .6635
105 H105-4.1861-1.5119 1.5110
106 C107-1.6640-1.3229 2.7683
107 C108-0.7481-0.4966 3.4570
108 C109-1.3106-2.6651 2.5040
109 C110 0.4867 -0.9979 3.8624
110 H111-0.9955 0.54223 .6602
111 C112-0.0766-3.1617 2.9117
112 H113-2.0031-3.3184 1.9818
113 C114 0.8254-2.3247 3.5798
114 H115 1.1908-0.3542 4.3790
115 H116 0.1911 -4.1913 2.6989
116 H117 1.7963-2.7080 3.8780
117 H106-2.3823 0.04300 .6384

TS1

1 C1 3.7941-0.0178 0.0729

2 C2 $4.69311 .1121-0.5044$
3 C3 5.8245 0.7910-1.2626
4 C4 4.4597 2.4478-0.1548
5 C5 6.6980 1.7972-1.6801
6 H6 6.0299-0.2384-1.5304
7 C7 5.3287 3.4506-0.5810
8 H8 3.60752 .71490 .4614
9 C9 6.4512 3.1290-1.3475
10 H10 7.5707 1.5328-2.2688
11 H11 5.1300 4.4821-0.3078
12 H12 7.1286 3.9098-1.6781
13 C13 3.7717-1.3055-0.7927
14 C14 3.8021-2.5813-0.2181
15 C15 3.5854-1.1840-2.1793
16 C16 3.6921 -3.7167-1.0234
17 H17 3.9109-2.6936 0.8530
18 C18 3.4707-2.3188-2.9792
19 H19 3.5376-0.2001-2.6346
20 C20 3.5287-3.5903-2.4029
21 H21 3.7284-4.7000-0.5654
22 H22 3.3350-2.2084-4.0503
23 H23 3.4416-4.4751-3.0254
24 C24 4.2132 -0.2131 1.5386
25 C 253.46030 .29572 .6014
26 C26 5.4489-0.8178 1.8053
27 C27 3.92240 .17943 .9142
28 H28 2.51000 .78882 .4211

29 C29 5.9065-0.9374 3.1155 30 H30 $6.0540-1.19150 .9861$

31 C31 5.1432-0.44134.1759
32 H32 3.32420 .57654 .7281
33 H33 6.8628-1.4139 3.3067
34 H34 5.5015-0.5335 5.1963 35 C35 0.2339 1.4107-0.7715 36 C36-0.4815 2.25980 .0809 37 C37-1.8599 2.3421-0.0724 38 C38-2.5056 1.5955-1.0690 39 C39-1.7597 0.8091-1.9559 40 C40-0.3813 0.7134-1.8195 41 H41 0.03182 .79720 .8696 42 H42-2.4431 2.95690 .6014 43 H43-2.2781 0.2453-2.7220 44 H44 0.2085 0.0750-2.4668 45 N45 $1.57941 .1670-0.5157$ 46 C46 2.3715 0.4244-0.0385 47 C47-3.9955 1.5505-1.1839 48 O48-4.5882 0.8543-1.9897 49 O49-4.5984 2.3311-0.2780 50 C50-6.0531 2.3271-0.2873 51 H51-6.3927 2.7465-1.2388 52 H52-6.3899 1.2909-0.2275

53 C53-6.5081 3.14760 .9010 54 H54 -7.6010 3.18620 .9228 55 H55-6.1587 2.7001 1.8359

56 H56 -6.1286 4.17120 .8388
57 C57-1.3331-1.4553 0.6325
58 C58-2.1944-0.7407 1.4738
59 C59-3.5665-0.8298 1.2626
60 C60 -4.0677-1.6193 0.2195
61 C61-3.1903-2.3418-0.6009
62 C62-1.8193-2.2689-0.4001
63 H63-1.7868-0.1142 2.2578
64 H64 -4.2479-0.2728 1.8932
65 H65 -3.5996-2.9475-1.4008
66 H66-1.1258-2.8046-1.0376
67 N67 0.0364 -1.2962 0.7744
68 C68 1.1935-1.1256 0.8478
69 C69-5.5313-1.7221-0.0692
70 O70-5.9967-2.4026-0.9639
71 O71-6.2734-0.9877 0.7773
72 C72-7.7159-1.0689 0.6035
73 H73-7.9686-0.6602-0.3797
74 H74 -8.0072-2.1226 0.6157
75 C75-8.3473-0.2845 1.7346
76 H76 -9.4363-0.3197 1.6404
77 H77-8.0693-0.7094 2.7029
78 H78-8.0339 0.76261 .7114

TS2

1 C1 3.8815-1.3763 0.0199
2 C2 5.3567-1.2667-0.4491

3 C3 5.8964-2.1072-1.4297	30 H30 4.8940-3.6873 0.9756
$4 \mathrm{C} 46.2202-0.37730 .2136$	31 C31 4.2025-2.7125 4.1599
$5 \mathrm{C} 57.2505-2.0322-1.7703$	32 H32 3.3011-0.8294 4.6950
6 H6 5.2745-2.8369-1.9323	33 H33 5.0985-4.4804 3.3027
7 C7 $7.5663-0.2958-0.1329$	34 H34 4.3008-3.0555 5.1850
8 H8 5.84000 .24491 .0138	35 C35 $3.04982 .3559-0.0133$
9 C9 8.0887-1.1202-1.1331	36 C 361.96792 .61310 .8502
10 H 10 7.6433-2.6960-2.5345	37 C 371.35033 .85820 .8337
11 H 118.21060 .40530 .3889	38 C38 1.7952 4.8521-0.0490
12 H12 9.1394-1.0602-1.4001	39 C39 2.8889 4.5982-0.8898
13 C13 3.0249-2.3179-0.8657	40 C 403.5320 3.3686-0.8583
14 C14 2.2447-3.3590-0.3454	41 H 411.63321 .84971 .5451
15 C 15 2.9293-2.0388-2.2421	42 H 420.52304 .06261 .5026
$16 \mathrm{C} 161.4038-4.1051-1.1758$	43 H43 3.2286 5.3826-1.5565
17 H 17 2.2803-3.5877 0.7121	44 H44 $4.38563 .1646-1.4949$
18 C 18 2.0936-2.7825-3.0716	45 N45 3.7188 1.1264-0.0166
19 H19 3.5105-1.2241-2.6635	46 C46 3.1613-0.0122-0.0944
20 C 20 1.3249-3.8226-2.5394	47 C47 1.1498 6.1961-0.1223
21 H21 0.8133-4.9108-0.7503	48 O48 1.5223 7.0884-0.8639
22 H22 2.0402-2.5480-4.1299	49 O 490.10776 .30940 .7179
23 H23 0.6722-4.4044-3.1825	$50 \mathrm{C} 50-0.58497 .58640 .7158$
$24 \mathrm{C} 243.9434-1.82551 .5008$	51 H 510.13278 .37190 .9707
25 C 25 3.5142-1.0269 2.5643	52 H52-0.9518 $7.7817-0.2963$
$26 \mathrm{C} 264.5280-3.06901 .7891$	$53 \mathrm{C} 53-1.70947 .48591 .7256$
$27 \mathrm{C} 273.6413-1.46763 .8854$	54 H54-2.2598 8.43041 .7578
28 H28 3.0896-0.0468 2.3832	55 H55-2.4067 6.68861 .4531
$29 \mathrm{C} 294.6484-3.51283 .1032$	56 H56-1.3166 7.28042 .7254

57 C57-0.4624 0.3335-1.4576
58 C58-1.2315 1.4146-1.0056 59 C59-2.6137 1.3319-1.1155 60 C60-3.2108 0.1968-1.6849 61 C61-2.4153-0.8325-2.2049 62 C62-1.0325-0.7723-2.1025 63 H63-0.7491 2.2650-0.5379 64 H64-3.2354 2.1303-0.7302 65 H65 -2.8972-1.6951-2.6491 66 H66-0.4005-1.5805-2.4515 67 N67 $0.89820 .3125-1.1769$ 68 C68 1.7023-0.0765-0.3847 69 C69-4.6927 0.0030-1.6997 70 O70-5.2372-0.9923-2.1455 71 O71-5.3452 1.0252-1.1308 72 C72-6.7940 0.9100-1.0636 73 H73-7.1891 0.9471-2.0831 74 H74-7.0381-0.0633-0.6346 75 C75-7.2931 2.0553-0.2086 76 H76 -8.3847 2.0196-0.1490 77 H77-6.8885 1.98500 .8052 78 H78-7.0037 3.0194-0.6358 79 C79-1.7683-1.7120 1.0935 80 C80-2.7404-0.8317 1.5838 81 C81-4.0822-1.1688 1.4406 82 C82-4.4427-2.3664 0.8095 83 C83-3.4535-3.2437 0.3426

84 C84-2.1103-2.9268 0.4826
85 H85-2.4414 0.10222 .0440
86 H86 -4.8500-0.4946 1.7987
87 H87-3.7563-4.1637-0.1431
88 H88-1.3306 -3.5759 0.1014 89 N89-0.4350-1.3445 1.1432

90 C90 $0.6993-1.05071 .1298$
91 C91-5.8715-2.7525 0.5936
92 O92-6.2165-3.7767 0.0349
93 O93-6.7267-1.8455 1.0941
94 C94-8.1430-2.1504 0.9581
95 H95-8.3893-2.1710-0.1080
96 H96-8.3235-3.1484 1.3664
97 C97-8.9043-1.0762 1.7064
98 H98-9.9782-1.2678 1.6288
99 H99-8.6286-1.0719 2.7644
100 H100-8.7005-0.0859 1.2902

TS3

1 C1 3.7991-2.4783-0.0211
2 C2 5.1854-1.8911-0.3821
3 C3 5.7748-2.1038-1.6335
4 C4 5.9215-1.2092 0.5975
5 C5 7.0552-1.6183-1.9097
6 H6 5.2400-2.6551-2.3981
7 C7 7.1975-0.7210 0.3231
8 H8 5.4990-1.0652 1.5863

9 C9 $7.7682-0.9178-0.9365$	36 C36 $0.7557-0.86703 .1185$
10 H 10 7.4933-1.7934-2.8876	37 C37-0.0613 0.13443 .6300
11 H11 7.7454-0.1884 1.0944	38 C 380.45211 .42073 .8528
$12 \mathrm{H} 12 \mathrm{8} .7608-0.5355-1.1538$	39 C39 1.80911.67513.6087
13 C13 2.9021-2.6872-1.2849	40 C 402.62210 .69113 .0573
14 C14 2.1423-3.8485-1.4804	41 H41 0.3662-1.8619 2.9376
15 C15 2.7706-1.6623-2.2437	42 H42-1.1017-0.0747 3.8498
16 C16 1.2462-3.9586-2.5477	43 H43 2.20412 .66333 .8175
17 H17 2.2338-4.6814-0.7972	44 H44 3.65800 .90172 .8152
18 C18 1.8660-1.7624-3.3004	45 N45 2.8298-1.5705 2.0897
19 H19 3.4006-0.7853-2.1890	$46 \mathrm{C} 463.0693-1.41970 .8469$
$20 \mathrm{C} 201.0841-2.9092-3.4509$	$47 \mathrm{C} 47-0.40332 .54544 .3197$
21 H21 0.6711-4.8721-2.6635	48 O 480.02393 .59434 .7674
22 H22 1.7896-0.9477-4.0141	49 O49-1.7163 2.28494 .1498
23 H23 0.3824-2.9934-4.2752	$50 \mathrm{C} 50-2.63803 .31684 .5948$
$24 \mathrm{C} 243.9743-3.79280 .7751$	51 H51-2.5388 3.42125 .6796
$25 \mathrm{C} 252.8943-4.36391 .4731$	52 H52-2.3483 4.2664 4.1367
$26 \mathrm{C} 265.1940-4.47940 .7784$	$53 \mathrm{C} 53-4.03132 .88474 .1878$
$27 \mathrm{C} 273.0349-5.57052 .1545$	54 H54-4.7624 3.61124 .5535
$28 \mathrm{H} 281.9318-3.86711 .4742$	55 H55-4.1200 2.83183 .0993
$29 \mathrm{C} 295.3370-5.69111 .4607$	56 H56-4.2758 1.9056 4.6091
30 H30 6.0464-4.0735 0.2483	$57 \mathrm{C} 573.21442 .0317-0.6864$
31 C31 4.2613-6.2403 2.1552	$58 \mathrm{C} 582.39492 .9622-0.0218$
32 H32 2.1841 -5.9871 2.6854	$59 \mathrm{C} 592.23844 .2374-0.5513$
33 H33 6.2957-6.2006 1.4456	$60 \mathrm{C} 602.87444 .5881-1.7503$
34 H34 4.3729-7.1793 2.6889	61 C61 3.7060 3.6614-2.3964
$35 \mathrm{C} 352.0833-0.57322 .7627$	$62 \mathrm{C} 623.90442 .3995-1.8552$

63 H63 1.92202 .69740 .9167
64 H64 1.6192 4.9629-0.0381
65 H65 4.2050 3.9554-3.3126
66 H66 4.5704 1.6841-2.3252
67 N67 $3.46520 .7535-0.1829$
68 C68 2.6252 -0.1295 0.1840
69 C69 2.7147 5.9371-2.3702
70 O70 $3.25196 .2728-3.4115$
71 O71 1.9099 6.7376-1.6530
72 C72 1.6932 8.0738-2.1807
73 H73 2.6626 8.5723 -2.2741
74 H74 1.2618 7.9864-3.1824
75 C75 $0.76918 .7895-1.2173$
76 H76 $0.57919 .8050-1.5765$
77 H77-0.1881 8.2668-1.1357
78 H78 $1.21878 .8530-0.2225$
79 C79-1.0651 1.0366-0.4524
80 C80-1.9025 1.36350 .6235
81 C81-3.2730 1.36430 .4024
82 C82-3.7885 1.0605-0.8662
83 C83-2.9260 0.8097-1.9405
84 C84-1.5519 0.7989-1.7450
85 H85-1.4935 1.55861 .6079
86 H86 -3.9507 1.56131 .2228
87 H87-3.3478 0.5814-2.9118
88 H88-0.8652 0.5536-2.5465
89 N89 $0.28060 .8135-0.2125$

90 C90 1.17260 .08620 .0410
91 C91-5.2590 0.9258-1.1072
92 O92-5.7400 0.6353-2.1882
93 O93-5.9715 1.12140 .0088
94 C94-7.4148 0.9793-0.1089
95 H95-7.7877 1.7837-0.7497
96 H96-7.6226 0.0253-0.5959
97 C97-7.9829 1.0462 1.2927
98 H98 -9.0733 0.97001 .2509
99 H99-7.6016 0.22311 .9040
100 H100 -7.7225 1.99191 .7760
101 C101-2.2497-2.3175-0.5059
102 C102-3.2651-2.1047 0.4343
103 C103-4.5910-2.2171 0.0290
104 C104-4.8949-2.5288-1.3029
105 C105-3.8638-2.7527-2.2263
106 C106-2.5357-2.6542-1.8360
107 H107-3.0101-1.8372 1.4528
108 H108 -5.3901-2.0430 0.7386
109 H109-4.1216-2.9930 -3.2510
110 H110-1.7227-2.8074-2.5363
111 N111-0.9303-2.1273-0.1317
112 C112 0.1897-1.9247 0.1499
113 C113-6.3027-2.6285-1.7965
114 O114-6.5975-2.8693-2.9522
115 O115-7.2039-2.4351-0.8180
116 C116-8.6030-2.5574-1.1982

117 H117-8.8398-1.7539-1.9025
118 H118-8.7401-3.5108-1.7154
119 C119-9.4206-2.4712 0.0738
120 H120-10.4835-2.5598-0.1676
121 H121-9.1528-3.2786 0.7608
122 H122-9.2620-1.5161 0.5817

TSQ

1 C1 4.5515-1.3926 0.1447
2 C2 5.1279-0.7964 1.4639
3 C3 5.83890 .40961 .5106
4 C4 4.8295-1.4373 2.6784
5 C 56.26410 .94152 .7291
6 H6 6.04670 .95130 .5975
7 C7 5.2526-0.9070 3.8981
8 H8 4.2623-2.3622 2.6686
9 C9 5.97400 .28763 .9284
10 H 106.81761 .87592 .7372
11 H11 5.0128-1.4274 4.8204
12 H12 6.30190 .70674 .8749
13 C13 5.0884-0.7305-1.1403
14 C14 6.4764-0.6528-1.3341
15 C15 4.2608-0.3390-2.1983
16 C16 7.0120-0.1609-2.5237
17 H17 $7.1434-0.9912-0.5480$
18 C18 4.7891 0.1466-3.3963
19 H19 3.1853-0.4024-2.0988

20 C20 6.1704 0.2458-3.5624
21 H21 8.0901-0.1043-2.6412
22 H22 4.1162 0.4506-4.1930
23 H23 6.5865 0.6280-4.4894
24 C24 4.9088-2.8895-0.0387
25 C25 4.2669-3.6156-1.0541
26 C26 5.9382-3.5164 0.6689
27 C27 4.6108-4.9350-1.3290
28 H28 3.4989-3.1287-1.6433
29 C29 6.2923-4.8424 0.3927
30 H30 6.4758 -2.9783 1.4403
31 C31 5.6276-5.5604-0.5989
32 H32 4.0973-5.4758-2.1194
33 H33 7.0948-5.3070 0.9581
34 H34 5.9018-6.5893-0.8111
35 C35 1.1735-2.2061 1.5096
36 C36 0.1125-3.0499 1.1278
37 C37-1.1079-2.9673 1.7853
38 C38-1.2734-2.0786 2.8608
39 C39-0.1749-1.3359 3.3188
40 C40 1.0416-1.3980 2.6584
41 H41 0.2476-3.7266 0.2938
42 H42-1.9407-3.5768 1.4549
43 H43-0.2986-0.6932 4.1835
44 H44 1.8923-0.8189 3.0024
45 N45 2.3828-2.2554 0.8205
46 C46 3.0256-1.2238 0.4105

47 C47-2.5893-1.8410 3.5124
48 O48-2.8053-0.9057 4.2672
49 O49-3.5133-2.7505 3.1498 50 C50-4.8438-2.6150 3.7213 51 H51-5.1906-3.6413 3.8563

52 H52 -4.7619-2.1278 4.6943
53 C53-5.7479-1.8390 2.7797
54 H54-6.7478-1.7568 3.2163
55 H55-5.3647-0.8295 2.6067
56 H56 -5.8362-2.3573 1.8209
57 C57 2.9267 2.4698-0.0802
58 C58 3.32423 .46630 .8257
59 C 593.05624 .79990 .5437
60 C60 2.4339 5.1615-0.6617
61 C61 $2.08694 .1651-1.5847$
62 C62 $2.32412 .8265-1.3010$
63 H63 3.81833 .17621 .7466 64 H64 3.33725 .56941 .2530 65 H65 1.6244 4.4572-2.5213 66 H66 2.0698 2.0545-2.0201 67 N67 3.25251 .14200 .1984 68 C68 2.43600 .16710 .3087 69 C69 2.1295 6.5760-1.0114 70 O70 1.5897 6.9221-2.0499

71 O71 $2.51217 .4378-0.0521$ 72 C72 2.24928 .8412 -0.3068 73 H73 2.7534 9.1295-1.2344

74 H74 $1.17318 .9744-0.4553$
75 C75 2.76309 .61650 .8898 76 H76 2.584810 .68550 .7405 77 H77 2.25029 .30481 .8043 78 H78 3.83749 .46001 .0219 79 C79-0.8629 1.80840 .9146 80 C80-1.7638 1.42741 .9222 81 C81-3.1193 1.68751 .7567

82 C82-3.5790 2.36640 .6188 83 C83-2.6513 2.8648-0.3076 84 C84-1.2960 2.5981-0.1656 85 H85-1.4219 0.86412 .7793 86 H86 -3.8213 1.32662 .4990 87 H87-3.0148 3.4165-1.1672 88 H88-0.5760 $2.9367-0.9025$ 89 N89 0.47211 .37800 .9642 90 C90 0.94030 .40610 .2881 91 C91-5.0251 2.50870 .2984 92 O92-5.4497 3.0874-0.6885 93 O93-5.8192 1.88841 .1904 94 C94-7.2454 1.9691 0.9282 95 H95-7.5405 3.0226 0.9354 96 H96-7.4368 1.5677-0.0700 97 C97-7.9502 1.16872.0034 98 H98-9.0332 1.26241 .8791 99 H99-7.6850 0.11091 .9357

100 H100 -7.6854 1.53322 .9999

101 C101-2.4641-0.4817-1.0632 102 C102-3.4978-1.0057-0.2674 103 C103-4.8050-0.9285-0.7266 104 C104-5.0917-0.3190-1.9567 105 C105-4.0509 0.1782-2.7525 106 C106-2.7360 0.1000-2.3176 107 H107-3.2683-1.4433 0.6954 108 H108-5.6146-1.3080-0.1179 109 H109-4.2911 0.6462-3.7002 110 H110 -1.9294 0.5309-2.8988 111 N111-1.1999-0.3842-0.5458 112 C112 0.0088-0.4014-0.5978 113 C113-6.4910-0.1490-2.4509 114 O114-6.7711 0.3012-3.5468 115 O115-7.4020 -0.5392-1.5435 116 C116-8.7968-0.4261-1.9395 117 H117-9.0223 0.6315-2.1070 118 H118-8.9325-0.9555-2.8868 119 C119-9.6280-1.0223-0.8223

120 H120-10.6887-0.9588-1.0814
121 H121-9.3718-2.0741-0.6668
122 H122-9.4691-0.4825 0.1148
123 Si123 0.6667-1.9468-3.0707
124 H124-0.1770-1.0597-3.8792
125 H125 2.0890-1.9897-3.4246
126 C127-0.0649-3.5105-2.4770
127 C128-1.4467-3.6112-2.2056
128 C129 0.7767-4.6009-2.1641
129 C130-1.9671-4.7653-1.6247
130 H131-2.1155-2.7886-2.4388
131 C132 0.2489-5.7576-1.5942
132 H133 1.8421-4.5455-2.3593
133 C134-1.1199-5.8353-1.3151
134 H135-3.0292-4.8303-1.4113
135 H136 $0.9035-6.5900-1.3574$
136 H137-1.5270-6.7308-0.8561
137 H126-0.6344-1.0179-1.582

Figure S90. DSC curve of PhSi-end-functionalized star poly(EPI) in Table 3, entry 1.

Figure S91. DSC curve of Ph_{3} Si-end-functionalized poly(EPI) in Table 2, entry 3.

Figure S92. DSC curve of ${ }^{i} \mathrm{Pr}_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 5.

Figure S93. DSC curve of $(\mathrm{OEt})_{3}$ Si-end-functionalized poly(EPI) in Table 2, entry 6.

Figure S94. DSC curve of triethylsilane-end-capped Poly(D-IMCI) Table 2, entry 9.

Figure S95. DSC curve of triethylsilane-end-capped Poly(L-IMCI) in Table 2, entry 10.

Figure S96. DSC curve of silane-end-capped star Poly(D-IMCI) in Table 3, entry 2.

Figure S97. DSC curve of silane-end-capped star Poly(L-IMCI) in Table 3, entry 3.

Figure S98. AFM image of silane-end-capped star Poly(L-IMCI) in Table 3, entry 3.

Figure S99. SEM image of silane-end-capped star Poly(L-IMCI) in Table 3, entry 3.

Figure S100. The in situ ${ }^{1} \mathrm{H}$ NMR spectra of the polymerization of EPI by the $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] / \mathrm{PhSiH}_{3}$ binary system under the molar ratio of $[\mathrm{EPI}] /\left\{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right\} /\left[\mathrm{PhSiH}_{3}\right]$ as $10: 1: 10$ at room temperature in d^{8}-THF .

Figure S101. The in situ ${ }^{29} \mathrm{Si}$ NMR spectra of the polymerization of EPI by the $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] / \mathrm{PhSiH}_{3}$ binary system under the molar ratio of $[\mathrm{EPI}] /\left\{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right\} /\left[\mathrm{PhSiH}_{3}\right]$ as $10: 1: 10$ at room temperature in d^{8}-THF.

```
[Ph}\mp@subsup{}{3}{}\textrm{C}\mp@subsup{]}{}{+}[\textrm{B}(\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{F}}{5}{}\mp@subsup{)}{4}{}\mp@subsup{]}{}{-}+\mp@subsup{\textrm{PhSiH}}{3}{}\longrightarrow\mp@subsup{\textrm{Ph}}{3}{}\textrm{CH}+[\mp@subsup{\textrm{PhSiH}}{2}{}\mp@subsup{]}{}{+}[\textrm{B}(\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{F}}{5}{}\mp@subsup{)}{4}{}\mp@subsup{]}{}{-
2[Ph}\mp@subsup{3}{3}{}\textrm{C}\mp@subsup{]}{}{+}[\textrm{B}(\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{F}}{5}{}\mp@subsup{)}{4}{}\mp@subsup{]}{}{-}+\mp@subsup{\textrm{PhSiH}}{3}{}\longrightarrow2\mp@subsup{\textrm{Ph}}{3}{}\textrm{CH}+[P\mp@code{PhSiH}\mp@subsup{]}{}{2+}[\textrm{B}(\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{F}}{5}{}\mp@subsup{)}{4}{}\mp@subsup{]}{2}{-
3[P\mp@subsup{P}{3}{}\mp@subsup{C}{}{C}\mp@subsup{]}{}{+}[B(\mp@subsup{C}{6}{}\mp@subsup{\textrm{F}}{5}{})4\mp@subsup{)}{4}{}\mp@subsup{]}{}{-}+\mp@subsup{\textrm{PhSiH}}{3}{}\longrightarrow3\mp@subsup{\textrm{Ph}}{3}{}\textrm{CH}+[PhSi]}\mp@subsup{}{}{3+}[\textrm{B}(\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{F}}{5}{})4\mp@subsup{]}{4}{}\mp@subsup{]}{3}{
```

Figure S102. The reaction of $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and PhSiH_{3} under the molar ratio of $[\mathrm{EPI}] /\left\{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right\} /\left[\mathrm{PhSiH}_{3}\right]$ as 10:1:10 at room temperature in 1 h .

References

(1) X. W. Yan, S. W. Zhang, D. Q. Peng, J.G. Zhi, P. F. Zhang, X. L. Wu, L. Wang,Y. P. Dong, and X. F. Li*,Polym. Chem.2018, 9, 984-993.
(2) (a) M. A-Cortes, B. Heinrich, B. Donnio, K. E. Evans, C. W. Smith and D. W. Bruce*, J. Mater. Chem.2011, 21, 8427-8435. (b) A. Naka, Y. Matsumoto, T. Itano, K. Hasegawa, T. Shimamura, J. Osshita, A. Kunai, T. Takae, and M. Ishikawa*, J. Organomet. Chem.2009, 694, 345-352.
(3) (a), M. Amela-Cort, B. Heinrich, B. Donnio, K. E. Evans, C. W. Smitha, D. W. Bruce, J. Mater. Chem., 2011, 21, 8427-8435. (b), H. Pleino, J. Organomet. Chem. 1992, 435, 21.
(4) Z.J. Zhao, J.W.Y. Lam, B.Z. Tang, J. Mater. Chem.2012, 22, 23723-23740.
(5) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
(6) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
(7) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785-789.
(8) M. J. Frisch, G. W.Trucks,H. B.Schlegel, G. E.Scuseria, M. A.Robb,J. R.Cheeseman, G. Scalmani,V. Barone,B. Mennucci,G. A. Petersson,H. Nakatsuji, M. Caricato,X. Li,H. P. Hratchian,A. F. Izmaylov, J. Bloino,G. Zheng,J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,C.Pomelli, J. W.Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.

Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian: Wallingford, CT, USA, 2013.
(9) S. Grimme, J. Comput. Chem., 2004, 25, 1463.
(10) S. Grimme, J. Comput. Chem., 2006, 27, 1787.
(11) S. Grimme, J. Antony,S. Ehrlich,H. Krieg,J. Chem. Phys., 2010, 132, 154104.
(12) L. Goerigk,S. Grimme,Phys. Chem. Chem. Phys., 2011, 13, 6670-6688.
(13) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin. Trans., 1993, 2, 799.
(14) R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A, 1999, 103, 9100.
(15) V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
(16) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.

