Supporting information for

Pardinumones A–D, Antibacterial Polyketide-Amino Acid Derivatives from the Mushroom *Tricholoma pardinum*

Hui-Xiang Yang, Jin-Tao Ma, Juan He, Zheng-Hui Li, Rong Huang,* Tao Feng,* and Ji-Kai Liu*

School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China

*Corresponding author.

E-mail adderss: tfeng@mail.scuec.edu.cn (T. Feng); ronghuang@mail.scuec.du.cn (R. Huang), liujikai@mail.scuec.edu.cn (J.-K. Liu)

Content

Sections S1 Computational details

S1.1. Computational details for pardinumones A and B (1 and 2) (ECD).

S1.2. Computational details for pardinumones A and B (1 and 2) (NMR).

S1.3 Computational details for pardinumone C (3) (ECD).

S1.4 Computational details for pardinumone C (3) (NMR).

S1.5 Computational details for pardinumone D (4) (ECD).

S1.6 Computational details for pardinumone D (4) (NMR).

Sections S2 Supplementary of NMR and HRESIMS

S2.1 NMR and HRESIMS spectra of pardinumone A (1)

S2.2 NMR and HRESIMS spectra of pardinumone B (2)

S2.3 NMR and HRESIMS spectra of pardinumone C (3)

S2.4 NMR and HRESIMS spectra of pardinumone D (4)

Sections S1 Computational details

S1.1. Computational details for pardinumones A and B (1 and 2) (ECD).

Figure S1. Calculated ECD spectra for A-D at the mPW1PW91/TZVP level in methanol with PCM model (A and C:

 $\sigma = 0.3$ eV, UV shift -15 nm; B and D: $\sigma = 0.3$ eV, UV shift -8 nm). Experimental CD spectra of 1 (black line) and 2

(red line) in MeOH.

						•	
Species	E'=E+ZPE	Ε	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
AA	-1401.017501	-1400.987370	-1400.986426	-1401.079190	0.001642	1.030371	13.25%
AB	-1401.017659	-1400.987708	-1400.986764	-1401.078470	0.002362	1.482177	6.18%
AC	-1401.019029	-1400.988809	-1400.987865	-1401.080832	0.000000	0.000000	75.53%
AD	-1401.016194	-1400.986170	-1400.985226	-1401.077592	0.003240	2.033131	2.44%
AE	-1401.016616	-1400.986650	-1400.985706	-1401.077651	0.003181	1.996108	2.59%

Table S1. Energy analysis for conformers of AA-AE at B3LYP/6-31G* level in the gas phase

Figure S2. Main conformers of A.

AE

Table S2. Energy analysis for conformers of BA-BG at B3LYP/6-31G* level in the gas phase

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
BA	-1401.020210	-1400.990059	-1400.989115	-1401.082105	0.000000	0.000000	80.45%
BB	-1401.017843	-1400.987860	-1400.986916	-1401.078552	0.003553	2.229541	1.86%
BC	-1401.018112	-1400.988030	-1400.987086	-1401.079390	0.002715	1.703688	4.53%
BD	-1401.018179	-1400.988002	-1400.987058	-1401.079800	0.002305	1.446409	6.99%
BE	-1401.017574	-1400.987744	-1400.986800	-1401.077597	0.004508	2.828813	0.68%
BF	-1401.017253	-1400.987154	-1400.986210	-1401.078882	0.003223	2.022463	2.64%
BG	-1401.016860	-1400.986730	-1400.985786	-1401.078952	0.003153	1.978537	2.85%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S3. Main conformers of B

BA

Species	E'=E+ZPE	Ε	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
CA	-1401.0175000	-1400.9873700	-1400.9864260	-1401.0791870	0.0016460	1.0328806	7.99%
CB	-1401.0175450	-1400.9873920	-1400.9864480	-1401.0795420	0.0012910	0.8101148	11.64%
CC	-1401.0176590	-1400.9877080	-1400.9867640	-1401.0784700	0.0023630	1.4828049	3.74%
CD	-1401.0190300	-1400.9888090	-1400.9878650	-1401.0808330	0.0000000	0.0000000	45.72%
CE	-1401.0180470	-1400.9877290	-1400.9867850	-1401.0804150	0.0004180	0.2622990	29.35%
CF	-1401.0166160	-1400.9866500	-1400.9857060	-1401.0776510	0.0031820	1.9967352	1.57%

Table S3. Energy analysis for conformers of CA-CF at B3LYP/6-31G* level in the gas phase

Figure S4. Main conformers of C

Table S4. Energy analysis for conformers of DA-DE at B3LYP/6-31G* level in the gas phase

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
DA	-1401.020210	-1400.990059	-1400.989115	-1401.082104	0.000000	0.000000	84.81%
DB	-1401.018112	-1400.988030	-1400.987086	-1401.079390	0.002714	1.703061	4.78%
DC	-1401.016597	-1400.986479	-1400.985535	-1401.078461	0.003643	2.286017	1.79%
DD	-1401.018590	-1400.988376	-1400.987432	-1401.079897	0.002207	1.384913	8.18%
DE	-1401.016415	-1400.986507	-1400.985562	-1401.077147	0.004957	3.110565	0.44%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S5. Main conformers of D

DA

DB

DC

DD

S1.2. Computational details for pardinumones A and B (1 and 2) (NMR).

Figure S6. Regression analysis of experimental versus calculated ¹³C NMR chemical shifts of 1(A) and 2(B).

 $\delta_{\exp} (\text{ppm})$

No.			1		2					
INO.	$\delta_{ ext{Exp}}$	$\delta_{ ext{Calcd}^{ ext{a}}}$	$\delta_{ m Corr}{}^{ m b}$	Relative errors ^c	$\delta_{ ext{Exp}}$	$\delta_{ ext{Calcd}^{a}}$	$\delta_{ m Corr}{}^{ m b}$	Relative errors ^c		
1	7.5	7.9	6.5	1.0	7.5	7.8	6.5	1.0		
2	32.4	28.8	28.1	4.3	32.5	29.0	28.4	4.1		
3	94.6	96.3	97.8	-3.2	95.0	97.0	99.0	-4.0		
4	145.2	144.8	147.9	-2.7	144.2	139.5	143.2	1.0		
5	82.3	81.5	82.5	-0.2	82.5	81.4	82.9	-0.4		
6	37.7	37.8	37.4	0.3	37.7	39.4	39.3	-1.6		
7	73.3	76.3	77.2	-3.9	74.9	75.0	76.3	-1.4		
8	137.1	133.6	136.3	0.8	138.6	135.3	138.9	-0.3		
9	42.3	44.0	43.8	-1.5	42.0	43.2	43.2	-1.2		
10	62.2	64.1	64.6	-2.4	65.3	66.4	67.3	-2.0		
1′	173.1	166.2	170.0	3.1	173.0	166.9	171.6	1.4		
2'	43.4	43.0	42.7	0.7	43.5	42.6	42.6	0.9		
3'	25.7	26.9	26.2	-0.5	25.8	26.2	25.5	0.3		
4′	22.5	20.7	19.7	2.8	22.5	21.0	20.1	2.4		
5'	22.6	22.5	21.5	1.1	22.6	22.2	21.4	1.2		
1''	175.3	168.6	172.5	2.8	175.2	168.4	173.2	2.0		
2''	28.3	29.8	29.1	-0.8	28.4	29.5	29.0	-0.6		
3''	24.9	26.8	26.0	-1.1	24.1	26.4	25.7	-1.6		
4''	88.5	87.5	88.7	-0.2	89.7	88.7	90.5	-0.8		
5-OCH ₃	57.0	55.9	56.1	0.9	57.0	55.7	56.2	0.8		
4''-OCH3	53.4	54.2	54.4	-1.0	53.0	53.9	54.3	-1.3		
			RMSD	2.09			RMSD	1.34		

Table S5. Experimental and calculated ¹³C NMR data of 1 and 2

 δ_{exp} (ppm)

^aWeighted average from the calculated shifts; ^bObtained by linear fit $\delta \exp versus \delta calcd$; ^c $\Delta \delta = \delta \exp - \delta corr$.

Figure S7. Calculated ¹³C chemical shifts of A-B fitting with the experimental data of compound 1(A) following STS protocol.

1															
Note:															
Pmean > 5% is the	e confidence interval							_						_	
						MAE	1.53	_				MAE	1.57	_	
Note:						RMS	1.80	_				RMS	1.88		
sp carbons include	C=N					Pmean	14.97%					Pmean	12.86%		
sp2-CH/C for doul	ble bonds except carbony	l group				Prel	96.05%	•				Prel	3.95%		
C=O includes only	ketones and aldehydes					A						В			
Heavy atom beau	Type of carbon	Carbon no.	Exptl ô	Shielding tenso	Corr Shielding	Calcd ô	Calcd ô (S	abs dev	Р	Shielding t	Corr Shield	Calcd ô	Calcd ô (S	abs dev	Р
	sp3-CH3	1	7.5	187.3	187.33	7.74	6.65	0.85	0.41	187.4	187.44	7.63	6.41	1.09	0.29
	sp3-CH2/CH/C	2	32.4	166.4	166.44	29.95	28.65	3.75	0.00	166.3	166.29	30.10	28.75	3.65	0.00
	sp3-CH2/CH/C	3	94.6	99.0	98.96	98.43	96.48	1.88	0.09	98.3	98.28	99.12	97.33	2.73	0.01
	sp2-C	4	145.2	50.5	50.46	150.35	147.92	2.72	0.16	55.7	55.73	145.10	143.03	2.17	0.26
	sp3-CH2/CH/C	5	82.3	113.8	113.76	83.41	81.60	0.70	0.53	113.8	113.84	83.33	81.64	0.66	0.55
	sp3-CH2/CH/C	6	37.7	157.5	157.50	39.02	37.64	0.06	0.95	155.8	155.82	40.73	39.31	1.61	0.15
	sp3-CH2/CH/C	7	73.3	118.9	118.92	78.17	76.41	3.11	0.01	120.2	120.21	76.86	75.21	1.91	0.09
	sp2-C	8	137.1	61.7	61.71	139.14	136.81	0.29	0.88	59.9	59.93	140.91	138.87	1.77	0.36
	sp3-CH2/CH/C	9	42.3	151.3	151.28	45.33	43.88	1.58	0.15	152.1	152.09	44.51	43.06	0.76	0.49
	sp3-CH2/CH/C	10	62.2	131.1	131.14	65.77	64.14	1.94	0.08	128.8	128.84	68.10	66.51	4.31	0.00
	X-C=O	1'	173.1	29.1	29.06	173.69	171.03	2.07	0.20	28.4	28.38	174.31	172.05	1.05	0.52
	sp3-CH2/CH/C	2'	43.4	152.3	152.30	44.30	42.86	0.54	0.63	152.6	152.62	43.97	42.53	0.87	0.43
	sp3-CH2/CH/C	3'	25.7	168.3	168.33	28.03	26.75	1.05	0.35	169.1	169.10	27.25	25.91	0.21	0.85
	sp3-CH3	4'	22.5	174.5	174.55	20.99	19.77	2.73	0.01	174.3	174.26	21.29	19.99	2.51	0.02
	sp3-CH3	5'	22.6	172.8	172.81	22.80	21.57	1.03	0.32	173.0	173.04	22.56	21.25	1.35	0.19
	X-C=O	1"	175.3	26.7	26.67	175.85	173.18	2.12	0.19	26.9	26.91	175.64	173.38	1.92	0.23
	sp3-CH2/CH/C	2"	28.3	165.5	165.46	30.94	29.63	1.33	0.23	165.7	165.71	30.69	29.33	1.03	0.35
	sp3-CH2/CH/C	3"	24.9	168.5	168.48	27.87	26.59	1.69	0.13	168.9	168.90	27.45	26.11	1.21	0.27
	sp3-CH2/CH/C	4"	88.5	107.8	107.80	89.46	87.60	0.90	0.42	106.5	106.54	90.74	89.00	0.50	0.65
	sp3-CH3	5-OMe	57.0	139.3	139.34	57.51	55.95	1.05	0.31	139.5	139.54	57.30	55.77	1.23	0.23
	sp3-CH3	4"-OMe	53.4	141.0	141.03	55.75	54.21	0.81	0.43	141.4	141.40	55.37	53.86	0.46	0.66

Figure S8. Calculated ¹³C chemical shifts of A-B fitting with the experimental data of compound 2(B) following STS protocol.

Note:															
Pmean > 5% is the c	onfidence interval														
						MAE	1.59					MAE	1.26		
Note:						RMS	1.87					RMS	1.50		
sp carbons include C	=N					P _{mean}	14.78%					P _{mean}	20.97%		
sp2-CH/C for double	bonds except carbony	l group				Prel	0.06%					Prel	99.94%		
C=O includes only ke	etones and aldehydes				-	A						В			
Heavy atom bear T	ype of carbon	Carbon no.	Exptl ô	Shielding tenso	Corr Shielding	Calcd ô	Calcd ô (S	abs dev	Р	Shielding t	Corr Shield	Calcd ô	Calcd ô (S	abs dev	Р
sp	p3-CH3	1	7.5	187.3	187.329689	7.74	6.83	0.67	0.52	187.4	187.44	7.63	6.58	0.92	0.37
sp	p3-CH2/CH/C	2	32.5	166.4	166.4375169	29.95	28.86	3.64	0.00	166.3	166.29	30.10	28.95	3.55	0.00
sp	p3-CH2/CH/C	3	95.0	99.0	98.95746973	98.43	96.79	1.79	0.11	98.3	98.28	99.12	97.66	2.66	0.02
sp	p2-C	4	144.2	50.5	50.46089109	150.35	148.30	4.10	0.03	55.7	55.73	145.10	143.43	0.77	0.69
sp	p3-CH2/CH/C	5	82.5	113.8	113.7586664	83.41	81.89	0.61	0.58	113.8	113.84	83.33	81.94	0.56	0.61
sp	p3-CH2/CH/C	6	37.7	157.5	157.4965865	39.02	37.86	0.16	0.88	155.8	155.82	40.73	39.53	1.83	0.10
sp	p3-CH2/CH/C	7	74.9	118.9	118.9230598	78.17	76.69	1.79	0.11	120.2	120.21	76.86	75.49	0.59	0.59
sp	p2-C	8	138.6	61.7	61.70819481	139.14	137.18	1.42	0.46	59.9	59.93	140.91	139.26	0.66	0.73
sp	p3-CH2/CH/C	9	42.0	151.3	151.27958	45.33	44.12	2.12	0.06	152.1	152.09	44.51	43.29	1.29	0.24
sp	p3-CH2/CH/C	10	65.3	131.1	131.1350364	65.77	64.40	0.90	0.42	128.8	128.84	68.10	66.78	1.48	0.18
X	-C=O	1'	173.0	29.1	29.05811477	173.69	171.45	1.55	0.34	28.4	28.38	174.31	172.50	0.50	0.76
sp	p3-CH2/CH/C	2'	43.5	152.3	152.3006551	44.30	43.09	0.41	0.71	152.6	152.62	43.97	42.75	0.75	0.50
sp	p3-CH2/CH/C	3'	25.8	168.3	168.3297007	28.03	26.96	1.16	0.30	169.1	169.10	27.25	26.11	0.31	0.78
sp	p3-CH3	4'	22.5	174.5	174.5492479	20.99	19.98	2.52	0.02	174.3	174.26	21.29	20.18	2.32	0.03
sp	p3-CH3	5'	22.6	172.8	172.8065182	22.80	21.77	0.83	0.42	173.0	173.04	22.56	21.44	1.16	0.26
X	-C=O	1"	175.2	26.7	26.66916236	175.85	173.60	1.60	0.32	26.9	26.91	175.64	173.83	1.37	0.40
sp	p3-CH2/CH/C	2"	28.4	165.5	165.4576354	30.94	29.85	1.45	0.19	165.7	165.71	30.69	29.53	1.13	0.31
sp	p3-CH2/CH/C	3"	24.1	168.5	168.4845208	27.87	26.80	2.70	0.02	168.9	168.90	27.45	26.31	2.21	0.05
sp	p3-CH2/CH/C	4"	89.7	107.8	107.7951799	89.46	87.90	1.80	0.10	106.5	106.54	90.74	89.31	0.39	0.73
sp	p3-CH3	5-OMe	57.0	139.3	139.3351354	57.51	56.20	0.80	0.44	139.5	139.54	57.30	56.02	0.98	0.34
sp	p3-CH3	4"-OMe	53.0	141.0	141.0276343	55.75	54.46	1.46	0.16	141.4	141.40	55.37	54.11	1.11	0.28

Table S6. Energy analysis for conformers of AA-AE at B3LYP/TZVP level in methanol with IEFPCM model

Species	E'=E+ZPE	Ε	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
AA	-1401.528089	-1401.497559	-1401.496615	-1401.590853	0.000437	0.274222	35.76%
AB	-1401.526354	-1401.496060	-1401.495116	-1401.587923	0.003367	2.112824	1.60%
AC	-1401.528104	-1401.497542	-1401.496597	-1401.591290	0.000000	0.000000	56.82%
AD	-1401.524348	-1401.493939	-1401.492994	-1401.586702	0.004588	2.879014	0.44%
AE	-1401.526867	-1401.496542	-1401.495598	-1401.589065	0.002225	1.396209	5.38%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S9. Main conformers of A.

Table S7. Energy analysis for conformers of BA-BG at B3LYP/TZVP level in methanol with IEFPCM model

Species	E'=E+ZPE	E	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
BA	-1401.527661	-1401.497219	-1401.496275	-1401.589834	0.000000	0.000000	62.03%
BB	-1401.525616	-1401.495174	-1401.494230	-1401.587716	0.002118	1.329065	6.57%
BC	-1401.524747	-1401.494328	-1401.493383	-1401.587131	0.002703	1.696158	3.54%
BD	-1401.525719	-1401.495139	-1401.494195	-1401.588828	0.001006	0.631275	21.36%
BE	-1401.524291	-1401.494022	-1401.493078	-1401.585600	0.004234	2.656875	0.70%
BF	-1401.524855	-1401.494433	-1401.493489	-1401.586750	0.003084	1.935239	2.36%
BG	-1401.523860	-1401.493276	-1401.492331	-1401.587106	0.002728	1.711846	3.44%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S10. Main conformers of B

BA

BE

Figure S11. Calculated ECD spectra for 3a-3d at the mPW1PW91/TZVP level in methanol with PCM model (3a and 3b: $\sigma = 0.25$ eV, UV shift -10 nm; 3c and 3d: $\sigma = 0.25$ eV, UV shift -5 nm). Experimental CD spectra of 3 (black line) in MeOH.

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
3aA	-1455.181361	-1455.149429	-1455.148485	-1455.248826	0.000633	0.397214	14.66%
3aB	-1455.181198	-1455.149448	-1455.148504	-1455.246757	0.002702	1.695531	1.64%
3aC	-1455.182776	-1455.151141	-1455.150197	-1455.249362	0.000097	0.060868	25.87%
3aD	-1455.184197	-1455.152720	-1455.151776	-1455.249459	0.000000	0.000000	28.67%
3aE	-1455.179584	-1455.147725	-1455.146781	-1455.247439	0.002020	1.267569	3.37%
3aF	-1455.182941	-1455.151427	-1455.150482	-1455.248705	0.000754	0.473142	12.90%
3aG	-1455.182941	-1455.151427	-1455.150482	-1455.248705	0.000754	0.473142	12.90%

Table S8. Energy analysis for conformers of 3aA-3aG at B3LYP/6-31G* level in the gas phase

Figure S12. Main conformers of 3a

Table S9.	Energy	analysis fo	r conformers	of 3bA-3bE	at B3LYP/6-31G'	' level in the gas phase
-----------	--------	-------------	--------------	------------	-----------------	--------------------------

Species	E'=E+ZPE	Ε	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
3bA	-1455.189273	-1455.158156	-1455.157212	-1455.251935	0.002097	1.315887	8.71%
3bB	-1455.193011	-1455.162360	-1455.161416	-1455.254032	0.000000	0.000000	80.37%
3bC	-1455.189094	-1455.157926	-1455.156982	-1455.251781	0.002251	1.412524	7.40%
3bD	-1455.187282	-1455.156140	-1455.155196	-1455.249902	0.004130	2.591614	1.01%
3bE	-1455.185902	-1455.154285	-1455.153341	-1455.250763	0.003269	2.051329	2.51%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S13. Main conformers of 3b

3bE

3bB

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
3cA	-1455.185992	-1455.154694	-1455.153750	-1455.250442	0.002635	1.653488	2.61%
3cB	-1455.185993	-1455.154694	-1455.153750	-1455.250449	0.002628	1.649095	2.63%
3cC	-1455.188742	-1455.157369	-1455.156424	-1455.253077	0.000000	0.000000	42.58%
3cD	-1455.186708	-1455.155295	-1455.154350	-1455.251218	0.001859	1.166540	5.94%
3cE	-1455.187019	-1455.155442	-1455.154498	-1455.252417	0.000660	0.414156	21.15%
3cF	-1455.187019	-1455.155442	-1455.154498	-1455.252418	0.000659	0.413529	21.18%
3cG	-1455.185587	-1455.154318	-1455.153373	-1455.250173	0.002904	1.822288	1.96%
3cH	-1455.185587	-1455.154318	-1455.153373	-1455.250173	0.002904	1.822288	1.96%

Table S10. Energy analysis for conformers of 3cA-3cH at B3LYP/6-31G* level in the gas phase

Figure S14. Main conformers of 3c

Table S11. Energy analysis for conformers of 3dA-3dE at B3LYP/6-31G* level in the gas phase

Species	E'=E+ZPE	Ε	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
3dA	-1455.194240	-1455.163267	-1455.162323	-1455.256525	0.000000	0.000000	84.42%
3dB	-1455.190270	-1455.159035	-1455.158091	-1455.254119	0.002406	1.509788	6.59%
3dC	-1455.189211	-1455.157943	-1455.156999	-1455.253464	0.003061	1.920807	3.29%
3dD	-1455.189211	-1455.157943	-1455.156999	-1455.253464	0.003061	1.920807	3.29%
3dE	-1455.189795	-1455.158650	-1455.157706	-1455.253165	0.003360	2.108432	2.40%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S15. Main conformers of 3d

3dD

S1.4. Computational details for pardinumone C (3) (NMR).

Figure S16. Regression analysis of experimental versus calculated ¹³C NMR chemical shifts of 3.

N	\$		3	Ba		3	Be
NO.	O Exp	$\delta_{ ext{Calcd}}{}^{ ext{a}}$	$\delta_{ ext{Corr}}{}^{ extbf{b}}$	Relative errors ^c	$\delta_{ ext{Calcd}}{}^{ ext{a}}$	$\delta_{\mathrm{Corr}}{}^{\mathrm{b}}$	Relative errors ^c
1	10.1	11.4	10.3	-0.2	11.4	10.5	-0.4
2	106.9	108.9	112.0	-5.1	108.9	111.5	-4.6
3	147.4	140.3	144.7	2.7	140.1	144.0	3.4
4	139.5	138.4	142.8	-3.3	141.4	145.2	-5.7
5	82.5	80.1	82.0	0.5	80.9	82.5	0.0
6	37.1	38.4	38.5	-1.4	36.5	36.5	0.6
7	75.2	77.7	79.5	-4.3	79.6	81.2	-6.0
8	135.9	130.4	134.4	1.5	130.1	133.6	2.3
9	43.5	44.6	45.0	-1.5	45.8	46.1	-2.6
10	70.0	68.7	70.0	0.0	68.7	69.9	0.1
1′	174.4	167.5	173.1	1.3	167.8	172.6	1.8
2'	44.3	43.0	43.3	1.0	43.0	43.2	1.1
3'	27.0	26.8	26.4	0.6	27.3	26.9	0.1
4'	22.7	22.2	21.6	1.1	20.4	19.8	2.9
5'	22.8	20.9	20.2	2.6	21.7	21.1	1.7
1''	175.0	165.8	171.4	3.6	166.3	171.1	3.9
2''	33.1	32.9	32.8	0.3	33.6	33.4	-0.3
3''	28.0	27.4	27.0	1.0	26.4	26.0	2.0
4''	55.7	53.1	53.8	1.9	53.6	54.2	1.5
5''	174.4	169.6	175.3	-0.9	169.6	174.6	-0.2
5-OCH ₃	55.1	55.7	56.5	-1.4	56.0	56.7	-1.6
			RMSD	2.19		RMSD	2.72

 Table S12. Experimental and calculated ¹³C NMR data of 3.

^aWeighted average from the calculated shifts; ^bObtained by linear fit $\delta \exp versus \delta \text{calcd}$; ^c $\Delta \delta = \delta \exp - \delta \text{corr}$.

Figure S17. Calculated ¹³C chemical shifts of **3a** and **3c** fitting with the experimental data of compound **3** following STS protocol.

Note:														
Press > 5% is the confidence interval														
Thear \$ 570 B are connence incivit					MAE	1 77					MAE	2 14		
Note:					RMS	2.35					RMS	2.75		
sn carbons include C=N					P	12 01%					D	6 39%		
sp carbons include C=14	d aroun				T mean Devel	100.009/					T mean Dual	0.00%		
Sp2-Cri/C for double bonds except carbony	1 group				3.9	100.0076					Trei 3c	0.0076		
Heavy atom hear Type of carbon	Carbon no	Exotl &	Shielding tonse	Corr Shielding	Caled &	Caled & (S	abe dov	D	Shielding	Corr Shield	Caleda	Caled & (S	abe dov	D
sn3-CH3	Carbon no.	10.1	183.9	183.86	11 34	10.47	0.37	0.72	183.8	183.83	11 37	10.60	0.50	0.63
sp2-CH	2	106.9	86.4	86.36	115.31	113.97	7.07	0.00	86.4	86.38	115.29	113.53	6.63	0.00
sp2-C	3	147.4	55.0	54.98	145.85	144 37	3.03	0.00	55.1	55.12	145.71	143.65	3.75	0.05
sp2-C	4	139.5	56.9	56.89	143.95	142.48	2.98	0.12	53.9	53.90	146.92	144.85	5.35	0.01
sp3-CH2/CH/C	5	82.5	115.1	115.14	82.01	80.82	1.68	0.13	114.4	114.41	82.75	81.29	1.21	0.28
sp3-CH2/CH/C	6	37.1	156.9	156.89	39.64	38.64	1.54	0.16	158.8	158.77	37.73	36.71	0.39	0.72
sp3-CH2/CH/C	7	75.2	117.5	117.55	79.56	78.39	3.19	0.00	115.6	115.64	81.49	80.05	4.85	0.00
sp2-C	8	135.9	64.9	64.89	135.97	134.54	1.36	0.48	65.2	65.16	135.69	133.74	2.16	0.26
sp3-CH2/CH/C	9	43.5	150.7	150.66	45.96	44.94	1.44	0.20	149.4	149.44	47.20	46.08	2.58	0.02
sp3-CH2/CH/C	10	70.0	126.6	126.60	70.38	69.24	0.76	0.49	126.6	126.58	70.40	69.06	0.94	0.40
X-C=O	1'	174.4	27.8	27.77	174.85	173.25	1.15	0.48	27.5	27.47	175.13	172.79	1.61	0.32
sp3-CH2/CH/C	2'	44.3	152.3	152.26	44.34	43.32	0.98	0.38	152.3	152.28	44.32	43.23	1.07	0.34
sp3-CH2/CH/C	3'	27.0	168.4	168.44	27.91	26.97	0.03	0.98	168.0	167.95	28.41	27.48	0.48	0.67
sp3-CH3	4'	22.7	173.0	173.03	22.56	21.64	1.06	0.30	174.9	174.87	20.66	19.79	2.91	0.01
sp3-CH3	5'	22.8	174.4	174.39	21.15	20.24	2.56	0.01	173.5	173.54	22.04	21.16	1.64	0.11
X-C=O	1"	175.0	29.5	29.47	173.31	171.72	3.28	0.05	29.0	29.01	173.73	171.41	3.59	0.03
sp3-CH2/CH/C	2"	33.1	162.3	162.33	34.11	33.14	0.04	0.97	161.7	161.70	34.76	33.76	0.66	0.55
sp3-CH2/CH/C	3"	28.0	167.9	167.87	28.49	27.55	0.45	0.68	168.8	168.83	27.52	26.59	1.41	0.21
sp3-CH2/CH/C	4"	55.7	142.2	142.20	54.55	53.48	2.22	0.05	141.6	141.64	55.12	53.93	1.77	0.11
C=O	5"	174.4	25.7	25.65	176.85	175.24	0.84	0.59	25.6	25.63	176.88	174.53	0.13	0.94
sp3-CH3	5-OMe	55.1	139.6	139.58	57.26	56.18	1.08	0.29	139.3	139.27	57.58	56.37	1.27	0.22

Table S13. Energy analysis for conformers of 3aA-3aG at B3LYP/TZVP level in methanol with IEFPCM model

Species	E'=E+ZPE	Ε	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
3aA	-1455.734973	-1455.702995	-1455.702051	-1455.801873	0.001164	0.730421	10.51%
3aB	-1455.733972	-1455.701850	-1455.700906	-1455.800667	0.002370	1.487198	2.93%
3aC	-1455.735535	-1455.703518	-1455.702574	-1455.803037	0.000000	0.000000	36.07%
3aD	-1455.733907	-1455.701867	-1455.700923	-1455.801899	0.001138	0.714106	10.80%
3aE	-1455.735661	-1455.703811	-1455.702867	-1455.802531	0.000506	0.317520	21.10%
3aF	-1455.734941	-1455.703103	-1455.702159	-1455.801760	0.001277	0.801330	9.32%
3aG	-1455.734940	-1455.703102	-1455.702158	-1455.801755	0.001282	0.804467	9.27%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S18. Main conformers of 3a

3aF

3aD

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
3cA	-1455.733742	-1455.701894	-1455.700950	-1455.800406	0.002816	1.767067	1.89%
3cB	-1455.735152	-1455.703326	-1455.702382	-1455.801205	0.002017	1.265687	4.42%
3cC	-1455.735154	-1455.703327	-1455.702382	-1455.801214	0.002008	1.260039	4.46%
3cD	-1455.736023	-1455.704273	-1455.703329	-1455.801240	0.001982	1.243724	4.58%
3cE	-1455.734110	-1455.702106	-1455.701162	-1455.801751	0.001471	0.923066	7.88%
3cF	-1455.736341	-1455.704388	-1455.703443	-1455.803222	0.000000	0.000000	37.44%
3cG	-1455.736342	-1455.704388	-1455.703444	-1455.803222	0.000000	0.000000	37.44%
3cH	-1455.733743	-1455.701894	-1455.700950	-1455.800406	0.002816	1.767067	1.89%

Table S14. Energy analysis for conformers of 3cA-3cH at B3LYP/TZVP level in methanol with IEFPCM model

Figure S19. Main conformers of 3c

S1.5. Computational details for pardinumone D (4) (ECD).

and **4b**: $\sigma = 0.30$ eV, UV shift -8 nm). Experimental CD spectra of **4** (black line) in MeOH.

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
4aA	-1684.242603	-1684.205529	-1684.204585	-1684.316163	0.004148	2.602909	0.51%
4aB	-1684.243094	-1684.206076	-1684.205132	-1684.316685	0.003626	2.275349	0.88%
4aC	-1684.241609	-1684.204468	-1684.203523	-1684.314148	0.006163	3.867341	0.06%
4aD	-1684.248454	-1684.211586	-1684.210642	-1684.320311	0.000000	0.000000	41.13%
4aE	-1684.248450	-1684.211583	-1684.210639	-1684.320298	0.000013	0.008158	40.57%
4aF	-1684.248580	-1684.211776	-1684.210832	-1684.319053	0.001258	0.789407	10.84%
4aG	-1684.245044	-1684.207891	-1684.206947	-1684.318485	0.001826	1.145832	5.94%
4aH	-1684.241863	-1684.205016	-1684.204072	-1684.314195	0.006116	3.837848	0.06%

Table S15. Energy analysis for conformers of 4aA-4aH at B3LYP/6-31G* level in the gas phase

Figure S21. Main conformers of 4a

Table S16. Energy analysis for conformers of 4bA-4bH at B3LYP/6-31G* level in the gas phase

Species	E'=E+ZPE	Ε	Н	G	ΔG	ΔE (kcal/mol)	PE%
4bA	-1684.243094	-1684.206076	-1684.205132	-1684.316682	0.003629	2.277232	1.01%
4bB	-1684.248453	-1684.211585	-1684.210641	-1684.320311	0.000000	0.000000	47.09%
4bC	-1684.245603	-1684.208711	-1684.207767	-1684.318560	0.001751	1.098769	7.36%
4bD	-1684.242437	-1684.205171	-1684.204227	-1684.316447	0.003864	2.424697	0.78%
4bE	-1684.245008	-1684.207897	-1684.206953	-1684.317833	0.002478	1.554969	3.41%
4bF	-1684.249103	-1684.212258	-1684.211314	-1684.319974	0.000337	0.211471	32.95%
4bG	-1684.246654	-1684.209763	-1684.208819	-1684.318405	0.001906	1.196033	6.25%
4bH	-1684.244172	-1684.207364	-1684.206420	-1684.316810	0.003501	2.196911	1.15%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S22. Main conformers of 4b

S1.6. Computational details for pardinumone D (4) (NMR).

Figure S23. Regression analysis of experimental versus calculated ¹³C NMR chemical shifts of 4.

Ne	\$		4	la		4	łc
INO.	O Exp	$\delta_{ ext{Calcd}^a}$	$\delta_{\mathrm{Corr}}{}^{\mathrm{b}}$	Relative errors ^c	$\delta_{ ext{Calcd}}{}^{ ext{a}}$	$\delta_{\mathrm{Corr}}{}^{\mathrm{b}}$	Relative errors ^c
1	7.6	8.9	8.2	-0.6	8.7	8.6	-1.0
2	35.8	35.5	35.7	0.1	36.5	37.0	-1.2
3	204.5	203.1	208.1	-3.6	200.4	204.8	-0.3
4	145.2	141.3	144.5	0.7	139.8	142.8	2.4
5	83.8	82.1	83.7	0.1	83.1	84.7	-0.9
6	37.4	36.5	36.7	0.7	33.3	33.7	3.7
7	78.4	76.0	77.4	1.0	78.9	80.5	-2.1
8	147.3	148.9	152.3	-5.0	155.6	158.9	-11.6
9	49.6	47.7	48.2	1.4	47.2	48.0	1.6
10	65.2	63.3	64.2	1.0	60.5	61.6	3.6
1'	173.9	167.6	171.5	2.4	167.8	171.4	2.5
2'	44.1	42.7	43.0	1.1	42.1	42.8	1.3
3'	26.9	27.3	27.2	-0.3	28.0	28.3	-1.4
4′	22.7	20.6	20.3	2.4	20.9	21.0	1.7
5'	22.7	22.4	22.2	0.5	22.2	22.3	0.4

Table S17. Experimental and calculated ¹³C NMR data of 4.

1″	174.7	167.2	171.1	3.6	167.7	171.4	3.3
2''	32.7	36.8	37.0	-4.3	36.0	36.5	-3.8
3''	27.7	29.9	29.9	-2.2	30.2	30.5	-2.8
4''	55.7	55.0	55.7	0.0	53.5	54.4	1.3
5''	173.8	169.2	173.2	0.6	169.4	173.1	0.7
5-OCH ₃	56.7	55.7	56.4	0.3	55.3	56.3	0.4
-OOCCH3	20.7	21.8	21.5	-0.8	20.7	20.8	-0.1
-OOCCH3	172.3	167.4	171.3	1.0	166.2	169.8	2.5
			RMSD	2.02		RMSD	3.17

^aWeighted average from the calculated shifts; ^bObtained by linear fit $\delta \exp v \operatorname{ersus} \delta \operatorname{calcd}$; ^c $\Delta \delta = \delta \exp - \delta \operatorname{corr}$.

Figure S24. Calculated ¹³C chemical shifts of **4a** and **4c** fitting with the experimental data of compound **4** following STS protocol.

Note:															
Pmean > 5% is the	confidence interval														
						MAE	1.41					MAE	2.21		
Note:						RMS	1.89					RMS	3.10		
sp carbons include	C=N					P _{mean}	17.20%					Pmean	4.66%		
sp2-CH/C for doub	ble bonds except carbonyl	group				Prel	100.00%					Prel	0.00%		
C=O includes only	ketones and aldehydes					4a						4c			
Heavy atom bear	i Type of carbon	Carbon no.	Exptl ô	Shielding tensors	Corr Shielding	Calcd ô	Calcd ô (SC	abs dev 💦	Р	Shielding te	Corr Shieldi	Calcd ô	Calcd & (SC	abs dev	Р
	sp3-CH3	1	7.6	186.4	186.41	8.69	8.22	0.62	0.55	186.5	186.52	8.57	8.56	0.96	0.35
	sp3-CH2/CH/C	2	35.8	159.8	159.75	36.73	35.91	0.11	0.92	158.8	158.77	37.73	37.21	1.41	0.21
	C=O	3	204.5	-7.8	-7.79	207.74	204.77	0.27	0.86	-5.1	-5.11	205.26	201.83	2.67	0.09
	sp2-C	4	145.2	54.0	53.99	146.83	144.63	0.57	0.77	55.4	55.42	145.41	143.02	2.18	0.26
	sp3-CH2/CH/C	5	83.8	113.1	113.10	84.07	82.66	1.14	0.30	112.1	112.15	85.04	83.70	0.10	0.93
	sp3-CH2/CH/C	6	37.4	158.7	158.74	37.76	36.93	0.47	0.67	162.0	161.97	34.48	34.02	3.38	0.00
	sp3-CH2/CH/C	7	78.4	119.2	119.21	77.88	76.54	1.86	0.09	116.3	116.32	80.81	79.54	1.14	0.30
	sp2-C	8	147.3	46.4	46.38	154.42	152.12	4.82	0.01	39.7	39.70	161.08	158.41	11.11	0.00
	sp3-CH2/CH/C	9	49.6	147.6	147.59	49.08	48.10	1.50	0.18	148.0	148.03	48.63	47.92	1.68	0.13
	sp3-CH2/CH/C	10	65.2	132.0	132.01	64.88	63.71	1.49	0.18	134.7	134.74	62.11	61.17	4.03	0.00
	X-C=O	1'	173.9	27.7	27.70	174.92	172.37	1.53	0.34	27.5	27.49	175.11	172.21	1.69	0.30
	sp3-CH2/CH/C	2'	44.1	152.6	152.59	44.00	43.09	1.01	0.36	153.1	153.13	43.46	42.84	1.26	0.26
	sp3-CH2/CH/C	3'	26.9	168.0	168.00	28.37	27.65	0.75	0.50	167.2	167.24	29.14	28.77	1.87	0.09
	sp3-CH3	4'	22.7	174.7	174.65	20.89	20.27	2.43	0.02	174.4	174.39	21.16	20.92	1.78	0.09
	sp3-CH3	5'	22.7	172.9	172.88	22.72	22.08	0.62	0.55	173.1	173.09	22.51	22.25	0.45	0.66
	X-C=O	1"	174.7	28.1	28.11	174.55	172.00	2.70	0.10	27.5	27.52	175.08	172.17	2.53	0.12
	sp3-CH2/CH/C	2"	32.7	158.5	158.46	38.04	37.20	4.50	0.00	159.3	159.30	37.19	36.68	3.98	0.00
	sp3-CH2/CH/C	3"	27.7	165.4	165.38	31.02	30.27	2.57	0.02	165.1	165.08	31.32	30.91	3.21	0.00
	sp3-CH2/CH/C	4"	55.7	140.3	140.28	56.50	55.43	0.27	0.81	141.7	141.72	55.03	54.21	1.49	0.18
	COOH	5"	173.8	26.1	26.06	178.24	175.64	1.84	0.07	25.9	25.86	178.42	175.46	1.66	0.10
	sp3-CH3	5-OMe	56.7	139.6	139.61	57.23	56.15	0.55	0.60	139.9	139.91	56.91	56.06	0.64	0.53
	sp3-CH3	OOCMe	20.7	173.5	173.49	22.09	21.46	0.76	0.46	174.6	174.57	20.97	20.74	0.04	0.97
	X-C=O	OOCMe	172.3	27.9	27.91	174.73	172.18	0.12	0.94	29.1	29.07	173.68	170.79	1.51	0.35

Table S18. Energy analy	vsis for conformers	of 4aA-4aH at B3LYP/TZVP	level in methanol with IEFPCM model
-------------------------	---------------------	--------------------------	-------------------------------------

Species	E'=E+ZPE	E	Н	G	ΔG	ΔE (kcal/mol)	PE%
4aA	-1684.885665	-1684.848000	-1684.847056	-1684.961755	0.001005	0.630647	12.29%
4aB	-1684.885035	-1684.847427	-1684.846483	-1684.961041	0.001719	1.078689	5.77%
4aC	-1684.882606	-1684.844750	-1684.843806	-1684.958920	0.003840	2.409636	0.61%
4aD	-1684.887791	-1684.850231	-1684.849287	-1684.962760	0.000000	0.000000	35.65%
4aE	-1684.887791	-1684.850231	-1684.849287	-1684.962744	0.000016	0.010040	35.05%
4aF	-1684.885573	-1684.847816	-1684.846871	-1684.960997	0.001763	1.106299	5.50%
4aG	-1684.885410	-1684.847786	-1684.846841	-1684.959581	0.003179	1.994853	1.23%
4aH	-1684.883409	-1684.845463	-1684.844519	-1684.960672	0.002088	1.310240	3.90%

 $\overline{E, E', H, G}$: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S25. Main conformers of 4a

Table S19. Energy analysis for conformers of 4cA-4cH at B3LYP/TZVP level in methanol with IEFPCM model

Species	E' = E + ZPE	E	Н	G	$\varDelta G$	ΔE (kcal/mol)	PE%
4bA	-1684.888557	-1684.851106	-1684.850162	-1684.961220	0.002513	1.576931	2.96%
4bB	-1684.887855	-1684.850385	-1684.849441	-1684.960546	0.003187	1.999873	1.45%
4bC	-1684.886834	-1684.849489	-1684.848545	-1684.960051	0.003682	2.310490	0.86%
4bD	-1684.888168	-1684.850460	-1684.849516	-1684.963733	0.000000	0.000000	42.46%
4bE	-1684.887633	-1684.850103	-1684.849158	-1684.962433	0.001300	0.815762	10.71%
4bF	-1684.889956	-1684.852411	-1684.851467	-1684.963275	0.000458	0.287399	26.13%
4bG	-1684.885596	-1684.848093	-1684.847149	-1684.959440	0.004293	2.693898	0.45%
4bH	-1684.888261	-1684.850735	-1684.849791	-1684.962750	0.000983	0.616842	14.98%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Figure S26. Main conformers of 4c

Sections S2 Supplementary of NMR and HRESIMS

5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 f2 (ppm)

User Spectra

User Spectra

S2.3 NMR and HRESIMS spectra of pardinumone C (3)

T: FTMS + p ESI Full lock ms [150.0000-1100.0000]

S2.4 NMR and HRESIMS spectra of pardinumone D (4)

