Synthetic Methods

Abbreviations:

AcOH	acetic acid
ACN	acetonitrile
app	apparent
ATP	adenosine 5'-triphosphate
BI-DIME	3-(tert-butyl)-4-(2,6-dimethoxyphenyl)-2,3-dihydrobenzo[d][1,3]oxaphosphole
BISPIN	4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)
BOC	tert-butyloxycarbonyl
br	broad
Bu	butyl
CDI	carbonyldiimidazole
d	doublet
dd	doublet of doublets
DCE	dichloroethane
DCM	dichloromethane
DIPEA	diisopropylethylamine
DMA	dimethylacetamide
DMAP	4-dimethylaminopyridine
DME	1,4-dimethoxyethane
DMF	N,N-dimethylformamide
DMSO	dimethylsulfoxide
ESI	electrospray ionization
Et	ethyl
EtOAc	ethyl acetate
h	hour(s)
HATU	1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate
HBTU	1-[bis(dimethylamino)methylene]-1H-benzotriazoliumhexafluorophosphate(1-) 3oxide
HOBt	1-hydroxy-7-azabenzotriazole
HPLC	high pressure liquid chromatography
LCMS	liquid chromatography and mass spectrometry
MeCN	acetonitrile
MeOH	methanol
MHz	mega hertz
MS	mass spectrometry

MW	microwave
m	multiplet
mg	milligram
min	minutes
ml	milliliter
mmol	millimol
m / z	mass to charge ratio
NBS	N-bromosuccinimide
NMR	nuclear magnetic resonance
o / n	overnight
PdCl	(dppf)
$\mathrm{Pd}(\mathrm{OAc})_{2}$	1,1 '-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride
Pd / C	palladium(II) acetate
Ph	palladium on carbon
ppm	phenyl
rac	parts per million
RBF	racemic
Rt	round bottom flask
RT	retention time
s	room temperature
sat.	singlet
SCX	saturated
SM	strong cation exchange sorbent column
t	starting material
TBME	triplet
tBu	methyl tert-butyl ether
TEA	tertiary butyl
tert	triethylamine
TFA	tertiary
THF	trifluoroacetic acid
TLC	tetrahydrofuran
	thin layer chromatography

Purification

Purification of intermediates and final products was carried out via either normal or reverse phase chromatography. Normal phase chromatography was carried out using prepacked SiO_{2} cartridges (e.g., RediSep® Rf columns from Teledyne Isco, Inc.) eluting with gradients of appropriate solvent systems (heptane and ethyl acetate, or DCM and MeOH , unless otherwise indicated). Reverse phase preparative HPLC was carried out using the methods described below:
(1) Basic method: XBridge $5 \mu \mathrm{~m}$ column, 5 mM NH 44 OH in acetonitrile and water.
(2) TFA method: Sunfire $5 \mu \mathrm{~m}$ column, 0.1% TFA in acetonitrile and water.
(3) Formic acid method: XBridge $5 \mu \mathrm{~m}$ column; 0.1% formic acid in acetonitrile and water.

All of the above three HPLC methods run a focused gradient from the starting \% acetonitrile to the final \% acetonitrile. The initial and final conditions for each gradient are as follows: Method 0: 2-12\% acetonitrile; Method 1: 7.5-20\% acetonitrile; Method 2: 10-30\% acetonitrile; Method 3: 15-40\% acetonitrile; Method 4: 25-50\% acetonitrile; Method 5: 35-60\% acetonitrile; Method 6: 45-70\% acetonitrile; Method 7: 55-80\% acetonitrile; Method 8: 65-95\% acetonitrile; and Method 9: 5-95\% acetonitrile.

General Synthetic Schemes

General Procedure for Methylation

To a stirring solution of cesium carbonate ($4.04 \mathrm{~g}, 12.39 \mathrm{mmol}$) in THF (Volume: 41.3 ml) was added 4-bromo-7-fluoroisoquinolinone ($1 \mathrm{~g}, 4.13 \mathrm{mmol}$). The reaction was sonicated vigorously, after which time iodomethane ($0.310 \mathrm{ml}, 4.96 \mathrm{mmol}$) was added dropwise and the reaction was allowed to stir at RT o / n.

The following morning, the reaction was concentrated by rotary evaporation to remove THF. The crude material was diluted with water and extracted with EtOAc. The organics were washed $3 x$ with water, then brine, then filtered over a bed of magnesium sulfate and concentrated to afford the product as an offyellow solid ($950 \mathrm{mg}, 3.71 \mathrm{mmol}, 90 \%$ yield).

General Procedure for Bromination

NBS (276 mg, 1.553 mmol) and isoquinolinone ($260 \mathrm{mg}, 1.412 \mathrm{mmol}$) were suspended in acetonitrile (0.1 M) in a 50 mL RBF equipped with a stir bar and stirred at RT o/n.

The following morning, the reaction was concentrated to a solid, re-suspended in EtOAc and filtered to remove the succinimide byproduct. The organic layer was concentrated to afford the desired product as a cream solid ($268 \mathrm{mg}, 1.019 \mathrm{mmol}, 72.2 \%$ yield).

General Procedure for Borylation

Isoquinolinone ($500 \mathrm{mg}, 1.93 \mathrm{mmol}$), BISPIN ($744 \mathrm{mg}, 2.93 \mathrm{mmol}$), potassium acetate ($479 \mathrm{mg}, 4.88$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(286 \mathrm{mg}, 0.391 \mathrm{mmol})$ were suspended in dioxane $(0.1 \mathrm{M})$ in a 20 mL pressure relief vial under N_{2}. The mixture (a brown-orange suspension) was stirred at $90^{\circ} \mathrm{C}$ (suspension became
darker in color with heat) o/n.
The following morning, LC reveals conversion to the desired borane species. The reaction was diluted with DCM and washed $3 x$ with sat. sodium bicarbonate. The organic layers were combined, passed through a bed of sodium sulfate, and concentrated to a brown oil. Assume quantitative yield, this material was used directly without further manipulation.

General Procedure for Cross-Coupling - ROUTE A

$+$

$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(30.6 \mathrm{mg}, 0.042 \mathrm{mmol})$, sodium carbonate ($66.5 \mathrm{mg}, 0.627 \mathrm{mmol}$), napthyridinone (50 mg , 0.209 mmol) and 4 -formyl-2,6-dimethoxy phenylboronic acid ($43.9 \mathrm{mg}, 0.209 \mathrm{mmol}$) were suspended in 4:1 dioxane/water (0.1 M) in a 2 mL MW vial. The reaction was sealed and heated in a MW at $160^{\circ} \mathrm{C}$ for 5 min .

The reaction was concentrated to a solid, suspended in a small volume $(1 \mathrm{~mL})$ of $1: 1 \mathrm{ACN} /$ water and filtered. The crude material was purified by HPLC (basic, method 2, Rt 4.45) to afford the desired product as a brown solid ($18 \mathrm{mg}, 0.055 \mathrm{mmol}, 26.5 \%$ yield).

General Procedure for Cross-Coupling - ROUTE B

$\mathrm{Pd}(\mathrm{OAc})_{2}(2.457 \mathrm{mg}, 10.94 \mu \mathrm{~mol})$, sodium tert-butoxide ($31.5 \mathrm{mg}, 0.328 \mathrm{mmol}$), BI-DIME ligand $(7.23 \mathrm{mg}$, 0.022 mmol), isoquinolinone ($33.2 \mathrm{mg}, 0.109 \mathrm{mmol}$) and bromo dimethylamine ($30 \mathrm{mg}, 0.109 \mathrm{mmol}$) were suspended in dioxane $(0.1 \mathrm{M})$ in a 2 mL MW vial. The reaction was sealed and heated in a MW at $160^{\circ} \mathrm{C}$ for 1 hr .

The reaction was quenched by the addition of sodium bicarbonate $(2 \times 5 \mathrm{~mL})$ and the crude material was extracted 3 times with EtOAc. The combined organic layers were dried over MgSO_{4}, filtered, and
concentrated to a brown oil. The crude material was purified by HPLC (acidic, method 2, Rt 2.55) to afford the desired product as a white solid ($6.7 \mathrm{mg}, 0.017 \mathrm{mmol}, 15.7 \%$ yield)

General Procedure for Reductive Aminations

In a 4 mL pressure relief vial, a mixture of sodium acetate ($6.37 \mathrm{mg}, 0.078 \mathrm{mmol}$), acetic acid ($3.18 \mu \mathrm{l}$, 0.055 mmol), 3-N-Boc-amino azetidine ($13.38 \mathrm{mg}, 0.078 \mathrm{mmol}$), and aldehyde ($18 \mathrm{mg}, 0.055$ $\mathrm{mmol})$ in DCM $(0.1 \mathrm{M})$ were stirred at $0^{\circ} \mathrm{C}$ for 30 minutes under a stream of nitrogen gas. Then, sodium triacetoxyborohydride ($23.52 \mathrm{mg}, 0.111 \mathrm{mmol}$) was added in one portion and the reaction mixture was stirred at RT o/n.

The following morning, saturated NaHCO_{3} solution was added and the layers were separated. The aqueous layer was extracted $3 x$ with DCM . The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated onto a bed of celite. The material was purified by ISCO ($0-10 \% \mathrm{MeOH}$ in DCM) to afford the target compound as a light brown solid ($14 \mathrm{mg}, 0.029 \mathrm{mmol}, 52.5 \%$ yield).

General Procedure for BOC-deprotection

To a stirring solution of BOC-protected amine ($14 \mathrm{mg}, 0.029 \mathrm{mmol}$) in DCM (0.1 M) at RT was added TFA ($33.7 \mu \mathrm{l}, 0.437 \mathrm{mmol}$). The reaction was allowed to stir at RT o/n.

The following morning, the crude reaction was concentrated to an oil, re-suspended in 1 mL of 1:1 ACN:water and was purified by HPLC (basic, method 2, Rt 3.12). The product fractions were combined and concentrated to afford the target as a white solid ($7.3 \mathrm{mg}, 0.019 \mathrm{mmol}, 65.2 \%$ yield).

General Procedure for Amide Couplings

To a solution of azetidine amine ($10 \mathrm{mg}, 0.026 \mathrm{mmol}$) in DCM $(0.1 \mathrm{M})$ at RT was added DIPEA ($8.17 \mathrm{\mu l}$, 0.047 mmol) and stirred for five minutes. Then BODIPY dye ($5 \mathrm{mg}, 0.012 \mathrm{mmol}$) was added and the reaction stirred for 2.5 hr .

Upon complete consumption of SM by LCMS, the crude material was concentrated to a solid, resuspended in ACN, and purified by HPLC (basic, method 4, Rt 3.80). The product fractions were combined and concentrated to afford the target compound as a purple solid ($1.9 \mathrm{mg}, 0.00261 \mathrm{mmol}$, 22.3% yield).

General Procedure for Saponification

To the methyl ester ($150 \mathrm{mg}, 0.507 \mathrm{mmol}$) in $3: 1$ solution of THF/water (0.1 M) vortexing at RT was added LiOH dropwise ($507 \mathrm{uL}, 1.013 \mathrm{mmol}$). The reaction stirred overnight.

The following morning, LC revealed consumption of SM to the desired product. The crude material was concentrated to a solid and used directly on the subsequent steps, assuming quantitative yield of the lithium salt.

General Procedure for HATU-mediated Amidation

To a solution of carboxylic acid ($143 \mathrm{mg}, 0.507 \mathrm{mmol}$) in DMF (0.25 M) at RT was added DIPEA (328 mg , 2.54 mmol), and amine ($68 \mathrm{mg}, 1.014 \mathrm{mmol}$) and the reaction stirred for five minutes. Then HATU (231 $\mathrm{mg}, 0.608 \mathrm{mmol}$) was added and the reaction stirred for an additional 2.5 hr .

When LCMS revealed complete consumption of the acid, the crude material was concentrated onto a bed
of celite and purified by ISCO $(0-10 \% \mathrm{MeOH}$ in DCM $)$. The desired fractions were combined and concentrated to afford the target compound as a brown solid ($27.6 \mathrm{mg}, 0.093 \mathrm{mmol}, 18.3 \%$ yield).

Compound Synthesis and Characterization

4-(4-((3-aminoazetidin-1-yl)methyl)-2,5-dimethoxyphenyl)-2-methyl-2,7-naphthyridin-1(2H)-one $59.9 \%, 0.071 \mathrm{mmol}, 27.3 \mathrm{mg}$

Compound 1

1H NMR (400 MHz , Methylene Chloride-d2) $\delta 9.59$ (d, J = $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.64 (d, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (s, 1H), 7.09 (dd, J = 4.5, 1.0 Hz, 2H), 6.78 (s, 1H), 3.82 (s, 3H), 3.72 (s, 3H), 3.65 (s, 4H), 2.84 (t, J = 6.9 $\mathrm{Hz}, 2 \mathrm{H}$), 1.73 (s, 4H).
$[\mathrm{M}+\mathrm{H}]=381.0, \mathrm{Rt}=0.64 \mathrm{~min}$

tert-butyl (1-(2,5-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzyl)azetidin-3yl)carbamate

Intermediate 1D
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.46 (s, 9 H) 2.76-4.03 (m, 17 H) 6.74 (s, 1 H$) 6.99-7.08$ (m, 2 H) 7.24 (s, 1 H) 8.65 (d, J=5.81 Hz, 1 H) 9.68 (d, J=0.76 Hz, 1 H)
$[\mathrm{M}+\mathrm{H}]: 481.4, \mathrm{Rt}=0.90 \mathrm{~min}$

2,5-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzaldehyde Intermediate 1C

1H NMR (400 MHz, CHLOROFORM-d) ס ppm 3.69 (s, 3 H) 3.76 (s, 3 H) 3.94 (s, 3 H) 6.93 (s, 1 H) 7.04 (d, J=5.56 Hz, 1 H) 7.29 (s, 1 H) 7.48 (s, 1 H) 8.67 (d, J=5.56 Hz, 1 H) 9.70 (s, 1 H) 10.52 (s, 1 H)
$[\mathrm{M}+\mathrm{H}]: 325.1, \mathrm{Rt}=0.73 \mathrm{~min}$

2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,7-naphthyridin-1(2H)-one Intermediate 1B
$[\mathrm{M}+\mathrm{H}]: 287.0, \mathrm{Rt}=0.73 \mathrm{~min}$

Commercially available (CAS 31558-40-4); 4-Bromo-3,5-dimethoxybenzaldehyde

4-bromo-2-methyl-2,7-naphthyridin-1(2H)-one
Intermediate 1A
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 3.64 (s, 3H) 7.57 (s, 1 H) 7.62 (d, J=5.56 Hz, 1 H$) 8.87$ (d, J=5.56 Hz, 1 H) 9.62 (s, 1 H)
$[\mathrm{M}+\mathrm{H}]:$ 239.1, $\mathrm{Rt}=0.54 \mathrm{~min}$

Commercially available (CAS 3951-95-9); 4-Bromo-1(2H)-isoquinoline

4-(2-methoxynaphthalen-1-yl)-2-methyl-2,7-naphthyridin-1(2H)-one
$43.0 \%, 0.043 \mathrm{mmol}, 13.6 \mathrm{mg}$

Compound 2

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-$ $7.77(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=317.2, \mathrm{Rt}=0.90 \mathrm{~min}$

Intermediates 1A + 1B
See above

Commercially available (CAS 3951-95-9); 4-Bromo-1(2H)-isoquinoline

Commercially available (CAS 3401-47-6); 1-Bromo-2-methoxynapthalene

4-(4-((dimethylamino)methyl)-2,6-dimethoxyphenyl)-2-methyl-2,7-naphthyridin-1(2H)-one $43.0 \%, 0.043 \mathrm{mmol}, 13.6 \mathrm{mg}$

Compound 3

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.59$ (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.51 (d, $\left.J=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.81$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 3.75-3.47(\mathrm{~m}, 11 \mathrm{H}), 2.47(\mathrm{~d}, J=60.0 \mathrm{~Hz}, 6 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=354.2, \mathrm{Rt}=0.75 \mathrm{~min}$

Intermediate 3A
3,5-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzaldehyde $[\mathrm{M}+\mathrm{H}]: 325.0, \mathrm{Rt}=0.58 \mathrm{~min}$

Commercially available (CAS 1256355-34-6); 2,6-Dimethoxy-4-forymlphenylboronic acid

8-(4-((dimethylamino)methyl)-2,5-dimethoxyphenyl)-6-methylpyrido[4,3-d]pyrimidin-5(6H)-one $11.5 \%, 0.011 \mathrm{mmol}, 3.3 \mathrm{mg}$

Compound 4

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.74$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 9.33 (d, $\left.J=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.62$ (d, J = $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.96(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $3 \mathrm{H}), 3.70$ (d, $J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.74(\mathrm{~d}, J=45.3 \mathrm{~Hz}, 6 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=355.2, \mathrm{Rt}=0.63 \mathrm{~min}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-1

See patent (WO2016/139361 A1; EP3265453 A1; US2018/44335 A1; JP2018/507238 A) for intermediate analysis.

4-(4-((dimethylamino)methyl)-2,5-dimethoxyphenyl)-2-methyl-7-nitroisoquinolin-1(2H)-one
$11.5 \%, 0.011 \mathrm{mmol}, 3.3 \mathrm{mg}$

Compound 5

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.74$ (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 9.33 (d, $\left.J=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.44$ (s, 1H), 7.62 (d, J = $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.96(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, 3 H), 3.70 (d, $J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.74(\mathrm{~d}, J=45.3 \mathrm{~Hz}, 6 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=398.2, \mathrm{Rt}=0.98 \mathrm{~min}$

Commercially available (CAS 1036390-36-9); 4-Bromo-7-nitroisoquinolin-1(2H)-one

Intermediate 5A
1-(2,5-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-N,N-dimethylmethanamine $[\mathrm{M}+\mathrm{H}]: 322.3, \mathrm{Rt}=0.69 \mathrm{~min}$

4-(4-((dimethylamino)methyl)-2,5-dimethoxyphenyl)-2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one $3.03 \%, 0.00346 \mathrm{mmol}, 1.6 \mathrm{mg}$

Compound 6

1H NMR (400 MHz, Chloroform-d) ס 8.82-8.75 (m, 1H), 7.96 (d, J=1.5 Hz, 1H), 7.75 (dd, J = 8.7, 2.0 $\mathrm{Hz}, 1 \mathrm{H}$), 7.51 (s, 1H), 7.36 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (s, 1H), 6.79 (s, 1H), 3.83 (s, 3H), 3.74 (s, 3H), 3.69 (s, 3H), $3.66(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 5 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=421.4, \mathrm{Rt}=0.77 \mathrm{~min}$

Intermediate 6B
2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one
1H NMR (400 MHz , Chloroform-d) $\delta 8.75$ (s, 1H), 7.84 (dd, J = 8.3, 2.0 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.21 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.55(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=229.1, \mathrm{Rt} 0.88 \mathrm{~min}$

Intermediate 6A
4-bromo-2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one
$[\mathrm{M}+\mathrm{H}]=308.0, \mathrm{Rt}=1.02 \mathrm{~min}$

Commercially available (CAS 410086-28-1); 7-(trifluoromethyl)-1(2H)-isoquinolinone
--

4-(4-((dimethylamino)methyl)-2,5-dimethoxyphenyl)-N,2-dimethyl-1-oxo-1,2-dihydroisoquinoline-7carboxamide
$8.6 \%, 0.00766 \mathrm{mmol}, 3.3 \mathrm{mg}$

Compound 7

1H NMR (400 MHz , Methanol-d4) ס 8.86 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.47 (s, 1H), 8.04 (dt, J = 8.4, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.43$ (m, 1H), 7.31 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (d, J = $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (s, 1H), 4.39 (s, 2H), 3.93 (d, J $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.73$ (d, J = $2.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.70$ (s, 3H), 2.98 (s, 3H), $2.92(\mathrm{~s}, 5 \mathrm{H})$
$[\mathrm{M}+\mathrm{H}]=410.4, \mathrm{Rt}=0.86 \mathrm{~min}$

Intermediate 5A

See above

Commercially available, (CAS 658082-39-4); methyl 1-oxo-12-dihydro-7-isoquinolinecarboxylate

Intermediate 7A
methyl 4-bromo-1-oxo-1,2-dihydroisoquinoline-7-carboxylate
$[\mathrm{M}+\mathrm{H}]=282.0, \mathrm{Rt}=0.80 \mathrm{~min}$

Intermediate 7B
methyl 4-bromo-2-methyl-1-oxo-1,2-dihydroisoquinoline-7-carboxylate
$[\mathrm{M}+\mathrm{H}]=298.0, \mathrm{Rt}=0.90 \mathrm{~min}$

Intermediate 7C
4-bromo-2-methyl-1-oxo-1,2-dihydroisoquinoline-7-carboxylic acid
$[\mathrm{M}+\mathrm{H}]=283.9, \mathrm{Rt}=0.72 \mathrm{~min}$

Intermediate 7D
4-bromo-N,2-dimethyl-1-oxo-1,2-dihydroisoquinoline-7-carboxamide
$[\mathrm{M}+\mathrm{H}]=295.0, \mathrm{Rt}=0.66 \mathrm{~min}$

4-(4-((dimethylamino)methyl)-2,5-dimethoxyphenyl)-2-methyl-1-oxo-1,2-dihydroisoquinoline-7-carbonitrile $9.9 \%, 0.011 \mathrm{mmol}, 4.5 \mathrm{mg}$

Compound 8

1H NMR (400 MHz, Chloroform-d) $\delta 8.82(d, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 2 \mathrm{H}), 7.74$ (td, J = 7.9, 7.2, 1.8 Hz, $1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=$ $9.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=378.3, \mathrm{Rt}=0.97 \mathrm{~min}$

Intermediate 5A
See above

Commercially available, (CAS 1184913-64-1); 1-oxo-1,2-dihydroisoquinoline-7-carbonitrile

Intermediate 8A
2-methyl-1-oxo-1,2-dihydroisoquinoline-7-carbonitrile
$[\mathrm{M}+\mathrm{H}]=185.1, \mathrm{Rt}=0.64 \mathrm{~min}$

Intermediate 8B
4-bromo-2-methyl-1-oxo-1,2-dihydroisoquinoline-7-carbonitrile
$[\mathrm{M}+\mathrm{H}]=264.9, \mathrm{Rt}=0.81 \mathrm{~min}$
\qquad

4-(4-((dimethylamino)methyl)-2,5-dimethoxyphenyl)-7-fluoro-2-methylisoquinolin-1(2H)-one
$15.2 \%, 0.024 \mathrm{mmol}, 9.5 \mathrm{mg}$

Compound 9

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.16$ (dd, $J=9.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35-7.19$ (m, 3H), 7.03 (s, 1H), 6.80 (s, 1H), 3.83 (s, 3H), 3.76 (s, 5H), 3.67 (s, 3H), 2.50 (s, 6H).
$[\mathrm{M}+\mathrm{H}]=371.3, \mathrm{Rt}=0.95 \mathrm{~min}$

Intermediate 5A
See above

Commercially available, (CAS 1227607-99-9); 4-bromo-7-fluoroisoquinolin-1(2H)-one

Intermediate 9A
4-bromo-7-fluoro-2-methylisoquinolin-1(2H)-one
$[\mathrm{M}+\mathrm{H}]=255.9, \mathrm{Rt}=0.84 \mathrm{~min}$
--

N-(2-(2-(3-((1-(2,5-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzyl)azetidin-3-yl)amino)-3-oxopropoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentanamide
$24.5 \%, 0.00979 \mathrm{mmol}, 7.5 \mathrm{mg}$

Compound 1 - BIOTIN

${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) ठ 9.48 (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.58 (dd, $\left.J=5.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61(\mathrm{~s}, 1 \mathrm{H})$, $7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 4 \mathrm{H}), 4.59-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{dd}, \mathrm{J}=7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-$ $3.96(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.70(\mathrm{~m}, 5 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}$ $=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{tdt}, J=20.8,15.6,7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=766.4, \mathrm{Rt}=0.50 \mathrm{~min}$

Commercially available, (CAS 1365655-89-5); 3-\{2-[2-(\{5-[(3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanoyl\}amino)ethoxy]ethoxy\}propanoic acid

Intermediate 1-BIOTIN-A
4-(4-((3-aminoazetidin-1-yl)methyl)-2,6-dimethoxyphenyl)-2-methyl-2,7-naphthyridin-1(2H)-one $[\mathrm{M}+\mathrm{H}]=381.2, \mathrm{Rt}=1.10 \mathrm{~min}$

Intermediate 1-BIOTIN-B
tert-butyl (1-(3,5-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzyl)azetidin-3yl)carbamate
$[\mathrm{M}+\mathrm{H}]=480.9, \mathrm{Rt}=0.59 \mathrm{~min}$

Intermediates 3A + 1A

See above

Commercially available (CAS 1256355-34-6); 2,6-Dimethoxy-4-forymlphenylboronic acid

(Z)-3-(5-(1H,5'H-[2,2'-bipyrrol]-5'-ylidenemethyl)-1-(difluoroboraneyl)-1H-pyrrol-2-yl)-N-(1-(3,5-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzyl)azetidin-3-yl)propanamide
$22.3 \%, 0.00261 \mathrm{mmol}, 1.9 \mathrm{mg}$

Compound 3-TRACER

1H NMR (400 MHz, Chloroform-d) $\delta 9.67$ (s, 1H), $8.59(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.15$ (s, 1H), 7.11-7.07 (m, 1H), $7.02(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H})$.
$[M+H]=692.3, R t=0.95 \mathrm{~min}$

Intermediate 1-BIOTIN-B
See above

Commercially available, 4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indacene-3-propionic acid, succinimidyl ester (BODIPY® 576/589, SE)
--

4-(4-((dimethylamino)methyl)-2,6-dimethoxyphenyl)-7-fluoro-2-methylisoquinolin-1(2H)-one
$15.7 \%, 0.017 \mathrm{mmol}, 6.7 \mathrm{mg}$

Compound DN01

1H NMR (400 MHz , Chloroform-d) $\delta 8.48$ (s, 1H), 8.14 (dd, J = 9.5, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.22$ (m, 1H), 7.04 (dd, J = 8.9, 5.2 Hz, 1H), $6.93(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 6 \mathrm{H})$
$[\mathrm{M}+\mathrm{H}]=371.2, \mathrm{Rt}=0.63 \mathrm{~min}$

Intermediate DN01-A
7-fluoro-2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoquinolin-1(2H)-one $[\mathrm{M}+\mathrm{H}]=305.2, \mathrm{Rt}=1.14 \mathrm{~min}$

Intermediate 9A
See above

Intermediate DN01-B
1-(4-bromo-3,5-dimethoxyphenyl)-N,N-dimethylmethanamine
$[\mathrm{M}+\mathrm{H}]=275.1, \mathrm{Rt}=0.54 \mathrm{~min}$

Commercially available, (CAS 31558-40-4); 4-bromo-3,5-dimethoxybenzaldehyde

4-(4-((3-aminoazetidin-1-yl)methyl)-2,6-dimethoxyphenyl)-7-fluoro-2-methylisoquinolin-1(2H)-one $34.9 \%, 0.0021 \mathrm{mmol}, 0.9 \mathrm{mg}$

Compound DN02

1H NMR (400 MHz, Chloroform-d) $\delta 8.14$ (dd, J = 9.5, 2.7 Hz, 1H), 7.24 (td, J = 8.5, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (dd, $J=8.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 7 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$.
$[\mathrm{M}+\mathrm{H}]=398.2, \mathrm{Rt}=0.70 \mathrm{~min}$

Intermediate DN02-B

tert-butyl (1-(4-(7-fluoro-2-methyl-1-oxo-1,2-dihydroisoquinolin-4-yl)-3,5-dimethoxybenzyl)azetidin-3yl)carbamate
$[\mathrm{M}+\mathrm{H}]=498.5, \mathrm{Rt}=0.78 \mathrm{~min}$

Intermediate DN02-A
4-(7-fluoro-2-methyl-1-oxo-1,2-dihydroisoquinolin-4-yl)-3,5-dimethoxybenzaldehyde $[\mathrm{M}+\mathrm{H}]=342.1, \mathrm{Rt}=0.88 \mathrm{~min}$

Intermediate 9A
See above

Commercially available (CAS 1256355-34-6); 2,6-Dimethoxy-4-forymlphenylboronic acid

