Supporting Information

Density, Speeds of Sound and Refractive Index of Pure and Binary Mixtures of Ionic Liquids Based on Imidazolium Cations and tetrafluoroborate Anion with Cyclohexylamine

Zubin Master, Naved I Malek*

Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat- 07, India

Table S1

Temperature dependence of B_i of Eq. 11 for excess molar volume V_m^E (×10⁶ m³ mol⁻¹), excess molar isentropic compressibilities $K_{s,m}^E$ (dm³TPa⁻¹mol⁻¹), deviation in refractive index ($\Delta_{\phi}n_D$), along with standard deviation (σ) for BmimBF₄, HmimBF₄, OmimBF₄ with cyclohexylamine.

T(K)	B ₁	B_2	B_3	\mathbf{B}_4	σ
		BmimB	$F_4 + CyHxA$	m	
		$V_{\rm m}^{\rm E}$ (×	(10 ⁶ m ³ /mol		
293.15	-4.5739	-1.4257	0.0972	0.3536	0.0091
298.15	-4.7496	-1.3821	-0.7187	-0.1666	0.0840
303.15	-5.0401	-1.3323	-1.1838	-0.5102	0.1781
308.15	-5.4224	-1.5705	-1.6405	-0.4722	0.2951
313.15	-5.8162	-1.7012	-1.8529	-0.8076	0.4069
318.15	-6.3740	-1.8165	-1.4150	-0.5976	0.0296
323.15	-6.9010	-1.5523	-1.1093	-1.3451	0.0294

 $K_{s,m}^{E}$ (dm³/TPa · mol)

293.15	-6.2068	-3.3218	-0.4151	-1.5168	0.0202
298.15	-6.7475	-3.1284	-0.5969	-0.1788	0.0388
303.15	-7.1911	-2.8680	-1.7976	-0.5781	0.0383
308.15	-7.6972	-2.6074	-2.7064	-2.0305	0.0544
313.15	-8.5267	-2.9822	-3.2685	-2.8859	0.0490
318.15	-9.2669	-3.1787	-3.9055	-3.9686	0.0749
323.15	-10.0511	-3.1544	-4.1889	-5.4136	0.0731
		$\Delta_{\phi} n_D$			
293.15	-0.0121	-0.0042	0.0004		0.0001
298.15	-0.0124	-0.0044	-0.0006		0.0004
303.15	-0.0128	-0.0043	-0.0008		0.0005
308.15	-0.0131	-0.0042	-0.0012		0.0005
313.15	-0.0135	-0.0039	-0.0015		0.0005
318.15	-0.0137	-0.0033	-0.0024		0.0005
323.15	-0.0139	-0.0033	-0.0033		0.0005
		HmimBF	'₄ + CyHxAn	n	
		$V_{\rm m}^{\rm E}$ (×1() ⁶ m ³ /mol)		
293.15	-4.0778	-4.0788	-0.2936	-0.3877	0.0107

		$K_{\rm s,m}^{\rm E} ({\rm dm}^{3})'$	TPa∙mol)		
323.15	-5.3998	-4.6248	-1.1323	-0.9380	0.0213
318.15	-5.1538	-4.3593	-1.1307	-1.2150	0.0252
313.15	-4.9156	-4.3899	-1.0132	-0.9175	0.2482
308.15	-4.6654	-4.3810	-1.0922	-0.7053	0.1879
303.15	-4.4880	-4.0411	-0.9057	-1.1718	0.1336
298.15	-4.3346	-4.1398	-0.7626	-0.5310	0.0874
293.15	-4.0778	-4.0788	-0.2936	-0.3877	0.0107

293.15	-6.2907	-6.1700	0.8963	1.2716	0.0340
298.15	-6.5806	-5.7794	-0.1942	0.0187	0.0224
303.15	-6.9252	-5.7853	-0.6770	-0.1401	0.0101
308.15	-7.1856	-5.9542	-1.2975	0.0995	0.0341
313.15	-7.6409	-6.1524	-0.7424	0.7623	0.0306
318.15	-7.9834	-5.8915	-0.7285	0.1999	0.0107
323.15	-8.2678	-6.2057	-1.1918	0.6388	0.0216
		$\Delta_{\phi} n_D$			
293.15	-0.0136	-0.0016	-0.0045		0.0000
298.15	-0.0132	-0.0011	-0.0029		0.0002
303.15	-0.0123	0.0000	-0.0010		0.0001
308.15	-0.0116	-0.0003	0.0007		0.0001
313.15	-0.0109	-0.0002	0.0017		0.0001
318.15	-0.0101	-0.0006	0.0032		0.0002
323.15	-0.0094	-0.0006	0.0046		0.0003
		OmimBF	t + CyHxAm		
		$V_{\rm m}^{\rm E}$ (×	10 ⁶ m ³ /mol)		
293.15	-4.3992	-3.2401	-0.2379	-0.5302	0.0074
298.15	-4.6162	-3.3328	-0.7878	-0.3644	0.0815
303.15	-4.8222	-3.3476	-0.7900	-0.4554	0.1336
308.15	-5.0704	-3.4122	-1.0079	-0.3658	0.2076
313.15	-5.2674	-3.4485	-1.0619	-0.6888	0.2607
318.15	-5.4397	-3.2563	-0.9676	-1.2605	0.0249
323.15	-5.6035 K ^E _{s,m} (dm	-3.0801 3/TPa · mol)	-1.1269	-2.0184	0.0358

293.15	-7.1242	-5.4079	-2.6045	-1.2252	0.0711
298.15	-7.9706	-5.7156	-1.8312	-0.9725	0.0392
303.15	-8.8703	-6.7137	-0.8988	0.6716	0.0329
308.15	-9.4896	-6.9673	-0.7968	0.5461	0.0381
313.15	-10.3374	-7.7512	-0.5427	0.7560	0.0289
318.15	-10.8724	-8.2632	-1.3314	0.9014	0.0357
323.15	-11.6808	-9.6746	-1.8172	2.0406	0.0581
		$\Delta_{\phi} n_D$			
293.15	-0.0140	-0.0043	-0.0037		0.0001
298.15	-0.0135	-0.0043	-0.0009		0.0005
303.15	-0.0130	-0.0037	0.0012		0.0004
308.15	-0.0124	-0.0042	0.0018		0.0004
313.15	-0.0118	-0.0038	0.0031		0.0004
318.15	-0.0114	-0.0040	0.0044		0.0004
323.15	-0.0109	-0.0047	0.0044		0.0004

TABLE S2

Dependence of Rao's molar sound functions R for the systems investigated at (293.15 - 323.15) K at atmospheric pressure P = 101.3 kPa.

Mole								
Fraction	293.15 K	298.15 K	303.15 K	308.15 K	313.15 K	318.15 K	323.15 K	
BmimBF₄ + CvHxAm								
0.0000	1288.24	1288.43	1288.62	1288.83	1288.87	1288.90	1288.84	
0.0982	1346.61	1344.18	1342.57	1340.93	1339.27	1338.02	1336.28	
0.2032	1440.84	1437.34	1434.14	1431.10	1428.32	1425.53	1422.60	
0.3010	1550.08	1546.18	1542.27	1538.15	1534.89	1530.04	1525.87	
0.4012	1678.25	1673.54	1668.88	1664.14	1659.67	1654.98	1649.95	
0.4828	1791.63	1786.47	1781.54	1776.40	1771.40	1766.13	1760.59	
0.6016	1968.69	1962.95	1957.58	1951.83	1946.38	1940.63	1934.57	
0.7124	2143.66	2137.58	2131.65	2125.53	2119.93	2113.94	2107.99	
0.8012	2289.35	2283.86	2277.93	2271.62	2265.75	2259.27	2253.16	
0.9024	2460.78	2454.76	2448.99	2442.37	2436.14	2429.97	2423.74	
1.0000	2631.49	2624.94	2618.66	2611.89	2605.68	2599.57	2593.67	
		Н	mimBF ₄ +	CyHxAm				
0.0000	1288.24	1288.43	1288.62	1288.83	1288.87	1288.90	1288.84	
0.0970	1376.64	1374.99	1373.32	1371.77	1369.80	1367.77	1366.07	
0.1808	1479.55	1476.56	1473.69	1471.13	1467.83	1464.70	1461.86	
0.2945	1643.38	1639.26	1635.23	1631.23	1626.75	1622.27	1617.85	
0.3960	1806.23	1801.09	1796.16	1791.09	1785.88	1780.30	1775.25	
0.5009	1985.66	1979.67	1974.14	1968.13	1962.21	1956.17	1950.40	
0.6048	2171.64	2165.36	2158.89	2152.69	2145.93	2139.23	2132.83	
0.7029	2353.04	2346.15	2339.31	2332.68	2325.64	2318.52	2311.65	
0.8008	2538.71	2531.45	2524.18	2517.11	2509.62	2502.31	2495.07	
0.8991	2729.31	2721.61	2714.04	2706.51	2698.85	2691.16	2683.78	
1.0000	2929.21	2920.94	2912.81	2904.81	2896.91	2889.06	2881.28	
		0	$mimBF_4 +$	CyHxAm				
0.0000	1288.24	1288.43	1288.62	1288.83	1288.87	1288.90	1288.84	
0.1076	1426.51	1424.23	1422.25	1420.24	1418.21	1416.40	1414.28	
0.2030	1579.46	1576.36	1573.27	1570.18	1566.97	1564.00	1561.00	

0.3072 1767.43 1763.18 1758.95 1754.31 1750.09 1745.	.61 1741.57
0.4001 1947.22 1941.72 1936.69 1931.21 1926.03 1920.	.67 1915.68
$0.4920 \qquad 2131.85 2125.98 \qquad 2120.16 2113.84 2107.93 2101.$.79 2095.61
0.6078 2372.64 2365.77 2358.96 2352.15 2345.09 2337.	.76 2330.58
0.7023 2574.31 2566.64 2558.76 2550.94 2543.37 2535.	.55 2527.66
0.7996 2785.04 2776.51 2767.84 2759.39 2751.18 2743.	.14 2735.22
0.8963 2997.80 2988.39 2979.26 2970.25 2961.43 2952.	.70 2944.06
1.0000 3228.19 3218.29 3208.50 3198.98 3189.73 3180.	.35 3171.24

TABLE S3

Dependence of excess molar volume for the systems investigated (BmimBF₄+ CyHxAm, HmimBF₄+ CyHxAm and OmimBF₄+ CyHxAm) at 298.15 K at atmospheric pressure P = 101.3 kPa.

$X_{BmimBF4}$ V_m^E		$X_{HmimBF4}$ V_m^E		$X_{OmimBF4}$ V_m^E	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0982	-0.5684	0.0970	-0.7474	0.1076	-0.7650
0.2032	-0.9502	0.1808	-1.0812	0.2030	-1.1006
0.3010	-1.1278	0.2945	-1.2758	0.3072	-1.2935
0.4012	-1.2169	0.3960	-1.2716	0.4001	-1.2747
0.4828	-1.2144	0.5009	-1.0955	0.4920	-1.1915
0.6016	-1.0739	0.6048	-0.8445	0.6078	-0.9384
0.7124	-0.8711	0.7029	-0.5663	0.7023	-0.6880
0.8012	-0.6597	0.8008	-0.3011	0.7996	-0.4512
0.9024	-0.3545	0.8991	-0.1197	0.8963	-0.2152
1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Figure S1 Comparison of excess molar volumes (V_m^E) for (a) BmimBF₄ (b) HmimBF₄ and (c) OmimBF₄ + CyHxAm at 298.15 K (\blacksquare) ERAS and (\blacktriangle) PFPT model.

The Prigogine-Flory-Patterson Theory (PFPT)

We have used Prigogine-Flory-Patterson (PFP) statistical theory to predict the excess molar volume of the studied systems. In PFP theory, V_m^E is divided in to three different contributions; the free volume ($V_m^E(fv)$), the characteristic pressure (($V_m^E(ip)$)) and the energy of interaction $V_m^E(int)$. The expression to predict V_m^E through PFP theory is:

$$\frac{V_m^E}{x_1V_1^* + x_2V_2^*} = \frac{V_m^E(fv)}{x_1V_1^* + x_2V_2^*} + \frac{V_m^E(ip)}{x_1V_1^* + x_2V_2^*} + \frac{V_m^E(int)}{x_1V_1^* + x_2V_2^*}$$
$$= -\frac{(\tilde{V}_1 - \tilde{V}_2)^2[(14/9)\tilde{V}^{-1/3} - 1]\Psi_1\Psi_2}{[(4/3)\tilde{V}^{-1/3} - 1]\tilde{V}} + \frac{(\tilde{V}_1 - \tilde{V}_2)(P_1^* - P_2^*)\Psi_1\Psi_2}{P_2^*\Psi_1 + P_1^*\Psi_2} + \frac{(\tilde{V}^{1/3} - 1)\tilde{V}^{2/3}\psi_1\theta_2X_{12}}{[(4/3)\tilde{V}^{-1/3} - 1]P_1^*}$$

Here x_i , P_i^* , V_i^* , \tilde{V}_i , θ_i , and Ψ_I are the mole fraction, characteristic pressure, characteristic volume, reduced volume, segment fraction and contact energy fraction of component *i*, respectively. χ_{12} is the Flory's contact interaction parameter.