Supporting Information

Modular DNA Circuits for Point-of-Care Colorimetric Assay of Infectious Pathogens

Dan Zhu,¹ Zihao Ma,¹ Zichun Wang,¹ Qingyun Wei,¹ Xiaojian Li,¹ Jingjing Wang,² Shao Su,¹ Xiaolei Zuo,^{3,4} Chunhai Fan,⁴ Jie Chao,^{1,*} Lianhui Wang^{1,*}

¹ State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

² Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai 054001, China

³ Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China

⁴ School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China

* To whom correspondence should be addressed: Jie Chao (iamjchao@njupt.edu.cn); Lianhui Wang (iamlhwang@njupt.edu.cn)

Table of Content

Table S1. DNA and RNA sequences	S3
Figure S1. Transmission electron microscope (TEM) characterization	S5
Figure S2. Zeta potential measurement	S6
Figure S3. Optimization of the concentration of hemin, ABTS and H ₂ O ₂	S7
Figure S4. Optimization of the concentration of S4 and temperature; Kinetic study	S8
Table S2. Analytical performance of different methods	S9
Figure S5. Specificity test	.S10

Figure S6. Parallel detection of unknown genetic targets by DNA circuits	.S11
Figure S7. Detection of genetic targets in serum samples	.S12
Table S3. Recovery tests for H7N9 DNA in diluted human serums	.S13
Table S4. Recovery tests for H1N1 DNA in diluted human serums	.S14
Table S5. Recovery tests for Zika DNA in diluted human serums	.S15
Table S6. Recovery tests for Dengue DNA in diluted human serums	.S16
REFERENCES	S17

Name	Sequence (5'-3')
Biotin-S1	biotin- TTTTTTTTTTTTTCTCACTAACTGCATA
	GCCGATAGTTGAGGGAAAAGACCCACCTATGCAGTTAG
Ebola-52	TGAGA
E1 -1 - C2	GGTGGTGGTGGTTGTGGTGGTGGTGGGTCTTTTCCCTC
Ebola-55	AAC
Ebola-S4	CTAACTGCATAGGTGGGTCTTTTCCCTCAAC
111N1 C2	GACCATGAGCTTGCTGTGGAGCCACCTATGCAGTTAGTG
HINI-52	AGA
111N1 C2	GGTGGTGGTGGTTGTGGTGGTGGTGGCTCCACAGCAAG
HINI-55	СТ
H1N1-S4	CTAACTGCATAGGTGGCTCCACAGCAAGCT
711 62	CGGGATTCTTCATGATGCCAGCCACCTATGCAGTTAGTG
Z1Ka-52	AGA
711 62	GGTGGTGGTGGTTGTGGTGGTGGTGGCTGGCATCATGA
Z1Ka-55	AG
Zika-S4	CTAACTGCATAGGTGGCTGGCATCATGAAG
D 30	ATAATCCCTTCTGGTGTGTGTGCCACCTATGCAGTTAGTGA
Dengue-S2	GA
D 30	GGTGGTGGTGGTTGTGGTGGTGGTGGCAACACCAGA
Dengue-S3	AG
Dengue-S4	CTAACTGCATAGGTGGCAACACACCAGAAG
H7N9-S2	AATTCCTGCTTGTTCTCTCTCTCCACCTATGCAGTTAGTGA
	GGTGGTGGTGGTTGTGGTGGTGGTGGAAGAGAGAACA
H7N9-S3	AGC
H7N9-S4	CTAACTGCATAGGTGGAAGAGAGAACAAGC
Ebola DNA ^a	GTCTTTTCCCTCAACTATCGGC
Ebola RNA	GUCUUUUCCCUCAACUAUCGGC

 Table S1. Sequences of oligonucleotides used in this work.

H1N1 DNA ^a	CTCCACAGCAAGCTCATGGTC
Zika DNA ^b	CTGGCATCATGAAGAATCCCG
Dengue DNA ^b	CAACACACCAGAAGGGATTAT
H7N9 DNA ^a	AAGAGAGAACAAGCAGGAATT
SM-Ebola	
DNA	GICTITICCC <u>C</u> CAACTAICOOC
HBV DNA ^a	AAATTCGCAGTCCCCAACCTCC
HIV DNA ^a	ACTGCTAGAGATTTTCCACAT
MAL DNA ^a	AAAATTAAGTGTTCATAACAGA
Random DNA ^a	TAGCTTATCAGACTGATGTTGA

^a We obtained the microorganisms' genomic DNA from GenBank (Ebola DNA: Ebola virus-Mayinga, Zaire, 1976, complete genome, GenBank accession AF086833.2; H1N1 DNA: Influenza A virus (A/California/07/2009(H1N1)) segment 4 hemagglutinin (HA) gene, complete cds, GenBank accession NC_026433.1; H7N9 DNA: Influenza A virus (A/Shanghai/4664T/2013(H7N9)) segment 6 neuraminidase (NA) gene, complete cds, GenBank accession KC853231.1; HBV DNA: Hepatitis B virus DNA, complete genome, strain Fukuoka Red Cross HBV e-negative 1992, GenBank accession D28880.1; HIV DNA: Human immunodeficiency virus 1, complete genome, GenBank accession NC_001802.1; MAL DNA: P.falciparum 18S ribosomal RNA not in asexual parasites, GenBank accession M19173.1 and identified the specific regions that these PCR primers would amplify.

^b sequences adapted from ref. (1).

Figure S1. Transmission electron microscope (TEM) images of magnetic beads (a) before and (b) after biotin-S1 immobilization. The scale bar was 1 μ m.

Figure S2. Zeta potential (mV) of (a) naked magnetic beads, (b) biotin-S1 modified magnetic beads, (c) biotin-S1/S2 modified magnetic beads and (d) biotin-S1/S2/S3 modified magnetic beads.

Figure S3. Optimization of the concentration of (a-b) hemin, (c-d) ABTS and (e-f) H_2O_2 in the absence and presence of 100 nM Ebola-S3 DNAzyme. (a, c, e) The photographs of DNAzyme under different concentrations. (b, d, f) The corresponding absorbance at 421 nm in a, c and e. The histogram represents the absorbance peak at 421 nm.

Figure S4. (a) Influence of different concentration (0, 250, 500, 750 and 1000 nM) of S4 in the presence and absence of 100 nM target DNA. (b) Influence of different temperature (25, 30, 35, 37, 40 and 45 °C) in the presence and absence of 100 nM target DNA. (c) The kinetic study of DNA circuit in the presence and absence of 750 nM S4. (d) The kinetic study of catalytic reaction of ABTS in the presence of 6 mM ABTS and 1 mM H₂O₂. The histogram in (a-b) and plots in (c-d) represents the absorbance peak at 421 nm.

Method	Instrument- dependent	Target	Linear Range	Detection Limit	Time	Ref.
Electro- chemistry	Yes	Single (Ebola)	10 nM-75 nM	4.7 nM	~ 2.5 h	2
Electro- chemistry	Yes	Single (H7N9)	1 pM-2.5 nM 2.5 nM -100 nM	0.75 pM	~ 1.5 h	3
Fluorescence	Yes	Single (H5N1)	500 pM-2 μM	500 pM	24 h	4
Colorimetry	No	Single (Dengue)	0-12 μM	0.12 μΜ	15 min	5
Colorimetry	No	Single (Ebola)	1 pM-1 nM	5.45×10 ⁷ copies/mL	5 min	6
Colorimetry	No	Multiple (H7N9, Ebola, H1N1, Zika, Dengue)	0-125 nM (H7N9); 0-125 nM (Ebola); 0-125 nM (H1N1); 0-100 nM (Zika); 0-75 nM	24.0 pM (H7N9); 314.1 nM (Ebola); 875.0 pM (H1N1); 613.5 pM (Zika); 135.5 pM	< 2 h	This work

Table S2. Analytical performance of different methods for detecting genetic targets of infectious pathogens.

Figure S5. The absorption of the DNA circuits specific for Ebola gene in the absence (control) and presence of target Ebola DNA, single-base mismatched Ebola DNA (SM-Ebola), Hepatitis B Virus (HBV), HIV, Malaria (MAL) and a non-complementary virus gene with a random sequence (Random) under the same experimental conditions. The concentrations of all virus gene were 100 nM, respectively.

Figure S6. Parallel detection of unknown genetic targets by DNA circuits: (a) H7N9 DNA; (b) the mixture of Ebola DNA, H1N1 DNA, Zika DNA and Dengue DNA. The concentration for each target DNA was 100 nM. The histogram represents the absorbance peak at 421 nm and insets are their corresponding photographs.

Figure S7. The UV-Vis spectra of DNA circuit for (a) H7N9 DNA, (b) H1N1 DNA, (c) Zika DNA and (d) Dengue DNA with different concentrations from 0-75 nM in the human serum samples. Insets are the corresponding photographs and calibration curves. For H7N9 DNA, the linear regression equation was $A_{421 nm} = 0.009614 c + 0.3497 (R^2 = 0.9916)$; for H1N1 DNA, the linear regression equation was $A_{421 nm} = 0.005548 c + 0.3599 (R^2 = 0.9942)$; for Zika DNA, the linear regression equation was $A_{421 nm} = 0.006522 c + 0.2872 (R^2 = 0.9942)$; for Dengue DNA, the linear regression equation was $A_{421 nm} = 0.008380 c + 0.3756 (R^2 = 0.9876)$, respectively.

Sample	Added (nM)	Found (nM)	Recovery (%)	RSD (%)
		9.6		
1	10	10.2	101.3	5.0
		10.6		
		26.9		
2	25	25.2	102.3	4.8
		24.6		
		50.3		
3	50	54.4	103.9	4.3
		51.2		

Table S3. Recovery tests for H7N9 DNA in diluted human serums (n = 3).

Sample	Added (nM)	Found (nM)	Recovery (%)	RSD (%)
		10.2		
1	10	10.5	101.3	4.0
		9.7		
		27.4		
2	25	25.6	103.6	5.5
		24.7		
		49.7		
3	50	54.1	102.7	4.8
		50.3		

Table S4. Recovery tests for H1N1 DNA in diluted human serums (n = 3).

Sample	Added (nM)	Found (nM)	Recovery (%)	RSD (%)
		9.8		
1	10	10.4	101.0	3.0
		10.1		
		25.9		
2	25	25.1	100.9	2.4
		24.7		
		51.2		
3	50	47.1	98.2	4.1
		49.0		

Table S5. Recovery tests for Zika DNA in diluted human serums (n = 3).

Sample	Added (nM)	Found (nM)	Recovery (%)	RSD (%)
		10.4		
1	10	9.4	99.7	5.1
		10.1		
		26.1		
2	25	23.8	100.4	4.7
		25.4		
		52.1		
3	50	50.2	104.7	4.5
		54.7		

Table S6. Recovery tests for Dengue DNA in diluted human serums (n = 3).

REFERENCES

- Gootenberg, J. S.; Abudayyeh, O. O.; Lee, J. W.; Essletzbichler, P.; Dy, A. J.; Joung, J. Nucleic Acid Detection with CRISPR-Cas13a/C2C2. *Science*, 2017, 356, 438-442.
- (2) Ilkhani, H.; Farhad, S. A novel electrochemical DNA biosensor for Ebola virus detection. *Anal. Biochem.* 2018, 557, 151-155.
- (3) Dong, S.; Zhao, R.; Zhu, J.; Lu, X.; Li, Y.; Qiu, S.; Jia, L.; Jiao, X.; Song, S.; Fan, C.; Hao, R.; Song, H. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus. ACS Appl. Mater. Interfaces 2015, 7, 8834-8842.
- (4) Zhang, Y.; Mu, F.; Duan, Y.; Li, Q.; Pan, Y.; Du, H.; He, P.; Shen, X.; Luo, Z.; Zhu, C.; Wang, L. Label-Free Analysis of H5N1 Virus Based on Three-Segment Branched DNA-Templated Fluorescent Silver Nanoclusters. *ACS Appl. Mater. Interfaces* 2020, *12*, 48357-48362.
- (5) Abdul Rahman, S.; Saadun, R.; Azmi, N. E.; Ariffin, N.; Abdullah, J.; Yusof, N. A.; Sidek, H.; Hajian, R. Label-Free Dengue Detection Utilizing PNA/DNA Hybridization Based on the Aggregation Process of Unmodified Gold Nanoparticles. J. Nanomater. 2014, 2014, 1-5.
- (6) Qin, P. W.; Park, M.; Alfson, K. J.; Tamhankar, M.; Carrion, R.; Patterson, J. L.; Griffiths, A.; He, Q.; Yildiz, A.; Mathies, R.;Du, K. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sens. 2019, 4, 1048-1054.