Supporting Information

Controllably Doping Nitrogen into 1T/2H MoS₂ Heterostructure Nanosheets Toward the Enhanced Supercapacitive and Electrocatalytic Performance by Low-Power N₂ Plasma

Kai Le^{†,#}, Xiang Zhang[‡], Qi Zhao^{†,§}, Yuzhen Liu[#], Peng Yi^{†,§}, Shusheng Xu^{*,†,#}, and Weimin Liu[†]

⁺ The State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, China

[‡]State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong

University, Jinan 250100, China

[#]Qingdao Center of Resource Chemistry & New Materials, Qingdao, 266071, China

[§]College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao

266580, China

^{II}Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea

*Corresponding author (e-mail: ssxu@licp.cas.cn)

Supercapacitor performance measurements

The electrochemical tests including cyclic voltammogram (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectra (EIS) and cycling stability were firstly studied on a CS electrochemistry workstation in three-electrode system consistent of as-made working electrode, Pt foil counter electrode, Ag/AgCl reference electrode and 0.5M H₂SO₄ aqueous electrolyte. The EIS spectra were measured in the frequency from 10 kHz to 0.01 kHz at an open circuit potential with an AC amplitude of 5 mV. The cycling test was carried out through GCD. Then, the electrochemical performances of as-assembled FSSC devices were also investigated using a CS electrochemistry workstation in two-electrode system including CV, GCD and cycling tests. Both the specific capacitances of single electrode and FSSC device can be determined from the GCD curves through formula:

$$C = \frac{I \times \Delta t}{m \times \Delta V} \tag{S1}$$

where Δt , *I*, and ΔV are the discharge time, the charge-discharge current, and the potential range excluding IR drop in charge-discharge curves and *m* represents the mass loading of the working electrode.

HER performance measurement

The HER performances were also measured in three-electrode system with the 0.5M H_2SO_4 aqueous degassed by N_2 gas as electrolyte. All the electrochemical measurements were conducted on a CS electrochemical workstation. The linear sweep voltammetry (LSV) curves were measured at the scan rates 5 mV s⁻¹ and all the LSV curves were IR corrected. All the potentials were converted to the potentials *versus* the reversible hydrogen electrode (RHE) according to following equation:

$$E_{\rm REH} = E_{\rm Ag/AgCl} + 0.0591 \rm{pH} + 0.197$$
(S2)

The Tafel slope could be obtained using the Tafel equation as follows:

$$\eta = a + b \lg(j) \tag{S3}$$

where *j* is the current density and *b* is the Tafel slope. CV was conducted at various scan rates in the potential range of 0.1 V-0.2 V (*vs.* RHE) to calculate Cdl. CV for stability testing was performed at a scanning rate of 50 mV/s for 1,000 cycles from 0 to -0.35 V *vs.* RHE. The EIS was measured in the frequency in the frequency from 10 kHz to 0.01 Hz at an amplitude of 5 mV at the overpotential of 100 mV *vs.* RHE.

Figure S1. The XRD patterns of MoS₂ before and after N-plasma treatment.

Figure S2. N₂ adsorption/desorption isotherms and pore size distribution (inset) of Pristine

 MoS_2 and N-plasma MoS_2 .

Figure S3. SEM images of (a) N-MoS₂-5 and (b) N-MoS₂-20.

Figure S4. The TEM image of pristine MoS_2

Figure S5. CV curves of (a) pristine MoS₂, (b) N-MoS₂-5 and (c) N-MoS₂-20 at different

scan rates and GCD curves of (d) pristine MoS_2 , (e) N-MoS₂-5 and (f) N-MoS₂-20 at various

current densities.

Figure S6. (a) CV curves of 2H MoS $_2$ and N-2H MoS $_2$ electrodes at 5 mV s⁻¹. GCD curves of

(b) 2H MoS₂ and (c) N-2H MoS₂ electrodes. (d) Specific capacitance at different current

densities of these electrodes.

Figure S7. Cycling performance of pristine MoS₂, N-MoS₂-5 and N-MoS₂-20 electrodes.

Figure S8. LSV curves of pristine MoS₂, N-MoS₂-10, 2H MoS₂ and N-2H MoS₂ in 0.5 M

 H_2SO_4 with a scan rate of 5 mV s⁻¹.

Figure S9. HER Tafel curves of pristine MoS₂, N-MoS₂-10, 2H MoS₂ and N-2H MoS₂.

Figure S10. CV curves of (a) pristine MoS₂, (b) N-MoS₂-5, (c) N-MoS₂-10 and (d)

N-MoS₂-20 at different scan rates in 0.5 M H₂SO₄.

Figure S11. The EIS fitting results of the pristine MoS₂, N-MoS₂-5, N-MoS₂-10 and

N-MoS₂-20.

Sample	Mo 3 <i>p</i> _{3/2}	Mo-N	pyridinic-N
pristine MoS ₂	1	0.3	0.14
N-MoS ₂ -5	1	0.41	0.29
N-MoS ₂ -10	1	0.62	0.51
N-MoS ₂ -20	1	0.72	0.62

Table S1. The normalized area ratio of the peaks of Mo $3p_{3/2}$ for Mo-N and pyridinic-N of

these samples

In order to precisely compare the content of nitrogen species of these samples, the peaks area values of them were normalized to the peak area of Mo $3p_{3/2}$.

Tuble bill companion of fille addition for it filobil to with the recently reported filobil

based HER	catalysts	under 0.5	$5 \text{ M H}_2\text{SO}_4.$
-----------	-----------	-----------	-------------------------------

Catalyst	Modulation strategy	Overpotential (10 mA cm ⁻²)	Ref.
MoS ₂ with S vacancies	hydrothermal growth and laser ablation in liquid	178 mV	1
Monolayer MoS ₂ with S vacancies	NH ₃ intercalation and ultrasonication	160 mV	2
Monolayer MoS ₂ with S vacancies	CVD growth and remote H ₂ plasma	183 mV	3
MoSe ₂ /MoS ₂	Hydrothermal growth	162 mV	4
1T/2H MoS ₂ /carbon nanofiber	Hydrothermal growth	194 mV	5
N-MoS ₂ /3D carbon foam	Redox polymerization and sulfurization	155 mV	6
MoS ₂ with single-atom vacancy	Hydrothermal growth and H ₂ O ₂ chemical etching	131 mV	7
1T MoS ₂	Hydrothermal growth	175 mV	8
Ni-Co-MoS ₂	Precipitation and hydrothermal method	155 mV	9
Zn-doped MoS ₂	Solvothermal growth and exfoliation	135 mV	10
1T/2H-MoS ₂ /graphene	Hydrothermal growth	143 mV	11
N-amorphous MoS _x	coprecipitation method	143 mV	12
N-doped 1T/2H MoS ₂	Hydrothermal growth and low-power N ₂ plasma at room temperature	131 mV	This work

RERERENCE

(1) Meng, C.; Lin, M.-C.; Du, X.-W.; Zhou, Y. Molybdenum Disulfide Modified by Laser Irradiation for Catalyzing Hydrogen Evolution. *ACS Sustain. Chem. Eng.* **2019**, *7* (7), 6999-7003.

(2) Xu, Y.; Wang, L.; Liu, X.; Zhang, S.; Liu, C.; Yan, D.; Zeng, Y.; Pei, Y.; Liu, Y.; Luo, S.
Monolayer MoS₂ with S Vacancies from Interlayer Spacing Expanded Counterparts for
Highly Efficient Electrochemical Hydrogen Production. *J. Mater. Chem. A* 2016, *4* (42), 16524-16530.

(3) Cheng, C.-C.; Lu, A.-Y.; Tseng, C.-C.; Yang, X.; Hedhili, M. N.; Chen, M.-C.; Wei,
K.-H.; Li, L.-J. Activating Basal-Plane Catalytic Activity of Two-Dimensional MoS₂
Monolayer with Remote Hydrogen Plasma. *Nano Energy* 2016, *30*, 846-852.

(4) Li, S.; Zang, W.; Liu, X.; Pennycook, S. J.; Kou, Z.; Yang, C.; Guan, C.; Wang, J. Heterojunction Engineering of MoSe₂/MoS₂ with Electronic Modulation Towards Synergetic Hydrogen Evolution Reaction and Supercapacitance Performance. *Chem. Eng. J.* 2019, *359*, 1419-1426.

(5) Niu, H.; Zou, Z.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Structurally Stable Ultrathin 1T-2H MoS₂ Heterostructures Coaxially Aligned on Carbon Nanofibers Toward Superhigh-eEnergy-Density Supercapacitor and Enhanced Electrocatalysis. *Chem. Eng. J.* **2020**, *399*, 125672.

(6) Jia, X.; Ren, H.; Hu, H.; Song, Y. F. 3D Carbon Foam Supported Edge-Rich N-Doped MoS₂ Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution. *Chem. Eur. J.* 2020, 26, 4150-4156.

(7) Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; Ammarah, K.; Gu, L.; Kang, Z.; Zhang, Y. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS₂. *J. Am. Chem. Soc.* **2020**, *142* (9), 4298-4308.

(8) Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.;
Cui, J.; Chen, T.-p. Pure and Stable Metallic Phase Molybdenum Disulfide Nanosheets for
Hydrogen Evolution Reaction. *Nat. commun.* 2016, 7.

(9) Yu, X.-Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X. W.; Paik, U. Formation of Ni-Co-MoS₂
Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. *Adv. Mater.*2016, 28, 9006-9011.

(10) Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.;
Chen, H. Y. Energy Level Engineering of MoS₂ by Transition-Metal Doping for Accelerating
Hydrogen Evolution Reaction. *J. Am. Chem. Soc.* 2017, *139*, 15479-15485.

(11) Xiao, Y.; Tan, M.; Li, Z.; He, L.; Gao, B.; Chen, Y.; Zheng, Y.; Lin, B.
Ethylenediamine-Assisted Phase Engineering of 1T/2H–MoS₂/Graphene for Efficient and
Stable Electrocatalytic Hydrogen Evolution. *Int. J. Hydrog. Energy* 2021, *46*, 11688-11700.

(12) Ding, R.; Wang, M.; Wang, X.; Wang, H.; Wang, L.; Mu, Y.; Lv, B. N-Doped Amorphous MoS_x for the Hydrogen Evolution Reaction. *Nanoscale* 2019, *11*, 11217-11226.