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Supercapacitor performance measurements

The electrochemical tests including cyclic voltammogram (CV), galvanostatic 

charge-discharge (GCD), electrochemical impedance spectra (EIS) and cycling stability were 

firstly studied on a CS electrochemistry workstation in three-electrode system consistent of 

as-made working electrode, Pt foil counter electrode, Ag/AgCl reference electrode and 0.5M 

H2SO4 aqueous electrolyte. The EIS spectra were measured in the frequency from 10 kHz to 

0.01 kHz at an open circuit potential with an AC amplitude of 5 mV. The cycling test was 

carried out through GCD. Then, the electrochemical performances of as-assembled FSSC 

devices were also investigated using a CS electrochemistry workstation in two-electrode 

system including CV, GCD and cycling tests. Both the specific capacitances of single 

electrode and FSSC device can be determined from the GCD curves through formula:

                                  (S1)𝐶 =
𝐼 × ∆𝑡

𝑚 × ∆𝑉

where , , and  are the discharge time, the charge-discharge current, and the potential ∆𝑡 𝐼 ∆𝑉

range excluding IR drop in charge-discharge curves and  represents the mass loading of 𝑚

the working electrode.

HER performance measurement

  The HER performances were also measured in three-electrode system with the 0.5M 

H2SO4 aqueous degassed by N2 gas as electrolyte. All the electrochemical measurements 

were conducted on a CS electrochemical workstation. The linear sweep voltammetry (LSV) 

curves were measured at the scan rates 5 mV s-1 and all the LSV curves were IR corrected. 

All the potentials were converted to the potentials versus the reversible hydrogen electrode 

(RHE) according to following equation: 
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                            (S2)𝐸REH = 𝐸Ag/AgCl +0.0591pH +0.197

The Tafel slope could be obtained using the Tafel equation as follows:

                                        (S3)𝜂 = 𝑎 + 𝑏lg(𝑗)

where j is the current density and b is the Tafel slope. CV was conducted at various scan rates 

in the potential range of 0.1 V-0.2 V (vs. RHE) to calculate Cdl. CV for stability testing was 

performed at a scanning rate of 50 mV/s for 1,000 cycles from 0 to -0.35 V vs. RHE. The EIS 

was measured in the frequency in the frequency from 10 kHz to 0.01 Hz at an amplitude of 5 

mV at the overpotential of 100 mV vs. RHE.
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Figure S1. The XRD patterns of MoS2 before and after N-plasma treatment.

Figure S2. N2 adsorption/desorption isotherms and pore size distribution (inset) of Pristine 

MoS2 and N-plasma MoS2.
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Figure S3. SEM images of (a) N-MoS2-5 and (b) N-MoS2-20.

Figure S4. The TEM image of pristine MoS2 
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Figure S5. CV curves of (a) pristine MoS2, (b) N-MoS2-5 and (c) N-MoS2-20 at different 

scan rates and GCD curves of (d) pristine MoS2, (e) N-MoS2-5 and (f) N-MoS2-20 at various 

current densities.
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Figure S6. (a) CV curves of 2H MoS2 and N-2H MoS2 electrodes at 5 mV s-1. GCD curves of 

(b) 2H MoS2 and (c) N-2H MoS2 electrodes. (d) Specific capacitance at different current 

densities of these electrodes.

Figure S7. Cycling performance of pristine MoS2, N-MoS2-5 and N-MoS2-20 electrodes.
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Figure S8. LSV curves of pristine MoS2, N-MoS2-10, 2H MoS2 and N-2H MoS2 in 0.5 M 

H2SO4 with a scan rate of 5 mV s-1. 

Figure S9. HER Tafel curves of pristine MoS2, N-MoS2-10, 2H MoS2 and N-2H MoS2.
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Figure S10. CV curves of (a) pristine MoS2, (b) N-MoS2-5, (c) N-MoS2-10 and (d) 

N-MoS2-20 at different scan rates in 0.5 M H2SO4.

Figure S11. The EIS fitting results of the pristine MoS2, N-MoS2-5, N-MoS2-10 and 

N-MoS2-20.
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Table S1. The normalized area ratio of the peaks of Mo 3p3/2 for Mo-N and pyridinic-N of 

these samples

Sample Mo 3p3/2 Mo-N pyridinic-N

pristine MoS2 1 0.3 0.14

N-MoS2-5 1 0.41 0.29

N-MoS2-10 1 0.62 0.51

N-MoS2-20 1 0.72 0.62

In order to precisely compare the content of nitrogen species of these samples, the peaks 

area values of them were normalized to the peak area of Mo 3p3/2.
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Table S2. Comparison of HER activity for N-MoS2-10 with the recently-reported MoS2 

based HER catalysts under 0.5 M H2SO4.

Catalyst Modulation strategy Overpotential 
(10 mA cm-2)

Ref.

MoS2 with S vacancies hydrothermal growth and laser ablation in 
liquid 178 mV 1

Monolayer MoS2 with S 
vacancies NH3 intercalation and ultrasonication 160 mV 2

Monolayer MoS2 with S 
vacancies CVD growth and remote H2 plasma 183 mV 3

MoSe2/MoS2 Hydrothermal growth 162 mV 4

1T/2H MoS2/carbon 
nanofiber Hydrothermal growth 194 mV 5

N-MoS2/3D carbon foam Redox polymerization and sulfurization 155 mV 6

MoS2 with single-atom 
vacancy

Hydrothermal growth and H2O2 chemical 
etching 131 mV 7

1T MoS2 Hydrothermal growth 175 mV 8

Ni-Co-MoS2 Precipitation and hydrothermal method 155 mV 9

Zn-doped MoS2 Solvothermal growth and exfoliation 135 mV 10

1T/2H-MoS2/graphene Hydrothermal growth 143 mV 11

N-amorphous MoSx coprecipitation method 143 mV 12

N-doped 1T/2H MoS2
Hydrothermal growth and low-power N2 

plasma at room temperature 131 mV This work
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