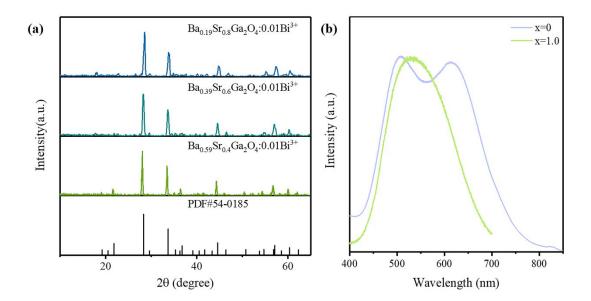
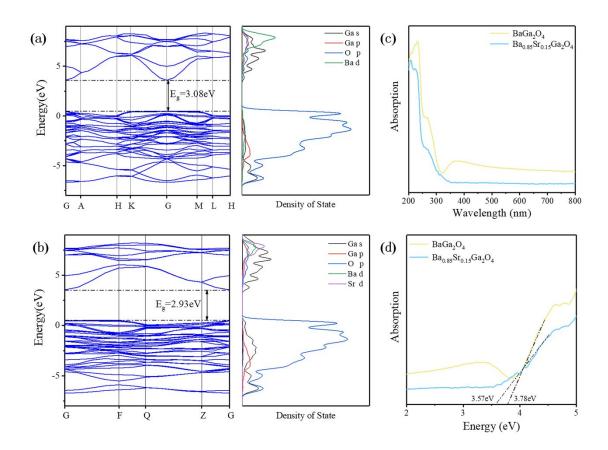
Tailored Luminescence Output of Bi³⁺ Doped BaGa₂O₄ Phosphor with the Assistant of the Introduction of Secondary Cations Sr²⁺ Ions

Shaoqing Wang,¹ Ting Wang,^{2,*} Xue Yu,^{1,*} Ziyang Li,¹ Longchao Guo,¹ Jiaqi Chen,¹ Feng Zhao,¹ Wei Feng,¹ Xuhui Xu,³ Jianbei Qiu³


¹ School of Mechanical Engineering, Chengdu University, Chengdu 610106, China

² College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology,


Chengdu 610059, China

³ College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

* Corresponding author: <u>yuyu6593@126.com</u>, <u>wangtkm@foxmail.com</u>

Figure S1. (a) XRD patterns of $Ba_{1-x}Sr_xGa_2O_4:0.01Bi^{3+}$ (x=0.4, 0.6 and 0.8) phosphors and the standard data of $BaSrGa_4O_8$. (b) The normalized PL spectra of $Ba_{1-x}Sr_xGa_2O_4:0.01Bi^{3+}$ (x=0 and 1.0) phosphors, respectively.

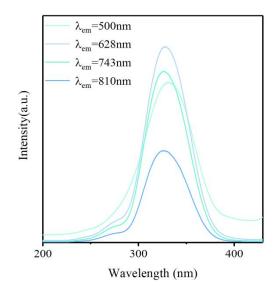
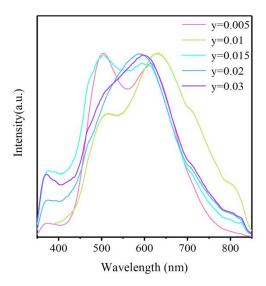


Figure S2. Electronic band structure and the corresponding PDOS of $BaGa_2O_4$ (a), and $Ba_{0.85}Sr_{0.15}Ga_2O_4$ (b), respectively. (c) Optical absorption spectra and (d) Kubelka-Munk plots with extrapolation of the band gap for pure $BaGa_2O_4$ and $Ba_{0.85}Sr_{0.15}Ga_2O_4$, respectively.

The calculated electronic band structure of pure BaGa₂O₄ possesses a direct band gap at the *G* point of Brillouin zone (E_g = ~3.08eV), where the O 2*p* orbit, *and* the Ba 4*d* and Ga 4*s* orbit contributes to the valence band maximum (VBM) and conduction band minimum (CBM) of BaGa₂O₄ host, respectively. Meanwhile, the calculated band gap decreases to be ~2.93eV (Figure S2b) of Ba_{0.85}Sr_{0.15}Ga₂O₄, for the contribution of the 4*d* orbit of Ba and 4*s* orbit of Ga as well as the 3*d* orbit of Sr to the CBM of the host matrix. The decreased band gap is further confirmed with the absorption spectra of the $BaGa_2O_4$ and $Ba_{0.85}Sr_{0.15}Ga_2O_4$, respectively in Figure S2c, where all the phosphors exhibit an effective absorption in the range of ultraviolet light. The band gap can be obtained using the following equation:


$$F(R) = (1 - R)^{2} / 2R$$
$$[F(R) \times hv]^{2} = A(hv - E_{g})$$
(1)

where $F(R_{\infty})$ is the Kubelka-Munk function, hv is the photon energy, R represent the reflection parameters, A is a proportionality constant and E_g stands for the optical band gap. The E_g values of BaGa₂O₄ host and Ba_{0.84}Sr_{0.15}Ga₂O₄ are estimated to be about 3.78 eV and 3.57 eV by extrapolating linear portion of $[F(R) \times hv]^2 = 0$ in Figure S2d.

Figure S3. PLE spectra of $Ba_{0.94}Sr_{0.05}Ga_2O_4:0.01Bi^{3+}$ *phosphor monitored at 500, 628, 743 and*

800 nm emission.

Figure S4. Normalized PL spectra of $Ba_{0.94}Sr_{0.05}Ga_2O_4$: yBi^{3+} (y=0.005, 0.010, 0.015, 0.020,

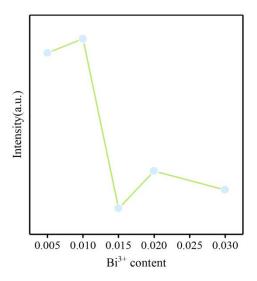
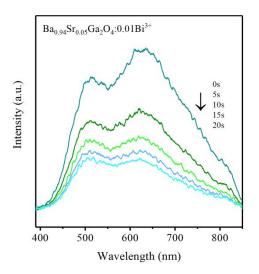



Figure S5. The emission intensity in $Ba_{0.94}Sr_{0.05}Ga_2O_4$: yBi^{3+} (y=0.005, 0.010, 0.015, 0.020,

0.030) phosphors as a function of Bi^{3+} concentration.

Figure S6. LPL spectra of $Ba_{0.94}Sr_{0.05}Ga_2O_4$: 0.01 Bi^{3+} .