## **Support Information**

## Double Transition Metal Carbides MXenes (D-MXenes) as Promising Electrocatalysts for Hydrogen Reduction Reaction: *Ab initio* Calculations

Neng Li<sup>a, b,\*</sup>, Zhoulan Zeng<sup>a</sup>, Youwei Zhang<sup>a</sup>, Xingzhu Chen<sup>a</sup>, Zhouzhou Kong<sup>a</sup>, Arramel<sup>c</sup>,

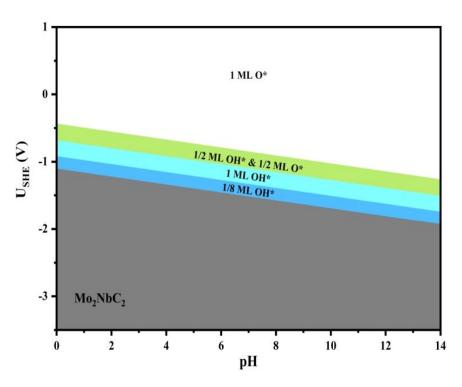
Yong Lid, Peng Zhange, Ba-Son Nguyenf

<sup>a</sup>State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China

<sup>b</sup>Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China

<sup>c</sup>Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551 Singapore

<sup>d</sup>Institute of Oxygen Supply, Tibet University, Lhasa 850000, China


<sup>e</sup>State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China

<sup>f</sup>Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam

The surface Pourbaix diagram of the  $Mo_2NbC_2$  is constructed by plotting the thermodynamically most stable surface state under relevant  $U_{SHE}$  and pH, as shown in Figure S1. We have been investigated the Pourbaix diagram of four different MXenes with adsorbates: partially terminated 1/8 ML OH\*, fully terminated 1 ML OH\*, a mixed termination consisting of 1/2 ML OH\* and 1/2 ML O\*, and fully terminated 1 ML O\*. The  $U_{SHE}$  is the applied voltage on the electrode referenced to the standard hydrogen electrode, and theoretically is defined in solution [pH = 0, p(H<sub>2</sub>) = 1 bar]. Bare  $Mo_2NbC_2$  is found to be stable at potentials lower than -1.13 V in an acidic solution (pH = 0).

With increasing  $U_{SHE}$ , more OH\* are adsorbed on the Mo<sub>2</sub>NbC<sub>2</sub> surface.  $U_{SHE}$  of the Mo<sub>2</sub>NbC<sub>2</sub> surface with full OH\* (1 ML) termination [Mo<sub>2</sub>NbC<sub>2</sub>(OH)<sub>2</sub>] reaches to

-0.92 V. When the U<sub>SHE</sub> continually increases, water oxidation begins, leading to increasing coverage of hydroxyl and oxygen on the MXenes surface. All terminated OH\* will be oxidized if the U<sub>SHE</sub> continually increases, and then the stable O\* terminated Mo<sub>2</sub>NbC<sub>2</sub> MXenes (Mo<sub>2</sub>NbC<sub>2</sub>O<sub>2</sub>) are formed. At the acidic condition (pH = 0), the lowest potential values for the fully O\* terminated Mo<sub>2</sub>NbC<sub>2</sub> (1 ML O\*) are -0.435 V.



**Figure S1.** Calculated surface Pourbaix diagrams of Mo<sub>2</sub>NbC<sub>2</sub> showing the most stable terminations on the surface at specific potentials and pH values.

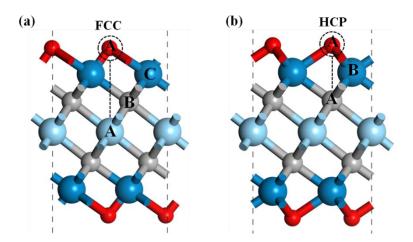



Figure S2. Side view of (a) FCC and (b) HCP sites for O-terminal double MXenes (M'<sub>2</sub>M"C<sub>2</sub>O<sub>2</sub>).